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An extragradient iterative scheme for common
fixed point problems and variational inequality

problems with applications

Adrian Petruşel, D.R. Sahu and Vidya Sagar

Abstract

In this paper, by combining a modified extragradient scheme with the
viscosity approximation technique, an iterative scheme is developed for
computing the common element of the set of fixed points of a sequence
of asymptotically nonexpansive mappings and the set of solutions of
the variational inequality problem for an α-inverse strongly monotone
mapping. We prove a strong convergence theorem for the sequences
generated by this scheme and give some applications of our convergence
theorem.

1 Introduction

Let C be a nonempty subset of a real Hilbert space H with inner product 〈., .〉
and norm ‖.‖, respectively. A mapping A : C → H is called (see ([15]))
(i) monotone if

〈Au−Av, u− v〉 ≥ 0, for all u, v ∈ C;

(ii) η-strongly monotone if there exists a positive real number η such that

〈Au−Av, u− v〉 ≥ η ‖u− v‖2, for all u, v ∈ C;
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(iii) α-inverse strongly monotone if there exists a positive real number α such
that

〈Au−Av, u− v〉 ≥ α ‖Au−Av‖2, for all u, v ∈ C;

(iv) k-Lipschitzian if there exists k > 0 such that

‖Au−Av‖ ≤ k ‖u− v‖, for all u, v ∈ C;

(v) k-contraction if it is k-Lipschitzian with k < 1;
(vi) nonexpansive if

‖Au−Av‖ ≤ ‖u− v‖, for all u, v ∈ C.

Let C be a nonempty subset of a real Hilbert space H and {Sn} a sequence of
mappings from C into itself. Then the sequence {Sn}n∈N is called a sequence
of asymptotically nonexpansive mappings ([12]) on C if there exists a sequence
{kn} in [1,∞) with lim

n→∞
kn = 1 such that

‖Snu− Snv‖ ≤ kn ‖u− v‖, for all u, v ∈ C and n ∈ N.

Let C be a nonempty, closed, and convex subset of a real Hilbert space H. A
variational inequality problem is the problem of finding u ∈ C such that

〈Au, v − u〉 ≥ 0, for all v ∈ C, (1)

where A is a nonlinear mapping from C into H. The set of solutions of the
variational inequality problem (1.1) is denoted by Ω. We denote by F (S) the
set of fixed points of mapping S : C → C.

We give some examples of α-inverse strongly monotone mappings. Let H
be a Hilbert space and C a nonempty closed convex subset of H. If T is
a nonexpansive mapping from C into itself, then A := I − T is 1

2 -inverse
strongly monotone and Ω = F (T ). Also, if A is η-strongly monotone and
k-Lipschitz, then A is η

k2 -inverse strongly monotone. For the reverse impli-
cation, let us observe that there are examples of mappings which are inverse
strongly monotone, but not strongly monotone. The metric projection PC is
one of these, see also [16]. Recall that mapping T : C → C is called λ-strictly
pseudocontractive on C if there exists λ ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + λ ‖(I − T )x− (I − T )y‖2, for all x, y ∈ C.

Notice that if T : C → C is λ-strictly pseudocontractive, then the mapping
A := I − T is 1−λ

2 -inverse strongly monotone.
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The variational inequality (1.1) was introduced by Stampacchia [14] in 1964.
It has been shown that a large class of problems arising in engineering and
applied sciences ([8] and the references therein) can be studied in the frame-
work of the variational inequalities. It is known that the element u ∈ C is a
solution of the variational inequality problem (1.1) if and only if u satisfies the
relation:

u = PC(u− λAu),

where λ > 0 is a constant and PC is the metric projection mapping of H onto
C.

It is obvious that fixed point problems and variational inequality problems
are equivalent. This approach shows that a variational inequality can be re-
garded as a fixed point problem and, in this respect, the following iterative
method could be important, in order to solve approximatively a variational
inequality problem:
For a given u0∈ C, compute un+1 by the iterative scheme:

un+1= PC(un − λAun), for n = 0, 1, 2, ....

These ideas were the starting point of a large number of papers dealing with
the problem of approximating the solution of a variational inequality prob-
lem, sometimes in connection to other related problems, such as the problem
of finding and approximating the fixed points of a nonexpansive mapping.

Korpelevich [6] introduced an extragradient method and proved that the se-
quences generated by the extragradient method converge to the same point
z ∈ Ω.

Recently, Nadezhkina and Takahashi [7], Zeng and Yao [18] introduced new
iterative schemes for finding an element of F (S) ∩ Ω and obtained the weak
and strong convergence theorems respectively. Chen, Zhang and Fan [2] in-
troduced an iterative scheme by viscosity approximation method for finding a
common element of the fixed point set of a nonexpansive operator and the so-
lution set of a variational inequality problem and proved a strong convergence
theorem.

