VERSITA Vol. 23(1),2015, 247-266

An extragradient iterative scheme for common fixed point problems and variational inequality problems with applications

Adrian Petruşel, D.R. Sahu and Vidya Sagar

Abstract

In this paper, by combining a modified extragradient scheme with the viscosity approximation technique, an iterative scheme is developed for computing the common element of the set of fixed points of a sequence of asymptotically nonexpansive mappings and the set of solutions of the variational inequality problem for an α -inverse strongly monotone mapping. We prove a strong convergence theorem for the sequences generated by this scheme and give some applications of our convergence theorem.

1 Introduction

Let C be a nonempty subset of a real Hilbert space H with inner product $\langle ., . \rangle$ and norm $\|.\|$, respectively. A mapping $A : C \to H$ is called (see ([15])) (i) monotone if

 $\langle Au - Av, u - v \rangle \ge 0$, for all $u, v \in C$;

(ii) η -strongly monotone if there exists a positive real number η such that

$$\langle Au - Av, u - v \rangle \ge \eta \|u - v\|^2$$
, for all $u, v \in C$.

Key Words: Modified extra gradient method, viscosity approximation method, α -inverse strongly monotone mapping, sequence of asymptotically nonexpansive mappings, variational inequalities, AF point property.

²⁰¹⁰ Mathematics Subject Classification: Primary 47H10; Secondary 54H25. Received: 5 May, 2014. Revised: 20 June, 2014. Accepted: 27 June, 2014.

Accepted: 27 June, 2014.

(iii) α -inverse strongly monotone if there exists a positive real number α such that

$$\langle Au - Av, u - v \rangle \ge \alpha ||Au - Av||^2$$
, for all $u, v \in C$;

(iv) k-Lipschitzian if there exists k > 0 such that

$$||Au - Av|| \le k ||u - v||, \quad \text{for all } u, v \in C;$$

(v) k-contraction if it is k-Lipschitzian with k < 1;

(vi) nonexpansive if

$$||Au - Av|| \le ||u - v||, \quad \text{for all } u, v \in C.$$

Let C be a nonempty subset of a real Hilbert space H and $\{S_n\}$ a sequence of mappings from C into itself. Then the sequence $\{S_n\}_{n\in\mathbb{N}}$ is called a sequence of asymptotically nonexpansive mappings ([12]) on C if there exists a sequence $\{k_n\}$ in $[1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$|S_n u - S_n v|| \le k_n ||u - v||$$
, for all $u, v \in C$ and $n \in \mathbb{N}$

Let C be a nonempty, closed, and convex subset of a real Hilbert space H. A variational inequality problem is the problem of finding $u \in C$ such that

$$\langle Au, v - u \rangle \ge 0, \quad \text{for all } v \in C,$$
 (1)

where A is a nonlinear mapping from C into H. The set of solutions of the variational inequality problem (1.1) is denoted by Ω . We denote by F(S) the set of fixed points of mapping $S: C \to C$.

We give some examples of α -inverse strongly monotone mappings. Let H be a Hilbert space and C a nonempty closed convex subset of H. If T is a nonexpansive mapping from C into itself, then A := I - T is $\frac{1}{2}$ -inverse strongly monotone and $\Omega = F(T)$. Also, if A is η -strongly monotone and k-Lipschitz, then A is $\frac{\eta}{k^2}$ -inverse strongly monotone. For the reverse implication, let us observe that there are examples of mappings which are inverse strongly monotone, but not strongly monotone. The metric projection P_C is one of these, see also [16]. Recall that mapping $T: C \to C$ is called λ -strictly pseudocontractive on C if there exists $\lambda \in [0, 1)$ such that

$$||Tx - Ty||^2 \le ||x - y||^2 + \lambda ||(I - T)x - (I - T)y||^2$$
, for all $x, y \in C$.

Notice that if $T: C \to C$ is λ -strictly pseudocontractive, then the mapping A := I - T is $\frac{1-\lambda}{2}$ -inverse strongly monotone.

The variational inequality (1.1) was introduced by Stampacchia [14] in 1964. It has been shown that a large class of problems arising in engineering and applied sciences ([8] and the references therein) can be studied in the framework of the variational inequalities. It is known that the element $u \in C$ is a solution of the variational inequality problem (1.1) if and only if u satisfies the relation:

$$u = P_C(u - \lambda A u),$$

where $\lambda > 0$ is a constant and P_C is the metric projection mapping of H onto C.

It is obvious that fixed point problems and variational inequality problems are equivalent. This approach shows that a variational inequality can be regarded as a fixed point problem and, in this respect, the following iterative method could be important, in order to solve approximatively a variational inequality problem:

For a given $u_0 \in C$, compute u_{n+1} by the iterative scheme:

$$u_{n+1} = P_C(u_n - \lambda A u_n)$$
, for $n = 0, 1, 2, \dots$

These ideas were the starting point of a large number of papers dealing with the problem of approximating the solution of a variational inequality problem, sometimes in connection to other related problems, such as the problem of finding and approximating the fixed points of a nonexpansive mapping.

Korpelevich [6] introduced an extragradient method and proved that the sequences generated by the extragradient method converge to the same point $z \in \Omega$.

Recently, Nadezhkina and Takahashi [7], Zeng and Yao [18] introduced new iterative schemes for finding an element of $F(S) \cap \Omega$ and obtained the weak and strong convergence theorems respectively. Chen, Zhang and Fan [2] introduced an iterative scheme by viscosity approximation method for finding a common element of the fixed point set of a nonexpansive operator and the solution set of a variational inequality problem and proved a strong convergence theorem.

More recently, Petruşel and Yao [10] introduced a modified extragradient scheme by viscosity approximation method and obtained a strong convergence result for an explicit scheme in a Hilbert space.

In this paper, inspired by Petruşel and Yao [10], we prove a strong convergence

theorem for computation of the common element of the set of fixed points of a sequence of asymptotically nonexpansive mappings and the set of solutions of the variational inequality problem for an α -inverse strongly monotone mapping. Our results generalize the result of Petruşel and Yao [10] to the case of a sequence of asymptotically nonexpansive mappings and extend the results of Nadezhkina and Takahashi [7], Zeng and Yao [18] and Chen, Zhang and Fan [2]. Other related results are given in [17]-[4].

2 Preliminaries

Throughout this paper, H is a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|.\|$. We denote by I the identity operator of H. Also, we denote by \rightarrow and \rightarrow the strong convergence and weak convergence, respectively. The symbol \mathbb{N} stands for the set of all natural numbers. Let C be a nonempty subset of H and $S := \{S_n\}_{n \in \mathbb{N}}$ a sequence of self-mappings from C into itself. We denote by F(S) the set of common fixed points of the sequence S, i.e., $F(S) = \bigcap_{n \in \mathbb{N}} F(S_n)$.

$$F(\mathcal{S}) = \bigcap_{n=1}^{n} F(S_n).$$

Let C be a nonempty closed convex subset of H. Then, for any $x \in H$, there exists a unique nearest point in C, denoted by $P_C(x)$, such that

 $||x - P_C(x)|| \le ||x - y||, \quad \text{for all } y \in C.$

The mapping P_C is called the metric projection of H onto C. We know that P_C is a nonexpansive mapping of H onto C. It is also known that P_C is characterized by the following properties (see [5, 1]):

(A) $P_C(x) \in C$, for all $x \in H$; (B) $\langle x - P_C(x), P_C(x) - y \rangle \ge 0$, for all $x \in H, y \in C$; (C) $||x - y||^2 \ge ||x - P_C(x)||^2 + ||y - P_C(x)||^2$, for all $x \in H, y \in C$.

It is also known that H satisfies the Opial property (see [1, 9]), i.e., for any sequence $\{x_n\} \subset H$ with $x_n \rightharpoonup x$, the inequality

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

holds for every $y \in H$ with $y \neq x$.

A set-valued mapping $T : H \to 2^H$ is called monotone if, for all $x, y \in H$, $f \in Tx$ and $g \in Ty$, we have $\langle x - y, f - g \rangle \geq 0$. A monotone mapping $T : H \to 2^H$ is maximal if its graph G(T) is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal if and only if the following implication holds: if for

$$(x, f) \in H \times H, \langle x - y, f - g \rangle \ge 0$$
 for all $(y, g) \in G(T)$, then $f \in Tx$.

Let $A : C \to H$ be a monotone and k-Lipschitz continuous mapping and let $N_C(v)$ be the normal cone to C at $v \in C$, i.e.,

$$N_C(v) = \{ w \in H : \langle v - y, w \rangle \ge 0, \text{ for all } y \in C \}.$$

Define

$$Tv = \begin{cases} Av + N_C(v), & \text{if } v \in C, \\ \emptyset, & \text{if } v \notin C. \end{cases}$$

Then T is maximal monotone and $0 \in Tv$ if and only if $v \in \Omega$, see ([11]).

We present now an important property of the α -inverse strongly monotone mappings.

Lemma 1. ([16]) Let C be a nonempty subset of a real Hilbert space H. Let $\alpha > 0$ and $A : C \to H$ an α -inverse strongly monotone. Then, A is $\frac{1}{\alpha}$ -Lipschitz continuous. Moreover, for all $u, v \in C$ and each $\lambda > 0$, we have

$$\|(I - \lambda A)u - (I - \lambda A)v\|^2 = \|(u - v) - \lambda(Au - Av)\|^2$$

= $\|u - v\|^2 - 2\lambda \langle u - v, Au - Av \rangle$
+ $\lambda^2 \|Au - Av\|^2$.

As consequence, $(I - \lambda A)$ is a nonexpansive mapping from C into H if $\lambda \leq 2\alpha$.

Now we state an existence result for the solution of the variational inequality problem for inverse strongly monotone mappings.

Theorem 1. ([16]) Let C be a closed convex bounded subset of a real Hilbert space H and let $A : C \to H$ be α -inverse strongly monotone. Then Ω is non-empty.

In the proof of the main results, we need the following lemmas.

Lemma 2. (Schu [13]) Let H be a real Hilbert space, let $\{\alpha_n\}$ be a sequence of real numbers such that $0 < a \le \alpha_n \le b < 1$, for all $n \in \mathbb{N}$ and let $\{v_n\}$ and $\{w_n\}$ be sequences in H such that

 $\limsup_{n \to \infty} \|v_n\| \le c, \limsup_{n \to \infty} \|w_n\| \le c \text{ and } \lim_{n \to \infty} \|\alpha_n v_n + (1 - \alpha_n)w_n\| = c$

for some $c \ge 0$. Then, $\lim_{n \to \infty} ||v_n - w_n|| = 0$.

Lemma 3. (Xu [17]) Let $\{\alpha_n\}_{n=0}^{\infty}$ be a sequence of non negative real numbers satisfying the inequality

$$\alpha_{n+1} \leq (1-\gamma_n)\alpha_n + \gamma_n\beta_n, \text{ for all } n \in \mathbb{N},$$

where $\{\gamma_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences of real numbers which satisfy the conditions:

(i) $\{\gamma_n\}_{n=1}^{\infty} \subset (0,1) \text{ and } \sum_{n=1}^{\infty} \gamma_n = \infty;$ (ii) $\limsup_{n \to \infty} \frac{\beta_n}{\gamma_n} \le 0 \text{ or } \sum_{n=1}^{\infty} |\beta_n| < \infty.$

Then
$$\lim_{n \to \infty} \alpha_n = 0$$

Lemma 4. ([3]) Assume that S is an asymptotically nonexpansive self-mapping of a nonempty closed convex subset C of a real Hilbert space H. Then I-S is demiclosed, i.e., if $\{x_n\}$ is a sequence in C weakly converging to some $x \in C$ and the sequence $\{(I-S)x_n\}$ strongly converges to 0, then $x \in F(S)$.

AF point property ([12]) Let *C* be a nonempty subset of a real Hilbert space *H*, and let $S := \{S_n\}$ be a sequence of self-mappings on *C*. A sequence $\{x_n\}$ in *C* is said to have the *approximate fixed point property* (in short AF point property) for $\{S_n\}$ if $\lim_{n\to\infty} ||x_n - S_n x_n|| = 0$.

Condition \mathcal{D} ([12]) Let C be a nonempty closed convex subset of a real Hilbert space H and $S := \{S_n\}$ a sequence of self-mappings on C. A family $\{I - S_n\}$ is said to be *demi-closed at zero* if for every bounded sequence $\{x_n\}$ in C, the following condition holds:

$$(\mathcal{D}) \qquad \{x_n - S_n x_n\} \to 0 \Rightarrow w_w(x_n) \subset F(\mathcal{S}),$$

where $w_w(x_n)$ is the set of weak cluster points of the sequence $\{x_n\}$.