More recently, Petruşel and Yao [10] introduced a modified extragradient
scheme by viscosity approximation method and obtained a strong convergence
result for an explicit scheme in a Hilbert space.

In this paper, inspired by Petruşel and Yao [10], we prove a strong convergence
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theorem for computation of the common element of the set of fixed points of
a sequence of asymptotically nonexpansive mappings and the set of solutions
of the variational inequality problem for an α-inverse strongly monotone map-
ping. Our results generalize the result of Petruşel and Yao [10] to the case of a
sequence of asymptotically nonexpansive mappings and extend the results of
Nadezhkina and Takahashi [7], Zeng and Yao [18] and Chen, Zhang and Fan
[2]. Other related results are given in [17]-[4].

2 Preliminaries

Throughout this paper, H is a real Hilbert space with inner product 〈·, ·〉 and
norm ‖.‖. We denote by I the identity operator of H. Also, we denote by
→ and ⇀ the strong convergence and weak convergence, respectively. The
symbol N stands for the set of all natural numbers. Let C be a nonempty
subset of H and S := {Sn}n∈N a sequence of self-mappings from C into itself.
We denote by F (S) the set of common fixed points of the sequence S, i.e.,

F (S) =
∞⋂
n=1

F (Sn).

Let C be a nonempty closed convex subset of H. Then, for any x ∈ H,
there exists a unique nearest point in C, denoted by PC(x), such that

‖x− PC(x)‖ ≤ ‖x− y‖, for all y ∈ C.

The mapping PC is called the metric projection of H onto C. We know that
PC is a nonexpansive mapping of H onto C. It is also known that PC is char-
acterized by the following properties (see [5, 1]):
(A) PC(x) ∈ C, for all x ∈ H;
(B) 〈x− PC(x), PC(x)− y〉 ≥ 0, for all x ∈ H, y ∈ C;

(C) ‖x− y‖2 ≥ ‖x− PC(x)‖2 + ‖y − PC(x)‖2, for all x ∈ H, y ∈ C.

It is also known that H satisfies the Opial property (see [1, 9]), i.e., for any
sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.

A set-valued mapping T : H → 2H is called monotone if, for all x, y ∈ H,
f ∈ Tx and g ∈ Ty, we have 〈x− y, f − g 〉 ≥ 0. A monotone mapping
T : H → 2H is maximal if its graph G(T ) is not properly contained in
the graph of any other monotone mapping. It is known that a monotone
mapping T is maximal if and only if the following implication holds: if for
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(x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ), then f ∈ Tx.

Let A : C → H be a monotone and k-Lipschitz continuous mapping and
let NC(v) be the normal cone to C at v ∈ C, i.e.,

NC(v) = {w ∈ H : 〈v − y, w〉 ≥ 0, for all y ∈ C}.

Define

Tv =

{
Av +NC(v), if v ∈ C,
∅, if v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω, see ([11]).

We present now an important property of the α-inverse strongly monotone
mappings.

Lemma 1. ([16]) Let C be a nonempty subset of a real Hilbert space H. Let
α > 0 and A : C → H an α-inverse strongly monotone. Then, A is 1

α -Lipschitz
continuous. Moreover, for all u, v ∈ C and each λ > 0, we have

‖(I − λA)u− (I − λA)v‖2 = ‖(u− v)− λ(Au−Av)‖2

= ‖u− v‖2 − 2λ 〈u− v,Au−Av〉
+ λ2 ‖Au−Av‖2 .

As consequence, (I − λA) is a nonexpansive mapping from C into H if
λ ≤ 2α.

Now we state an existence result for the solution of the variational inequality
problem for inverse strongly monotone mappings.

Theorem 1. ([16]) Let C be a closed convex bounded subset of a real Hilbert
space H and let A : C → H be α-inverse strongly monotone. Then Ω is
non-empty.

In the proof of the main results, we need the following lemmas.

Lemma 2. (Schu [13]) Let H be a real Hilbert space, let {αn} be a sequence
of real numbers such that 0 < a ≤ αn ≤ b < 1, for all n ∈ N and let {vn} and
{wn} be sequences in H such that

lim sup
n→∞

‖vn‖ ≤ c, lim sup
n→∞

‖wn‖ ≤ c and lim
n→∞

‖αnvn + (1− αn)wn‖ = c
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for some c ≥ 0. Then, lim
n→∞

‖vn − wn‖= 0.