3 Main results

Theorem 2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $A : C \to H$ be an α -inverse strongly monotone mapping and $S := \{S_n\}$ a sequence of asymptotically nonexpansive mappings from C into itself with sequence $\{k_n\}$ such that $F(S) \cap \Omega \neq \emptyset$. Assume that S satisfies condition (D) and $f: C \to C$ is a k-contraction. For arbitrary $x_1 \in C$, consider the sequences $\{x_n\}$ and $\{y_n\}$ generated by the following iterative process:

$$\begin{cases} x_1 \in C, \\ y_n = P_C(x_n - \lambda_n A x_n), \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S_n P_C(x_n - \lambda_n A y_n), \text{ for all } n \in \mathbb{N}, \end{cases}$$
(2)

where $\{\alpha_n\}$ and $\{\lambda_n\}$ are two sequences of positive numbers with $\{\alpha_n\} \subset (0,\overline{\alpha})$ and $\{\lambda_n\} \subset [a,b]$, with $0 < a < b < \alpha(1-\delta)$ (for some $\overline{\alpha}, \delta \in (0,1)$) satisfying the conditions:

$$(i) \lim_{n \to \infty} \alpha_n = 0, \sum_{n=1} \alpha_n = \infty;$$

$$(ii) \sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty;$$

$$(iii) \sum_{n=1}^{\infty} |\lambda_{n+1} - \lambda_n| < \infty;$$

$$(iv) \lim_{n \to \infty} \frac{\|S_n t_n - S_{n+1} t_n\|}{\alpha_{n+1}} = 0;$$

$$(v) \lim_{n \to \infty} \frac{k_n - 1}{\alpha_n} = 0.$$

Then, the sequences $\{x_n\}$ and $\{y_n\}$ converge strongly to the same point p, such that p is the unique solution in $F(S) \cap \Omega$ of the following variational inequality:

$$\langle f(p) - p, y - p \rangle \le 0 \text{ for all } y \in F(\mathcal{S}) \cap \Omega.$$
 (3)

Proof. Denote $t_n := P_C(x_n - \lambda_n A y_n), \forall n \in \mathbb{N}$ and let $u \in F(S) \cap \Omega$. Then $u = P_C(u - \lambda_n A u)$. We proceed in the following steps.

Step 1. $\{x_n\}$ is bounded.

Taking $x := x_n - \lambda_n A y_n$ and y := u in relation (C), we have

$$\begin{aligned} \|t_n - u\|^2 &\leq \|x_n - \lambda_n Ay_n - u\|^2 - \|x_n - \lambda_n Ay_n - t_n\|^2 \\ &= \|x_n - u\|^2 - 2\lambda_n \langle Ay_n, x_n - u \rangle + \lambda_n^2 \|Ay_n\|^2 - \|x_n - t_n\|^2 \\ &+ 2\lambda_n \langle Ay_n, x_n - t_n \rangle - \lambda_n^2 \|Ay_n\|^2 \\ &= \|x_n - u\|^2 + 2\lambda_n \langle Ay_n, u - t_n \rangle - \|x_n - t_n\|^2 \\ &= \|x_n - u\|^2 - \|x_n - t_n\|^2 - 2\lambda_n \langle Ay_n - Au, y_n - u \rangle \\ &- 2\lambda_n \langle Au, y_n - u \rangle + 2\lambda_n \langle Ay_n, y_n - t_n \rangle \\ &\leq \|x_n - u\|^2 - \|x_n - y_n\|^2 - \|y_n - t_n\|^2 \\ &+ 2 \langle x_n - \lambda_n Ay_n - y_n, t_n - y_n \rangle . \end{aligned}$$

From (B), we obtain

$$\begin{aligned} \langle x_n - \lambda_n A y_n - y_n, t_n - y_n \rangle &= \langle x_n - \lambda_n A x_n - y_n, t_n - y_n \rangle \\ &+ \langle \lambda_n A x_n - \lambda_n A y_n, t_n - y_n \rangle \\ &= - \langle x_n - \lambda_n A x_n - y_n, y_n - t_n \rangle \\ &+ \langle \lambda_n A x_n - \lambda_n A y_n, t_n - y_n \rangle \\ &\leq \langle \lambda_n A x_n - \lambda_n A y_n, t_n - y_n \rangle \\ &\leq \frac{\lambda_n}{\alpha} \| x_n - y_n \| \| t_n - y_n \| . \end{aligned}$$

Hence

$$\begin{aligned} \|t_n - u\|^2 &\leq \|x_n - u\|^2 - \|x_n - y_n\|^2 - \|y_n - t_n\|^2 \\ &+ 2 \langle x_n - \lambda_n A y_n - y_n, t_n - y_n \rangle \\ &\leq \|x_n - u\|^2 - \|x_n - y_n\|^2 - \|y_n - t_n\|^2 \\ &+ \frac{\lambda_n^2}{\alpha^2} \|x_n - y_n\|^2 + \|t_n - y_n\|^2 \\ &= \|x_n - u\|^2 + (\frac{\lambda_n^2}{\alpha^2} - 1) \|x_n - y_n\|^2 \\ &\leq \|x_n - u\|^2 \,. \end{aligned}$$

From (3.1), we have

$$\begin{aligned} \|x_{n+1} - u\| &= \|\alpha_n f(x_n) + (1 - \alpha_n) S_n t_n - u\| \\ &\leq \alpha_n \|f(x_n) - u\| + (1 - \alpha_n) \|S_n t_n - u\| \\ &\leq \alpha_n \|f(x_n) - f(u)\| + \alpha_n \|f(u) - u\| + (1 - \alpha_n) \|S_n t_n - Su\| \\ &\leq \alpha_n k \|x_n - u\| + \alpha_n \|f(u) - u\| + k_n (1 - \alpha_n) \|t_n - u\| \\ &\leq \alpha_n k \|x_n - u\| + \alpha_n \|f(u) - u\| + k_n (1 - \alpha_n) \|x_n - u\| \\ &= [1 - \alpha_n (1 - k)] \|x_n - u\| + \alpha_n \|f(u) - u\| \\ &+ (1 - \alpha_n) (k_n - 1) \|x_n - u\| \\ &= [1 - \alpha_n (1 - k)] \|x_n - u\| + (1 - \alpha_n) (k_n - 1) \|x_n - u\| + \mu_n, \end{aligned}$$

where $\mu_n = \alpha_n ||f(u) - u||$. Note $\lim_{n \to \infty} \frac{k_n - 1}{\alpha_n} = 0$ and $\lim_{n \to \infty} \alpha_n = 0$, so there exist two constants $\beta \in (0, 1)$ with $(\beta - k) \in (0, 1)$ and $K_1 > 0$ such that $\frac{k_n - 1}{\alpha_n} \leq \frac{1 - \beta}{1 - \alpha_n}$ and $\frac{\mu_n}{\alpha_n} \leq K_1$ for all $n \in \mathbb{N}$. Hence

$$||x_{n+1} - u|| \leq [1 - (\beta - k)\alpha_n] ||x_n - u|| + \alpha_n K_1$$

$$\leq \max \left\{ ||x_n - u||, \frac{K_1}{\beta - k} \right\}.$$

It follows that $\{x_n\}$ is bounded.

Step 2. $||x_{n+1} - x_n|| \to 0 \text{ as } n \to \infty.$

By Step 1, $\{x_n\}$ is bounded. So $\{f(x_n)\},$ $\{Ax_n\},$ $\{t_n\},$ $\{At_n\},$ $\{S_nt_n\}$ are bounded. Observe that

$$\begin{aligned} \|x_{n+1} - x_n\| &= \|(\alpha_n - \alpha_{n-1})[f(x_{n-1}) - S_{n-1}t_{n-1}] \\ &+ (1 - \alpha_n)(S_n t_n - S_{n-1}t_{n-1}) + \alpha_n[f(x_n) - f(x_{n-1})]\| \\ &\leq |\alpha_n - \alpha_{n-1}| \|f(x_{n-1}) - S_{n-1}t_{n-1}\| \\ &+ (1 - \alpha_n) \|S_n t_n - S_{n-1}t_{n-1}\| + \alpha_n \|f(x_n) - f(x_{n-1})\| \\ &\leq |\alpha_n - \alpha_{n-1}| \|f(x_{n-1}) - S_{n-1}t_{n-1}\| \\ &+ (1 - \alpha_n) \|S_n t_n - S_{n-1}t_{n-1}\| + \alpha_n k \|x_n - x_{n-1}\| \\ &\leq |\alpha_n - \alpha_{n-1}| \|f(x_{n-1}) - S_{n-1}t_{n-1}\| \\ &+ k_n (1 - \alpha_n) \|t_n - t_{n-1}\| + \alpha_n k \|x_n - x_{n-1}\| + (1 - \alpha_n)\epsilon_{n-1}. \end{aligned}$$

where $\epsilon_{n-1} = ||S_n t_{n-1} - S_{n-1} t_{n-1}||$. Since $\lambda_n < \alpha(1-\delta) < 2\alpha$, from Proposition 1, we have

$$\begin{aligned} \|t_{n+1} - t_n\| &= \|P_C(x_{n+1} - \lambda_{n+1}Ay_{n+1}) - P_C(x_n - \lambda_nAy_n)\| \\ &\leq \|x_{n+1} - \lambda_{n+1}Ay_{n+1} - x_n + \lambda_nAy_n\| \\ &\leq \|x_{n+1} - x_n\| + |\lambda_{n+1} - \lambda_n| \|Ay_n\|. \end{aligned}$$

Hence

$$\begin{aligned} \|x_{n+1} - x_n\| &\leq [k_n(1 - \alpha_n) + k\alpha_n] \|x_n - x_{n-1}\| \\ &+ |\alpha_n - \alpha_{n-1}| \|f(x_{n-1}) - S_{n-1}t_{n-1}\| \\ &+ k_n(1 - \alpha_n) |\lambda_n - \lambda_{n-1}| \|Ay_{n-1}\| + (1 - \alpha_n)\epsilon_{n-1} \\ &\leq [k_n(1 - \alpha_n) + k\alpha_n] \|x_n - x_{n-1}\| \\ &+ |\alpha_n - \alpha_{n-1}| L + |\lambda_n - \lambda_{n-1}| M + (1 - \alpha_n)\epsilon_{n-1} \\ &\leq [1 - (1 - k)\alpha_n] \|x_n - x_{n-1}\| + (k_n - 1)N \\ &+ |\alpha_n - \alpha_{n-1}| L + |\lambda_n - \lambda_{n-1}| M + \epsilon_{n-1}, \end{aligned}$$

where $L = \sup_{n \in \mathbb{N}} ||f(x_n) - S_n t_n||$, $M = \sup_{n \in \mathbb{N}} ||Ay_n||$ and $N = \sup_{n \in \mathbb{N}} ||x_n - x_{n+1}||$. Note $\lim_{n \to \infty} \frac{k_n - 1}{\alpha_n} = 0$ and $\lim_{n \to \infty} \frac{\epsilon_n}{\alpha_{n+1}} = 0$. By Lemma 3, we obtain $||x_{n+1} - x_n|| \to 0$ as $n \to \infty$. **Step 3.** $||x_n - y_n|| \to 0$ and $||t_n - y_n|| \to 0$ as $n \to \infty$. From (3.1), we have

$$\begin{aligned} \|x_{n+1} - u\|^2 &= \|\alpha_n f(x_n) + (1 - \alpha_n) S_n t_n - u\|^2 \\ &= \|\alpha_n (f(x_n) - f(u)) + \alpha_n (f(u) - u) + (1 - \alpha_n) (S_n t_n - u)\|^2 \\ &\leq \alpha_n [\|f(x_n) - f(u)\| + \|f(u) - u\|]^2 \\ &+ (1 - \alpha_n) \|S_n t_n - u\|^2 \\ &\leq \alpha_n [k \|x_n - u\| + \|f(u) - u\|]^2 + k_n^2 (1 - \alpha_n) \|t_n - u\|^2 \\ &\leq k^2 \alpha_n \|x_n - u\|^2 + \alpha_n [2k \|x_n - u\| \|f(u) - u\| \\ &+ \|f(u) - u\|^2] + k_n^2 (1 - \alpha_n) [\|x_n - u\|^2 \\ &+ (\frac{\lambda_n^2}{\alpha^2} - 1) \|x_n - y_n\|^2] \\ &\leq [k^2 \alpha_n + k_n^2 (1 - \alpha_n)] \|x_n - u\|^2 \\ &+ \alpha_n [2k \|x_n - u\| \|f(u) - u\| + \|f(u) - u\|^2] \\ &+ k_n^2 (1 - \alpha_n) (\frac{\lambda_n^2}{\alpha^2} - 1) \|x_n - y_n\|^2. \end{aligned}$$