Lemma 3. (Xu [17]) Let {αn}∞n=0 be a sequence of non negative real numbers
satisfying the inequality

αn+1 ≤ (1− γn)αn + γnβn, for all n ∈ N,

where {γn}∞n=1 and {βn}∞n=1 are sequences of real numbers which satisfy the
conditions:

(i) {γn}∞n=1 ⊂ (0, 1) and
∞∑
n=1

γn =∞;

(ii) lim sup
n→∞

βn
γn
≤ 0 or

∞∑
n=1
|βn| <∞.

Then lim
n→∞

αn = 0.

Lemma 4. ([3]) Assume that S is an asymptotically nonexpansive self-mapping
of a nonempty closed convex subset C of a real Hilbert space H. Then I−S is
demiclosed, i.e., if {xn} is a sequence in C weakly converging to some x ∈ C
and the sequence {(I − S)xn} strongly converges to 0, then x ∈ F (S).

AF point property ([12]) Let C be a nonempty subset of a real Hilbert
space H, and let S := {Sn} be a sequence of self-mappings on C. A sequence
{xn} in C is said to have the approximate fixed point property (in short AF
point property) for {Sn} if lim

n→∞
‖xn − Snxn‖ = 0.

Condition D ([12]) Let C be a nonempty closed convex subset of a real
Hilbert space H and S := {Sn} a sequence of self-mappings on C. A family
{I − Sn} is said to be demi-closed at zero if for every bounded sequence {xn}
in C, the following condition holds:

(D) {xn − Snxn} → 0⇒ ww(xn) ⊂ F (S),

where ww(xn) is the set of weak cluster points of the sequence {xn}.

3 Main results

Theorem 2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let A : C → H be an α-inverse strongly monotone mapping and S :=
{Sn} a sequence of asymptotically nonexpansive mappings from C into itself
with sequence {kn} such that F (S)∩Ω 6= ∅. Assume that S satisfies condition
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(D) and f : C → C is a k-contraction. For arbitrary x1 ∈ C, consider the
sequences {xn} and {yn} generated by the following iterative process: x1 ∈ C,

yn = PC(xn − λnAxn),
xn+1 = αnf(xn) + (1− αn)SnPC(xn − λnAyn), for all n ∈ N,

(2)

where {αn} and {λn} are two sequences of positive numbers with {αn} ⊂ (0, α)
and {λn} ⊂ [a, b], with 0 < a < b < α(1− δ) (forsome α, δ ∈ (0, 1)) satisfying
the conditions:

(i) lim
n→∞

αn = 0,

∞∑
n=1

αn =∞;

(ii)
∞∑
n=1
|αn+1 − αn| <∞;

(iii)
∞∑
n=1
|λn+1 − λn| <∞;

(iv) lim
n→∞

‖Sntn − Sn+1tn‖
αn+1

= 0;

(v) lim
n→∞

kn − 1

αn
= 0.

Then, the sequences {xn} and {yn} converge strongly to the same point p,
such that p is the unique solution in F (S) ∩ Ω of the following variational
inequality:

〈f(p)− p, y − p〉 ≤ 0 for all y ∈ F (S) ∩ Ω. (3)

Proof. Denote tn := PC(xn − λnAyn),∀n ∈ N and let u ∈ F (S) ∩ Ω. Then
u = PC(u− λnAu). We proceed in the following steps.

Step 1. {xn} is bounded.

Taking x := xn − λnAyn and y := u in relation (C), we have

‖tn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − u‖2 − 2λn 〈Ayn, xn − u〉+ λ2
n ‖Ayn‖

2 − ‖xn − tn‖2

+ 2λn 〈Ayn, xn − tn〉 − λ2
n ‖Ayn‖

2

= ‖xn − u‖2 + 2λn 〈Ayn, u− tn〉 − ‖xn − tn‖2

= ‖xn − u‖2 − ‖xn − tn‖2 − 2λn 〈Ayn −Au, yn − u〉
− 2λn 〈Au, yn − u〉+ 2λn 〈Ayn, yn − tn〉

≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+ 2 〈xn − λnAyn − yn, tn − yn〉 .
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From (B), we obtain

〈xn − λnAyn − yn, tn − yn〉 = 〈xn − λnAxn − yn, tn − yn〉
+ 〈λnAxn − λnAyn, tn − yn〉

= −〈xn − λnAxn − yn, yn − tn〉
+ 〈λnAxn − λnAyn, tn − yn〉

≤ 〈λnAxn − λnAyn, tn − yn〉

≤ λn
α
‖xn − yn‖ ‖tn − yn‖ .

Hence

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+ 2 〈xn − λnAyn − yn, tn − yn〉
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+
λn

2

α2
‖xn − yn‖2 + ‖tn − yn‖2

= ‖xn − u‖2 + (
λn

2

α2
− 1) ‖xn − yn‖2

≤ ‖xn − u‖2 .