Hence

$$\begin{split} (1-\overline{\alpha})(2\delta-\delta^2) \left\| x_n - y_n \right\|^2 &\leq k_n^2(1-\alpha_n)(1-\frac{\lambda_n^2}{\alpha^2}) \left\| x_n - y_n \right\|^2 \\ &\leq \left[k^2 \alpha_n + k_n^2(1-\alpha_n) \right] \left\| x_n - u \right\|^2 - \left\| x_{n+1} - u \right\|^2 \\ &+ \alpha_n [2k \left\| x_n - u \right\| \left\| f(u) - u \right\| + \left\| f(u) - u \right\|^2] \\ &\leq \left[k^2 \alpha_n + (1-\alpha_n) \right] \left\| x_n - u \right\|^2 - \left\| x_{n+1} - u \right\|^2 \\ &+ (1-\alpha_n)(k_n^2 - 1) \left\| x_n - u \right\|^2 \\ &+ \alpha_n [2k \left\| x_n - u \right\| \left\| f(u) - u \right\| + \left\| f(u) - u \right\|^2] \\ &\leq \left(\left\| x_n - u \right\|^2 - \left\| x_{n+1} - u \right\|^2 \right) \\ &+ (k_n - 1)(k_n + 1) \left\| x_n - u \right\|^2 \\ &+ \alpha_n [2k \left\| x_n - u \right\| \left\| f(u) - u \right\| + \left\| f(u) - u \right\|^2] \\ &= \left[(\left\| x_n - u \right\| - \left\| x_{n+1} - u \right\|) (\left\| x_n - u \right\| + \left\| x_{n+1} - u \right\|) \right] \\ &+ (k_n - 1) \sup_{i \in \mathbb{N}} (k_i + 1) R^2 \\ &+ \alpha_n [2k \left\| x_n - u \right\| \left\| f(u) - u \right\| + \left\| f(u) - u \right\|^2] \\ &\leq 2 \left\| x_n - x_{n+1} \right\| R + (k_n - 1) \sup_{i \in \mathbb{N}} (k_i + 1) R^2 \\ &+ \alpha_n [2Rk \left\| f(u) - u \right\| + \left\| f(u) - u \right\|^2], \end{split}$$

where R is a positive constant such that $||x_n - u|| \leq R$ for all $n \in \mathbb{N}$. Note $k_n \to 1, ||x_{n+1} - x_n|| \to 0$ and $\alpha_n \to 0$ as $n \to \infty$, we have, $||x_n - y_n|| \to 0$ as $n \to \infty$.

Observe that

$$\begin{aligned} \|y_n - t_n\| &= \|P_C(x_n - \lambda_n A x_n) - P_C(x_n - \lambda_n A y_n)\| \\ &\leq \|(x_n - \lambda_n A x_n) - (x_n - \lambda_n A y_n)\| \\ &\leq \frac{\lambda_n}{\alpha} \|x_n - y_n\| \to 0 \text{ as } n \to \infty. \end{aligned}$$

Step 4. $\limsup_{n \to \infty} \langle f(p) - p, S_n t_n - p \rangle \le 0, \text{ where } p = P_{F(\mathcal{S}) \cap \Omega} f(p).$

For $u \in F(\mathcal{S}) \cap \Omega$, we have

$$\begin{split} \|S_n y_n - x_{n+1}\| &\leq \|S_n y_n - S_n t_n\| + \|S_n t_n - x_{n+1}\| \\ &\leq k_n \|y_n - t_n\| + \alpha_n \|S_n t_n - f(x_n)\| \\ &\leq k_n \|y_n - t_n\| + \alpha_n [\|S_n t_n - u\| + \|u - f(x_n)\|] \\ &\leq k_n \|y_n - t_n\| + \alpha_n [k_n \|t_n - u\| + \|u - f(x_n)\|] \\ &\leq k_n \|y_n - t_n\| + \alpha_n \left[k_n \max\left\{\|x_n - u\|, \frac{K_1}{\beta - k}\right\} + \|u - f(x_n)\|\right]. \end{split}$$

Hence $||S_n y_n - x_{n+1}|| \to 0$ as $n \to \infty$. Note that $||x_n - y_n|| \to 0$ as $n \to \infty$, we have

$$\begin{aligned} \|S_n x_n - x_n\| &\leq \|S_n x_n - S_n y_n\| + \|S_n y_n - x_{n+1}\| + \|x_n - x_{n+1}\| \\ &\leq k_n \|x_n - y_n\| + \|S_n y_n - x_{n+1}\| + \|x_n - x_{n+1}\| \to 0 \text{ as } n \to \infty, \end{aligned}$$

and

$$\begin{aligned} \|S_n t_n - t_n\| &\leq \|S_n t_n - S_n x_n\| + \|S_n x_n - x_n\| + \|x_n - t_n\| \\ &\leq k_n \|t_n - x_n\| + \|S_n x_n - x_n\| + \|x_n - t_n\| \\ &\leq \|S_n x_n - x_n\| + (1 + k_n) \|x_n - t_n\| \to 0 \text{ as } n \to \infty. \end{aligned}$$

Now, let us choose a subsequence $\{t_{n_i}\}$ of $\{t_n\}$ such that

$$\limsup_{n \to \infty} \left\langle f(p) - p, S_n t_n - p \right\rangle = \lim_{i \to \infty} \left\langle f(p) - p, S_{n_i} t_{n_i} - p \right\rangle.$$

For the convenience we will denote this subsequence by $\{t_n\}$ too. As $\{t_n\}$ is bounded, we have that a subsequence $\{t_{n_i}\}$ of $\{t_n\}$ converges weakly to some $z \in C$. Since $||x_n - y_n|| \to 0$ and $||y_n - t_n|| \to 0$ as $n \to \infty$, we have that $\{x_{n_i}\}\$ and $\{y_{n_i}\}\$ converges weakly to $z \in C$. Also, since $\lim_{n \to \infty} ||S_n t_n - t_n|| = 0$, by condition (\mathcal{D}) , we get that $z \in F(\mathcal{S})$. From the above arguments, we have

$$\limsup_{n \to \infty} \langle f(p) - p, S_n t_n - p \rangle = \lim_{i \to \infty} \langle f(p) - p, S_{n_i} t_{n_i} - p \rangle = \langle f(p) - p, z - p \rangle$$

Notice now that, in order to prove that $\limsup_{n \to \infty} \langle f(p) - p, S_n t_n - p \rangle \leq 0$, it suffices to show that $z \in F(\mathfrak{S}) \cap \Omega$.

Now, let us show that $z \in \Omega$. Let

$$Tv = \begin{cases} Av + N_C(v), & \text{if } v \in C, \\ \emptyset, & \text{if } v \notin C. \end{cases}$$

T is maximal monotone and $0 \in Tv$ if and only if $v \in \Omega$. Let $(v, w) \in G(T)$. Then, we have $w \in Tv = Av + N_C(v)$ and hence $w - Av \in N_C(v)$. Thus, we have $\langle v - u, w - Av \rangle \ge 0$, for all $u \in C$.

On the other hand, from $t_n := P_C(x_n - \lambda_n A y_n)$ and $v \in C$, we have $\langle x_n - \lambda_n A y_n - t_n, t_n - v \rangle \ge 0$, and hence $\langle v - t_n, \frac{t_n - x_n}{\lambda_n} + A y_n \rangle \ge 0$. Therefore, from $w - Av \in N_C(v)$ and $t_{n_i} \in C$, We have

$$\begin{aligned} \langle v - t_{n_i}, w \rangle &\geq \langle v - t_{n_i}, Av \rangle \\ &\geq \langle v - t_{n_i}, Av \rangle - \left\langle v - t_{n_i}, \frac{t_{n_i} - x_{n_i}}{\lambda_{n_i}} + Ay_{n_i} \right\rangle \\ &= \langle v - t_{n_i}, Av - At_{n_i} \rangle + \langle v - t_{n_i}, At_{n_i} - Ay_{n_i} \rangle \\ &- \left\langle v - t_{n_i}, \frac{t_{n_i} - x_{n_i}}{\lambda_{n_i}} \right\rangle \\ &\geq \langle v - t_{n_i}, At_{n_i} - Ay_{n_i} \rangle - \left\langle v - t_{n_i}, \frac{t_{n_i} - x_{n_i}}{\lambda_{n_i}} \right\rangle. \end{aligned}$$

Hence, letting $n_i \to \infty$ we obtain $\langle v - z, w \rangle \ge 0$. Thus, $z \in T^{-1}0$ together with the maximal monotonicity of T imply $z \in \Omega$.

Step 5. $x_n \to p$ as $n \to \infty$, where $p = P_{F(S) \cap \Omega} f(p)$. *i.e.*, p is the unique solution in $F(S) \cap \Omega$ of the variational inequality

$$\langle f(p) - p, y - p \rangle \le 0$$
, for all $y \in F(S) \cap \Omega$.

We have

$$\begin{split} \left\| x_{n+1} - p \right\|^2 &= \left\| \alpha_n(f(x_n) - p) + (1 - \alpha_n)(S_n t_n - p) \right\|^2 \\ &= \alpha_n^2 \left\| f(x_n) - p \right\|^2 + (1 - \alpha_n)^2 \left\| S_n t_n - p \right\|^2 \\ &+ 2\alpha_n(1 - \alpha_n) \left\langle f(x_n) - p, S_n t_n - p \right\rangle \\ &\leq \alpha_n^2 \left\| f(x_n) - p \right\|^2 + k_n^2(1 - \alpha_n)^2 \left\| t_n - p \right\|^2 \\ &+ 2\alpha_n(1 - \alpha_n) \left\langle f(p) - p, S_n t_n - p \right\rangle \\ &\leq \alpha_n^2 \left\| f(x_n) - p \right\|^2 + k_n^2(1 - \alpha_n)^2 \left\| x_n - p \right\|^2 \\ &+ 2kk_n\alpha_n(1 - \alpha_n) \left\| x_n - p \right\| \left\| t_n - p \right\| \\ &+ 2\alpha_n(1 - \alpha_n) \left\langle f(p) - p, S_n t_n - p \right\rangle \\ &\leq \alpha_n^2 \left\| f(x_n) - p \right\|^2 + k_n^2(1 - \alpha_n)^2 \left\| x_n - p \right\|^2 \\ &+ 2kk_n\alpha_n(1 - \alpha_n) \left\| x_n - p \right\|^2 \\ &+ 2kk_n\alpha_n(1 - \alpha_n) \left\| x_n - p \right\|^2 \\ &+ 2\alpha_n(1 - \alpha_n) \left\langle f(p) - p, S_n t_n - p \right\rangle \\ &\leq \alpha_n^2 \left\| f(x_n) - p \right\|^2 + (1 - \alpha_n)^2 \left\| x_n - p \right\|^2 \\ &+ 2k\alpha_n(1 - \alpha_n) \left\| x_n - p \right\|^2 \\ &+ 2\alpha_n(1 - \alpha_n) \left\| x_n - p \right\|^2 \\ &+ 2\alpha_n(1 - \alpha_n) \left\langle f(p) - p, S_n t_n - p \right\rangle + (k_{n-1})\Gamma \\ &= \left[1 - \alpha_n\{2 - \alpha_n - 2k(1 - \alpha_n)\} \right] \left\| x_n - p \right\|^2 + \alpha_n^2 \left\| f(x_n) - p \right\|^2 \\ &+ 2\alpha_n(1 - \alpha_n) \left\langle f(p) - p, S_n t_n - p \right\rangle + (k_{n-1})\Gamma \\ &= (1 - \gamma_n) \left\| x_n - p \right\|^2 + \gamma_n \beta_n + (k_{n-1})\Gamma, \end{split}$$

where $\Gamma > 0$ is some constant, $\gamma_n = \alpha_n (2 - \alpha_n - 2k(1 - \alpha_n))$ and

$$\beta_n = \frac{\alpha_n \|f(x_n) - p\|^2 + 2(1 - \alpha_n) \langle f(p) - p, S_n t_n - p \rangle}{2 - \alpha_n - 2k(1 - \alpha_n)}.$$

Since $k_n \to 1$ and $\gamma_n \to 0$ as $n \to \infty$, $\sum_{n=1}^{\infty} \gamma_n = \infty$ and $\limsup_{n \to \infty} \beta_n \leq 0$, by applying Lemma 3 and using Step 4, we obtain $x_n \to p$ as $n \to \infty$. Since $||x_n - y_n|| \to 0$ and $||y_n - t_n|| \to 0$ as $n \to \infty$, we also have $y_n \to p$ and $t_n \to p$ as $n \to \infty$. The proof is now complete.

4 Applications

In this section, we present some applications of our main result.

Using Theorem 2, we state a strong convergence theorem for the common fixed

point of a sequence of asymptotically nonexpansive mappings and a strictly pseudocontractive mapping.

Theorem 3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T : C \to C$ be a λ -strictly pseudocontractive and $S := \{S_n\}$ a sequence of asymptotically nonexpansive mappings from C into itself with sequence $\{k_n\}$ such that $F(S) \cap F(T) \neq \emptyset$. Assume that S satisfies condition (\mathcal{D}) and $f : C \to C$ is a k- contraction. For arbitrary $x_1 \in C$, consider the sequences $\{x_n\}$ and $\{y_n\}$ generated by the following iterative process:

 $\begin{cases} x_1 \in C, \\ y_n = (1 - \lambda_n) x_n + \lambda_n T x_n, \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S_n(x_n - \lambda_n (y_n - T y_n)), & \text{for all } n \in \mathbb{N}, \end{cases}$

where $\{\alpha_n\}$ and $\{\lambda_n\}$ are two sequences of positive numbers with $\{\alpha_n\} \subset (0,\overline{\alpha})$ and $\{\lambda_n\} \subset [a, b]$, with $0 < a < b < \alpha(1 - \delta)$ (for some $\overline{\alpha}, \delta \in (0, 1)$) satisfying the conditions (i)- (v) of Theorem 2. Then, the sequences $\{x_n\}$ and $\{y_n\}$ converge strongly to the same point p, such that p is the unique solution in $F(S) \cap F(T)$ of the following variational inequality:

$$\langle f(p) - p, y - p \rangle \le 0$$
, for all $y \in F(S) \cap F(T)$.