From (3.1), we have

‖xn+1 − u‖ = ‖αnf(xn) + (1− αn)Sntn − u‖
≤ αn ‖f(xn)− u‖+ (1− αn) ‖Sntn − u‖
≤ αn ‖f(xn)− f(u)‖+ αn ‖f(u)− u‖+ (1− αn) ‖Sntn − Su‖
≤ αnk ‖xn − u‖+ αn ‖f(u)− u‖+ kn(1− αn) ‖tn − u‖
≤ αnk ‖xn − u‖+ αn ‖f(u)− u‖+ kn(1− αn) ‖xn − u‖
= [1− αn(1− k)] ‖xn − u‖+ αn ‖f(u)− u‖

+ (1− αn)(kn − 1) ‖xn − u‖
= [1− αn(1− k)] ‖xn − u‖+ (1− αn)(kn − 1) ‖xn − u‖+ µn,

where µn = αn ‖f(u)− u‖. Note lim
n→∞

kn − 1

αn
= 0 and lim

n→∞
αn = 0, so there

exist two constants β ∈ (0, 1) with (β − k) ∈ (0, 1) and K1 > 0 such that
kn−1
αn
≤ 1−β

1−αn
and µn

αn
≤ K1 for all n ∈ N. Hence

‖xn+1 − u‖ ≤ [1− (β − k)αn] ‖xn − u‖+ αnK1

≤ max

{
‖xn − u‖ ,

K1

β − k

}
.
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It follows that {xn} is bounded.

Step 2. ‖xn+1 − xn‖ → 0 as n→∞.

By Step 1, {xn} is bounded. So {f(xn)}, {Axn}, {tn}, {Atn}, {Sntn} are
bounded. Observe that

‖xn+1 − xn‖ = ‖(αn − αn−1)[f(xn−1)− Sn−1tn−1]

+ (1− αn)(Sntn − Sn−1tn−1) + αn[f(xn)− f(xn−1)]‖
≤ |αn − αn−1| ‖f(xn−1)− Sn−1tn−1‖

+ (1− αn) ‖Sntn − Sn−1tn−1‖+ αn ‖f(xn)− f(xn−1)‖
≤ |αn − αn−1| ‖f(xn−1)− Sn−1tn−1‖

+ (1− αn) ‖Sntn − Sn−1tn−1‖+ αnk ‖xn − xn−1‖
≤ |αn − αn−1| ‖f(xn−1)− Sn−1tn−1‖

+ kn(1− αn) ‖tn − tn−1‖+ αnk ‖xn − xn−1‖+ (1− αn)εn−1,

where εn−1 = ‖Sntn−1 − Sn−1tn−1‖. Since λn < α(1− δ) < 2α, from Propo-
sition 1, we have

‖tn+1 − tn‖ = ‖PC(xn+1 − λn+1Ayn+1)− PC(xn − λnAyn)‖
≤ ‖xn+1 − λn+1Ayn+1 − xn + λnAyn‖
≤ ‖xn+1 − xn‖+ |λn+1 − λn| ‖Ayn‖ .

Hence

‖xn+1 − xn‖ ≤ [kn(1− αn) + kαn] ‖xn − xn−1‖
+ |αn − αn−1| ‖f(xn−1)− Sn−1tn−1‖
+ kn(1− αn) |λn − λn−1| ‖Ayn−1‖+ (1− αn)εn−1

≤ [kn(1− αn) + kαn] ‖xn − xn−1‖
+ |αn − αn−1|L+ |λn − λn−1|M + (1− αn)εn−1

≤ [1− (1− k)αn] ‖xn − xn−1‖+ (kn − 1)N

+ |αn − αn−1|L+ |λn − λn−1|M + εn−1,

where L = sup
n∈N
‖f(xn)− Sntn‖, M = sup

n∈N
‖Ayn‖ and N = sup

n∈N
‖xn − xn+1‖.

Note lim
n→∞

kn − 1

αn
= 0 and lim

n→∞

εn
αn+1

= 0. By Lemma 3, we obtain

‖xn+1 − xn‖ → 0 as n→∞.
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Step 3. ‖xn − yn‖ → 0 and ‖tn − yn‖ → 0 as n→∞.
From (3.1), we have

‖xn+1 − u‖2 = ‖αnf(xn) + (1− αn)Sntn − u‖2

= ‖αn(f(xn)− f(u)) + αn(f(u)− u) + (1− αn)(Sntn − u)‖2

≤ αn[‖f(xn)− f(u)‖+ ‖f(u)− u‖]2

+ (1− αn) ‖Sntn − u‖2

≤ αn[k ‖xn − u‖+ ‖f(u)− u‖]2 + k2
n(1− αn) ‖tn − u‖2

≤ k2αn ‖xn − u‖2 + αn[2k ‖xn − u‖ ‖f(u)− u‖
+ ‖f(u)− u‖2] + k2

n(1− αn)[‖xn − u‖2

+ (
λ2
n

α2
− 1) ‖xn − yn‖2]

≤ [k2αn + k2
n(1− αn)] ‖xn − u‖2

+ αn[2k ‖xn − u‖ ‖f(u)− u‖+ ‖f(u)− u‖2]

+ k2
n(1− αn)(

λ2
n

α2
− 1) ‖xn − yn‖2 .

Hence

(1− α)(2δ − δ2) ‖xn − yn‖2 ≤ k2
n(1− αn)(1− λ2

n

α2
) ‖xn − yn‖2

≤ [k2αn + k2
n(1− αn)] ‖xn − u‖2 − ‖xn+1 − u‖2

+ αn[2k ‖xn − u‖ ‖f(u)− u‖+ ‖f(u)− u‖2]

≤ [k2αn + (1− αn)] ‖xn − u‖2 − ‖xn+1 − u‖2

+ (1− αn)(k2
n − 1) ‖xn − u‖2

+ αn[2k ‖xn − u‖ ‖f(u)− u‖+ ‖f(u)− u‖2]

≤ (‖xn − u‖2 − ‖xn+1 − u‖2)

+ (kn − 1)(kn + 1) ‖xn − u‖2

+ αn[2k ‖xn − u‖ ‖f(u)− u‖+ ‖f(u)− u‖2]

= [(‖xn − u‖ − ‖xn+1 − u‖)(‖xn − u‖+ ‖xn+1 − u‖)]
+ (kn − 1) sup

i∈N
(ki + 1)R2

+ αn[2k ‖xn − u‖ ‖f(u)− u‖+ ‖f(u)− u‖2]

≤ 2 ‖xn − xn+1‖R+ (kn − 1) sup
i∈N

(ki + 1)R2

+ αn[2Rk ‖f(u)− u‖+ ‖f(u)− u‖2],
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where R is a positive constant such that ‖xn − u‖ ≤ R for all n ∈ N. Note
kn → 1, ‖xn+1 − xn‖ → 0 and αn → 0 as n→∞, we have, ‖xn − yn‖ → 0 as
n→∞.

Observe that

‖yn − tn‖ = ‖PC(xn − λnAxn)− PC(xn − λnAyn)‖
≤ ‖(xn − λnAxn)− (xn − λnAyn)‖

≤ λn
α
‖xn − yn‖ → 0 as n→∞.

Step 4. lim sup
n→∞

〈f(p)− p, Sntn − p〉 ≤ 0, where p = PF (S)∩Ωf(p).

For u ∈ F (S) ∩ Ω, we have

‖Snyn − xn+1‖ ≤ ‖Snyn − Sntn‖+ ‖Sntn − xn+1‖
≤ kn ‖yn − tn‖+ αn ‖Sntn − f(xn)‖
≤ kn ‖yn − tn‖+ αn[‖Sntn − u‖+ ‖u− f(xn)‖]
≤ kn ‖yn − tn‖+ αn [kn ‖tn − u‖+ ‖u− f(xn)‖]

≤ kn ‖yn − tn‖+ αn

[
kn max

{
‖xn − u‖ ,

K1

β − k

}
+ ‖u− f(xn)‖

]
.

Hence ‖Snyn − xn+1‖ → 0 as n → ∞. Note that ‖xn − yn‖ → 0 as n → ∞,
we have

‖Snxn − xn‖ ≤ ‖Snxn − Snyn‖+ ‖Snyn − xn+1‖+ ‖xn − xn+1‖
≤ kn ‖xn − yn‖+ ‖Snyn − xn+1‖+ ‖xn − xn+1‖ → 0 as n→∞,

and

‖Sntn − tn‖ ≤ ‖Sntn − Snxn‖+ ‖Snxn − xn‖+ ‖xn − tn‖
≤ kn ‖tn − xn‖+ ‖Snxn − xn‖+ ‖xn − tn‖
≤ ‖Snxn − xn‖+ (1 + kn) ‖xn − tn‖ → 0 as n→∞.

Now, let us choose a subsequence {tni
} of {tn} such that

lim sup
n→∞

〈f(p)− p, Sntn − p〉 = lim
i→∞

〈f(p)− p, Snitni − p〉 .