Proof. Put A := I - T in Theorem 2. Then A is $\frac{1-\lambda}{2}$ -inverse strongly monotone. We have that $F(T) = \Omega$, $P_C(x_n - \lambda_n A x_n) = x_n - \lambda_n A x_n = (1 - \lambda_n) x_n + \lambda_n T x_n$ and $P_C(x_n - \lambda_n A y_n) = x_n - \lambda_n (y_n - T y_n)$. So, by Theorem 2, we obtain the desired result.

Theorem 3 extends the results of Theorem 3.1 of Petruşel and Yao [10] and Theorem 4.1 of Chen, Zhang and Fan [2].

The following theorem extends the results of Theorem 3.2 of Petruşel and Yao [10] and Theorem 4.1 of Zeng and Yao [18].

Theorem 4. Let H be a real Hilbert space, $A : H \to H$ be an α -inverse strongly monotone mapping and $S := \{S_n\}$ a sequence of asymptotically nonexpansive mappings from H into itself with sequence $\{k_n\}$ such that $F(S) \cap A^{-1}(0) \neq \emptyset$. Assume that S satisfies condition (\mathfrak{D}) and $f : C \to C$ is a k-contraction. For arbitrary $x_1 \in C$, consider the sequences $\{x_n\}$ and $\{y_n\}$ generated by the following iterative process:

$$\begin{cases} x_1 \in C, \\ y_n = x_n - \lambda_n A x_n, \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S_n(x_n - \lambda_n A y_n), & \text{for all } n \in \mathbb{N}, \end{cases}$$

where $\{\alpha_n\}$ and $\{\lambda_n\}$ are two sequences of positive numbers with $\{\alpha_n\} \subset (0,\overline{\alpha})$ and $\{\lambda_n\} \subset [a, b]$, with $0 < a < b < \alpha(1 - \delta)$ (for some $\overline{\alpha}, \delta \in (0, 1)$) satisfying the conditions (i)- (v) of Theorem 2. Then, the sequences $\{x_n\}$ and $\{y_n\}$ converge strongly to the same point p, such that p is the unique solution in $F(S) \cap A^{-1}(0)$ of the following variational inequality:

$$\langle f(p) - p, y - p \rangle \leq 0$$
, for all $y \in F(\mathbb{S}) \cap A^{-1}(0)$.

Proof. We have $A^{-1}(0) = \Omega$ and $P_H = I$. The conclusion follows from Theorem 2.

Theorem 5 extends Theorem 3.3 of Petruşel and Yao [10] and Theorem 4.2 of Zeng and Yao [18].

Theorem 5. Let H be a real Hilbert space and $A : H \to H$ be an α -inverse strongly monotone mapping. For each $n \in \mathbb{N}$, let B_n be a maximal monotone operator from H into 2^H with resolvent operator $J_r^{B_n}$ for some r > 0 such that $F(\mathcal{J}) \cap A^{-1}(0) \neq \emptyset$. Assume that $\mathcal{J} = \{J_r^{B_n}\}$ satisfies condition (\mathfrak{D}) and $f : C \to C$ is a k-contraction. For arbitrary $x_1 \in C$, consider the sequences $\{x_n\}$ and $\{y_n\}$ generated by the following iterative process:

$$\begin{cases} x_1 \in H, \\ y_n = x_n - \lambda_n A x_n, \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) J_r^{B_n}(x_n - \lambda_n A y_n), & \text{for all } n \in \mathbb{N}, \end{cases}$$

where $\{\alpha_n\}$ and $\{\lambda_n\}$ are two sequences of positive numbers with $\{\alpha_n\} \subset (0,\overline{\alpha})$ and $\{\lambda_n\} \subset [a, b]$, with $0 < a < b < \alpha(1 - \delta)$ (for some $\overline{\alpha}, \delta \in (0, 1)$) satisfying the conditions (i)- (iii) of Theorem 2 and (iv)':

$$(iv)' \lim_{n \to \infty} \frac{\left\| J_r^{B_n} t_n - J_r^{B_{n+1}} t_n \right\|}{\alpha_{n+1}} = 0.$$

Then, the sequences $\{x_n\}$ and $\{y_n\}$ converge strongly to the same point $p \in F(\mathcal{J}) \cap A^{-1}(0)$, where p is the unique solution in $F(\mathcal{J}) \cap A^{-1}(0)$ of the following variational inequality:

$$\langle f(p) - p, y - p \rangle \le 0$$
, for all $y \in F(\mathcal{J}) \cap A^{-1}(0)$.

Proof. We have $A^{-1}(0) = \Omega$. The conclusion follows from Theorem 2, by putting $P_H = I$ and $J_r^{B_n} = S_n$.

We now impose some condition on S to fulfill condition (\mathcal{D}) in Theorem 2.

Theorem 6. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $A : C \to H$ be an α -inverse strongly monotone mapping and S an asymptotically nonexpansive mapping from C into itself with sequence $\{k_n\}$ such that $F(S) \cap \Omega \neq \emptyset$ and $f : C \to C$ a k-contraction. For arbitrary $x_1 \in C$, consider the sequences $\{x_n\}$ and $\{y_n\}$ generated by the following iterative process:

$$\begin{cases} x_1 \in C, \\ y_n = P_C(x_n - \lambda_n A x_n), \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S^n P_C(x_n - \lambda_n A y_n), & \text{for all } n \in \mathbb{N}, \end{cases}$$

where $\{\alpha_n\}$ and $\{\lambda_n\}$ are two sequences of positive numbers with $\{\alpha_n\} \subset (0,\overline{\alpha})$ and $\{\lambda_n\} \subset [a,b]$, with $0 < a < b < \alpha(1-\delta)$ (for some $\overline{\alpha}, \delta \in (0,1)$) satisfying the conditions (i)- (v) of Theorem 2 with $S_n = S^n$. Then, the sequences $\{x_n\}$ and $\{y_n\}$ converge strongly to the same point p, such that p is the unique solution in $F(S) \cap \Omega$ of the following variational inequality:

$$\langle f(p) - p, y - p \rangle \le 0$$
, for all $y \in F(S) \cap \Omega$.