For the convenience we will denote this subsequence by {tn} too. As {tn} is
bounded, we have that a subsequence {tni} of {tn} converges weakly to some
z ∈ C. Since ‖xn − yn‖ → 0 and ‖yn − tn‖ → 0 as n → ∞, we have that
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{xni} and {yni} converges weakly to z ∈ C. Also, since lim
n→∞

‖Sntn − tn‖ = 0,

by condition (D), we get that z ∈ F (S). From the above arguments, we have

lim sup
n→∞

〈f(p)− p, Sntn − p〉 = lim
i→∞

〈f(p)− p, Snitni − p〉 = 〈f(p)− p, z − p〉 .

Notice now that, in order to prove that lim sup
n→∞

〈f(p)− p, Sntn − p〉 ≤ 0, it

suffices to show that z ∈ F (S) ∩ Ω.

Now, let us show that z ∈ Ω. Let

Tv =

{
Av +NC(v), if v ∈ C,
∅, if v /∈ C.

T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω. Let (v, w) ∈ G(T ).
Then, we have w ∈ Tv = Av +NC(v) and hence w − Av ∈ NC(v). Thus, we
have 〈v − u,w −Av〉 ≥ 0, for all u ∈ C.

On the other hand, from tn := PC(xn − λnAyn) and v ∈ C, we have

〈xn − λnAyn − tn, tn − v〉 ≥ 0, and hence
〈
v − tn, tn−xn

λn
+Ayn

〉
≥ 0. There-

fore, from w −Av ∈ NC(v) and tni
∈ C, We have

〈v − tni
, w〉 ≥ 〈v − tni

, Av〉

≥ 〈v − tni , Av〉 −
〈
v − tni ,

tni
− xni

λni

+Ayni

〉
= 〈v − tni

, Av −Atni
〉+ 〈v − tni

, Atni
−Ayni

〉

−
〈
v − tni

,
tni
− xni

λni

〉
≥ 〈v − tni , Atni −Ayni〉 −

〈
v − tni ,

tni
− xni

λni

〉
.

Hence, letting ni → ∞ we obtain 〈v − z, w〉 ≥ 0. Thus, z ∈ T−10 together
with the maximal monotonicity of T imply z ∈ Ω.

Step 5. xn → p as n → ∞, where p = PF (S)∩Ωf(p). i.e., p is the unique
solution in F (S) ∩ Ω of the variational inequality

〈f(p)− p, y − p〉 ≤ 0, for all y ∈ F (S) ∩ Ω.
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We have

‖xn+1 − p‖2 = ‖αn(f(xn)− p) + (1− αn)(Sntn − p)‖2

= α2
n ‖f(xn)− p‖2 + (1− αn)2 ‖Sntn − p‖2

+ 2αn(1− αn) 〈f(xn)− p, Sntn − p〉
≤ α2

n ‖f(xn)− p‖2 + k2
n(1− αn)2 ‖tn − p‖2

+2αn(1− αn) 〈f(xn)− f(p), Sntn − p〉
+ 2αn(1− αn) 〈f(p)− p, Sntn − p〉

≤ α2
n ‖f(xn)− p‖2 + k2

n(1− αn)2 ‖xn − p‖2

+ 2kknαn(1− αn) ‖xn − p‖ ‖tn − p‖
+ 2αn(1− αn) 〈f(p)− p, Sntn − p〉

≤ α2
n ‖f(xn)− p‖2 + k2

n(1− αn)2 ‖xn − p‖2

+ 2kknαn(1− αn) ‖xn − p‖2

+ 2αn(1− αn) 〈f(p)− p, Sntn − p〉
≤ α2

n ‖f(xn)− p‖2 + (1− αn)2 ‖xn − p‖2

+ 2kαn(1− αn) ‖xn − p‖2

+ 2αn(1− αn) 〈f(p)− p, Sntn − p〉+ (kn−1)Γ

= [1− αn{2− αn − 2k(1− αn)}] ‖xn − p‖2 + α2
n ‖f(xn)− p‖2

+ 2αn(1− αn) 〈f(p)− p, Sntn − p〉+ (kn−1)Γ

= (1− γn) ‖xn − p‖2 + γnβn + (kn−1)Γ,

where Γ > 0 is some constant, γn = αn(2− αn − 2k(1− αn)) and

βn =
αn ‖f(xn)− p‖2 + 2(1− αn) 〈f(p)− p, Sntn − p〉

2− αn − 2k(1− αn)
.

Since kn → 1 and γn → 0 as n → ∞,
∞∑
n=1

γn = ∞ and lim sup
n→∞

βn ≤ 0, by

applying Lemma 3 and using Step 4, we obtain xn → p as n → ∞. Since
‖xn − yn‖ → 0 and ‖yn − tn‖ → 0 as n → ∞, we also have yn → p and
tn → p as n→∞. The proof is now complete.

4 Applications

In this section, we present some applications of our main result.

Using Theorem 2, we state a strong convergence theorem for the common fixed
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point of a sequence of asymptotically nonexpansive mappings and a strictly
pseudocontractive mapping.

Theorem 3. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a λ-strictly pseudocontractive and S := {Sn}
a sequence of asymptotically nonexpansive mappings from C into itself with
sequence {kn} such that F (S) ∩ F (T ) 6= ∅. Assume that S satisfies condition
(D) and f : C → C is a k- contraction. For arbitrary x1 ∈ C, consider the
sequences {xn} and {yn} generated by the following iterative process: x1 ∈ C,

yn = (1− λn)xn + λnTxn,
xn+1 = αnf(xn) + (1− αn)Sn(xn − λn(yn − Tyn)), for all n ∈ N,

where {αn} and {λn} are two sequences of positive numbers with {αn} ⊂ (0, α)
and {λn} ⊂ [a, b], with 0 < a < b < α(1− δ) (for some α, δ ∈ (0, 1)) satisfying
the conditions (i)- (v) of Theorem 2. Then, the sequences {xn} and {yn}
converge strongly to the same point p, such that p is the unique solution in
F (S) ∩ F (T ) of the following variational inequality:

〈f(p)− p, y − p〉 ≤ 0, for all y ∈ F (S) ∩ F (T ).

Proof. Put A := I − T in Theorem 2. Then A is 1−λ
2 -inverse strongly mono-

tone. We have that F (T ) = Ω, PC(xn−λnAxn) = xn−λnAxn = (1−λn)xn+
λnTxn and PC(xn − λnAyn) = xn − λn(yn − Tyn). So, by Theorem 2, we
obtain the desired result.

Theorem 3 extends the results of Theorem 3.1 of Petruşel and Yao [10] and
Theorem 4.1 of Chen, Zhang and Fan [2].

The following theorem extends the results of Theorem 3.2 of Petruşel and
Yao [10] and Theorem 4.1 of Zeng and Yao [18].

Theorem 4. Let H be a real Hilbert space, A : H → H be an α-inverse
strongly monotone mapping and S := {Sn} a sequence of asymptotically non-
expansive mappings from H into itself with sequence {kn} such that F (S) ∩
A−1(0) 6= ∅. Assume that S satisfies condition (D) and f : C → C is a
k-contraction. For arbitrary x1 ∈ C, consider the sequences {xn} and {yn}
generated by the following iterative process: x1 ∈ C,

yn = xn − λnAxn,
xn+1 = αnf(xn) + (1− αn)Sn(xn − λnAyn), for all n ∈ N,
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where {αn} and {λn} are two sequences of positive numbers with {αn} ⊂ (0, α)
and {λn} ⊂ [a, b], with 0 < a < b < α(1− δ) (for some α, δ ∈ (0, 1)) satisfying
the conditions (i)- (v) of Theorem 2. Then, the sequences {xn} and {yn}
converge strongly to the same point p, such that p is the unique solution in
F (S) ∩A−1(0) of the following variational inequality:

〈f(p)− p, y − p〉 ≤ 0, for all y ∈ F (S) ∩A−1(0).

Proof. We have A−1(0) = Ω and PH = I. The conclusion follows from Theo-
rem 2.

Theorem 5 extends Theorem 3.3 of Petruşel and Yao [10] and Theorem 4.2
of Zeng and Yao [18].

Theorem 5. Let H be a real Hilbert space and A : H → H be an α-inverse
strongly monotone mapping. For each n ∈ N, let Bn be a maximal monotone
operator from H into 2H with resolvent operator JBn

r for some r > 0 such
that F (J) ∩ A−1(0) 6= ∅. Assume that J = {JBn

r } satisfies condition (D) and
f : C → C is a k-contraction. For arbitrary x1 ∈ C, consider the sequences
{xn} and {yn} generated by the following iterative process: x1 ∈ H,

yn = xn − λnAxn,
xn+1 = αnf(xn) + (1− αn)JBn

r (xn − λnAyn), for all n ∈ N,

where {αn} and {λn} are two sequences of positive numbers with {αn} ⊂ (0, α)
and {λn} ⊂ [a, b], with 0 < a < b < α(1− δ) (for some α, δ ∈ (0, 1)) satisfying
the conditions (i)- (iii) of Theorem 2 and (iv)′:

(iv)′ lim
n→∞

∥∥∥JBn
r tn − JBn+1

r tn

∥∥∥
αn+1

= 0.