Proof. It is sufficient to show that $\{S^n : n \in \mathbb{N}\}$ holds condition (\mathcal{D}) . Observe that

$$\begin{aligned} \|x_n - Sx_n\| &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - S^n t_n\| \\ &+ \|S^n t_n - S^{n+1} t_n\| + \|S^{n+1} t_n - Sx_n\| \\ &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - S^n t_n\| + \|S^n t_n - S^{n+1} t_n\| \\ &+ k_1(\|S^n t_n - x_{n+1}\| + \|x_{n+1} - x_n\|) \to 0 \text{ as } n \to \infty. \end{aligned}$$

One can see by Lemma 4, that condition (\mathcal{D}) holds.

We now derive the main result of Petruşel and Yao ([10],Theorem 2.2) as Corollary.

Corollary 1. Let *C* be a nonempty, closed and convex subset of a real Hilbert space *H*. Let $A : C \to H$ be an α -inverse strongly monotone mapping and $S : C \to C$ a nonexpansive mapping such that $F(S) \cap \Omega \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\lambda_n\}$ be two sequences of positive numbers with $\{\alpha_n\} \subset (0,1)$ and $\{\lambda_n\} \subset [a,b]$, with $0 < a < b < \alpha(1-\delta)$ (for some $\delta \in (0,1)$) satisfying the conditions:

(i)
$$\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^{\infty} \alpha_n = \infty;$$

(ii)
$$\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty;$$

(iii)
$$\sum_{n=1}^{\infty} |\lambda_{n+1} - \lambda_n| < \infty;$$

For arbitrary $x_1 \in C$, consider the sequences $\{x_n\}$ and $\{y_n\}$ generated by the following iterative process:

$$\begin{cases} x_1 \in C, \\ y_n = P_C(x_n - \lambda_n A x_n), \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) SP_C(x_n - \lambda_n A y_n), & \text{for all } n \in \mathbb{N}, \end{cases}$$

where $f: C \to C$ is a k-contraction.

Then, the sequences $\{x_n\}$ and $\{y_n\}$ converge strongly to the same point p, such that p is the unique solution in $F(S) \cap \Omega$ of the following variational inequality:

$$\langle f(p) - p, y - p \rangle \le 0$$
, for all $y \in F(S) \cap \Omega$.

Example. Let $H = C = \mathbb{R}$. Let $A, f : C \to C$ be mappings defined by $A(x) = \frac{x}{2}$ and $f(x) = \frac{3x}{16}, \forall x \in C$. Then A is 2-inverse strongly monotone mapping and f is a contraction mapping. Let $\mathcal{S} := \{S_n\}$ be a sequence of asymptotically nonexpansive mappings from C into C defined by $S_n(x) = (1 + \frac{1}{n})x, \forall x \in C$ and $n \in \mathbb{N}$. Clearly, $F(\mathcal{S}) = \{0\}$ and $F(\mathcal{S}) \cap \Omega = \{0\}$. Let $(\alpha_n)_{n \in \mathbb{N}}$ and $(\lambda_n)_{n \in \mathbb{N}}$ be two sequences of positive numbers defined by $\alpha_n = \frac{1}{n+1}$ and $\lambda_n = \frac{1}{2}$.

Then, the sequence $\{x_n\}$ generated by

$$\begin{cases} x_1 \in C, \\ y_n = x_n - \lambda_n A x_n, \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S_n(x_n - \lambda_n A y_n), & \text{for all } n \in \mathbb{N}, \end{cases}$$

satisfying the inequality:

$$x_{n+1} = \left[\frac{3}{n+1} + 13\right] \frac{x_n}{16} \le \frac{29}{32} x_n.$$

One can see easily that $\{x_n\}$ converges to $0 \in F(S) \cap \Omega$.

Remark 1. For the numerical simulation and the graphic representation of the above sequences, see Figure 1 and Figure 2 below.

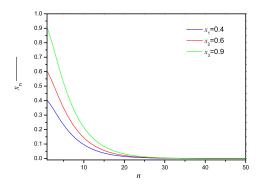


Figure 1: Convergence of the sequence $\{x_n\}$ for n iterations.

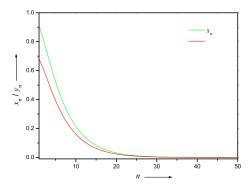


Figure 2: Convergence of the sequences $\{x_n\}$ and $\{y_n\}$ for n iterations.

References

- R.P. Agarwal, Donal O'Regan and D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Series: Topological Fixed Point Theory and Its Applications Springer, New York, 2009.
- [2] J. Chen, L. Zhang and T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl. 334 (2007), 1450-1461.
- [3] Y.J. Cho, H. Zhou and G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., 47 (2004), 707-717.
- [4] Q.-L. Dong and S. He, A viscosity projection method for class T mappings, Analele Ştiinţifice ale Univ. Ovidius Constanţa 21 (2013), 95-109.
- [5] K. Goebel and W.A. Kirk, *Topics on Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [6] G.M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekonomika i Matematicheskie Metody 12 (1976), 747-756.
- [7] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128 (2006), 191-201.
- [8] M.A. Noor, Modified projection method for pseudomonotone variational inequalities, Appl. Math. Lett. 15 (2002), 315-320.
- [9] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- [10] A. Petruşel and J.-C. Yao, An extragradient iterative scheme by viscosity approximation methods for fixed point problems and variational inequality problems, Cent. Eur. J. Math. 7 (2009), 335-347.
- [11] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.
- [12] D.R. Sahu, Zequing Liu, and Shin Min Kang, Iterative approaches to common fixed points of asymptotically nonexpansive mappings, Rocky Mountain J. Math. **39** (2009), 281-304.

- [13] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
- [14] G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
- [15] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.
- [16] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
- [17] H.K. Xu and T.H. Kim, Convergence of hybrid sleepest-descend methods for variational inequalities, J. Optim. Theory Appl. 119 (2003), 185-201.
- [18] L.C. Zeng and J.-C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwan. J. Math., 10 (2006), 1293-1303.

Adrian PETRUŞEL, Department of Mathematics, Babeş-Bolyai University Cluj-Napoca, Kogălniceanu Street, No. 1, 400084, Cluj-Napoca, Romania. Email: petrusel@math.ubbcluj.ro D.R. SAHU, Department of Mathematics, Banaras Hindu University, Varanasi-221005, India. Email: drsahudr@gmail.com Vidya SAGAR,

Department of Mathematics, Banaras Hindu University, Varanasi-221005, India. Email: luckvidya@yahoo.com