Then, the sequences {xn} and {yn} converge strongly to the same point p ∈
F (J)∩A−1(0), where p is the unique solution in F (J)∩A−1(0) of the following
variational inequality:

〈f(p)− p, y − p〉 ≤ 0, for all y ∈ F (J) ∩A−1(0).

Proof. We have A−1(0) = Ω. The conclusion follows from Theorem 2, by
putting PH = I and JBn

r = Sn.

We now impose some condition on S to fulfill condition (D) in Theorem 2.
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Theorem 6. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let A : C → H be an α-inverse strongly monotone mapping and
S an asymptotically nonexpansive mapping from C into itself with sequence
{kn} such that F (S) ∩ Ω 6= ∅ and f : C → C a k-contraction. For arbitrary
x1 ∈ C, consider the sequences {xn} and {yn} generated by the following
iterative process: x1 ∈ C,

yn = PC(xn − λnAxn),
xn+1 = αnf(xn) + (1− αn)SnPC(xn − λnAyn), for all n ∈ N,

where {αn} and {λn} are two sequences of positive numbers with {αn} ⊂ (0, α)
and {λn} ⊂ [a, b], with 0 < a < b < α(1− δ) (for some α, δ ∈ (0, 1)) satisfying
the conditions (i)- (v) of Theorem 2 with Sn = Sn. Then, the sequences {xn}
and {yn} converge strongly to the same point p, such that p is the unique
solution in F (S) ∩ Ω of the following variational inequality:

〈f(p)− p, y − p〉 ≤ 0, for all y ∈ F (S) ∩ Ω.

Proof. It is sufficient to show that {Sn : n ∈ N} holds condition (D). Observe
that

‖xn − Sxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Sntn‖
+
∥∥Sntn − Sn+1tn

∥∥+
∥∥Sn+1tn − Sxn

∥∥
≤ ‖xn − xn+1‖+ ‖xn+1 − Sntn‖+

∥∥Sntn − Sn+1tn
∥∥

+ k1(‖Sntn − xn+1‖+ ‖xn+1 − xn‖)→ 0 as n→∞.

One can see by Lemma 4, that condition (D) holds.

We now derive the main result of Petruşel and Yao ([10], Theorem 2.2) as
Corollary.

Corollary 1. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let A : C → H be an α-inverse strongly monotone mapping and
S : C → C a nonexpansive mapping such that F (S) ∩ Ω 6= ∅. Let {αn} and
{λn} be two sequences of positive numbers with {αn} ⊂ (0, 1) and {λn} ⊂ [a, b],
with 0 < a < b < α(1− δ) (for some δ ∈ (0, 1)) satisfying the conditions:

(i) lim
n→∞

αn = 0,

∞∑
n=1

αn =∞;

(ii)
∞∑
n=1
|αn+1 − αn| <∞;

(iii)
∞∑
n=1
|λn+1 − λn| <∞;
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For arbitrary x1 ∈ C, consider the sequences {xn} and {yn} generated by the
following iterative process: x1 ∈ C,

yn = PC(xn − λnAxn),
xn+1 = αnf(xn) + (1− αn)SPC(xn − λnAyn), for all n ∈ N,

where f : C → C is a k-contraction.
Then, the sequences {xn} and {yn} converge strongly to the same point

p, such that p is the unique solution in F (S) ∩ Ω of the following variational
inequality:

〈f(p)− p, y − p〉 ≤ 0, for all y ∈ F (S) ∩ Ω.

Example. Let H = C = R. Let A, f : C → C be mappings defined by

A(x) =
x

2
and f(x) =

3x

16
,∀x ∈ C. Then A is 2-inverse strongly monotone

mapping and f is a contraction mapping. Let S := {Sn} be a sequence of
asymptotically nonexpansive mappings from C into C defined by Sn(x) =
(1 + 1

n )x, ∀x ∈ C and n ∈ N. Clearly, F (S) = {0} and F (S) ∩ Ω = {0}.
Let (αn)n∈N and (λn)n∈N be two sequences of positive numbers defined by

αn =
1

n+ 1
and λn =

1

2
.

Then, the sequence {xn} generated by x1 ∈ C,
yn = xn − λnAxn,
xn+1 = αnf(xn) + (1− αn)Sn(xn − λnAyn), for all n ∈ N,

satisfying the inequality:

xn+1 =

[
3

n+ 1
+ 13

]
xn
16
≤ 29

32
xn.

One can see easily that {xn} converges to 0 ∈ F (S) ∩ Ω.

Remark 1. For the numerical simulation and the graphic representation of
the above sequences, see Figure 1 and Figure 2 below.
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Figure 1: Convergence of the sequence {xn} for n iterations.
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Figure 2: Convergence of the sequences {xn} and {yn} for n iterations.
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