

$(\alpha, \beta, \lambda, \delta, m, \Omega)_p$ -Neighborhood for some families of analytic and multivalent functions

Halit ORHAN

Abstract

In the present investigation, we give some interesting results related with neighborhoods of p-valent functions. Relevant connections with some other recent works are also pointed out.

1 Introduction and Definitions

Let A demonstrate the family of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$.

We denote by $A_p(n)$ the class of functions f(z) normalized by

$$f(z) = z^p + \sum_{k=n}^{\infty} a_{k+p} z^{k+p} \quad (n, p \in \mathbb{N} := \{1, 2, 3, ...\})$$
 (1)

which are analytic and p-valent in \mathcal{U} .

Key Words: p-valent functions, Inclusion relations, Neighborhood properties, Salagean differential operator, Miller and Mocanu's lemma.

2010 Mathematics Subject Classification: 30C45.

Received: 2 May, 2014. Revised: 16 June, 2014. Accepted: 27 June, 2014. Upon differentiating both sides of (1) m times with respect to z, we have

$$f^{(m)}(z) = \frac{p!}{(p-m)!} z^{p-m} + \sum_{k=n}^{\infty} \frac{(k+p)!}{(k+p-m)!} a_{k+p} z^{k+p-m}$$

$$(n, p \in \mathbb{N}; m \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}; p > m).$$
(2)

We show by $\mathcal{A}_p(n,m)$ the class of functions of the form (2) which are analytic and p-valent in \mathcal{U} .

The concept of neighborhood for $f(z) \in \mathcal{A}$ was first given by Goodman [7]. The concept of δ -neighborhoods $N_{\delta}(f)$ of analytic functions $f(z) \in \mathcal{A}$ was first studied by Ruscheweyh [8]. Walker [12], defined a neighborhood of analytic functions having positive real part. Later, Owa et al.[13] generalized the results given by Walker. In 1996, Altıntaş and Owa [14] gave (n, δ) -neighborhoods for functions $f(z) \in \mathcal{A}$ with negative coefficients. In 2007, (n, δ) -neighborhoods for p-valent functions with negative coefficients were considered by Srivastava et al. [4], and Orhan [5]. Very recently, Orhan et al.[1], introduced a new definition of (n, δ) -neighborhood for analytic functions $f(z) \in \mathcal{A}$. Orhan et al.'s [1] results were generalized for the functions $f(z) \in \mathcal{A}$ and $f(z) \in \mathcal{A}_p(n)$ by many author (see, [6, 9, 10, 15]).

In this paper, we introduce the neighborhoods $(\alpha, \beta, \lambda, m, \delta, \Omega)_p - N(g)$ and $(\alpha, \beta, \lambda, m, \delta, \Omega)_p - M(g)$ of a function $f^{(m)}(z)$ when $f(z) \in \mathcal{A}_p(n)$.

Using the Salagean derivative operator [3]; we can write the following equalities for the function $f^{(m)}(z)$ given by

$$D^{0}f^{(m)}(z) = f^{(m)}(z)$$

$$D^{1}f^{(m)}(z) = \frac{z}{(p-m)} \left(f^{(m)}(z)\right)'$$

$$= \frac{p!}{(p-m)!} z^{p-m} + \sum_{k=n}^{\infty} \frac{(k+p-m)(k+p)!}{(p-m)(k+p-m)!} a_{k+p} z^{k+p-m}$$

$$D^{2}f^{(m)}(z) = D(Df^{(m)}(z))$$

$$= \frac{p!}{(p-m)!} z^{p-m} + \sum_{k=n}^{\infty} \frac{(k+p-m)^{2}(k+p)!}{(p-m)^{2}(k+p-m)!} a_{k+p} z^{k+p-m}$$

.....

$$D^{\Omega} f^{(m)}(z) = D(D^{\Omega - 1} f^{(m)}(z))$$

$$= \frac{p!}{(p-m)!} z^{p-m} + \sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega} (k+p)!}{(p-m)^{\Omega} (k+p-m)!} a_{k+p} z^{k+p-m}.$$

We define $\mathcal{F}: \mathcal{A}_p(n,m) \to \mathcal{A}_p(n,m)$ such that

$$\mathcal{F}(f^{(m)}(z)) = (1 - \lambda) \left(D^{\Omega} f^{(m)}(z) \right) + \frac{\lambda z}{(p - m)} \left(D^{\Omega} f^{(m)}(z) \right)'$$

$$= \frac{p!}{(p-m)!} z^{p-m} + \sum_{k=n}^{\infty} \frac{(k+p)!(k+p-m)^{\Omega}(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} a_{k+p} z^{k+p-m}$$
(3)

$$(0 \le \lambda \le 1; \ \Omega, m \in \mathbb{N}_0; \ p > m).$$

Let $\mathcal{F}(\lambda, m, \Omega)$ denote class of functions of the form (3) which are analytic in \mathcal{U} .

For $f,g\in \mathcal{F}(\lambda,m,\Omega),\, f$ said to be $(\alpha,\beta,\lambda,m,\delta,\Omega)_p$ —neighborhood for g if it satisfies

$$\left|\frac{e^{i\alpha}\mathcal{F}'(f^{(m)}(z))}{z^{p-m-1}} - \frac{e^{i\beta}\mathcal{F}'(g^{(m)}(z))}{z^{p-m-1}}\right| < \delta \quad (z \in \mathcal{U})$$

for some $-\pi \leq \alpha - \beta \leq \pi$ and $\delta > \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}$. We show this neighborhood by $(\alpha,\beta,\lambda,m,\delta,\Omega)_p - N(g)$.

Also, we say that $f \in (\alpha, \beta, \lambda, m, \delta, \Omega)_p - M(g)$ if it satisfies

$$\left|\frac{e^{i\alpha} \mathfrak{F}(f^{(m)}(z))}{z^{p-m}} - \frac{e^{i\beta} \mathfrak{F}(g^{(m)}(z))}{z^{p-m}}\right| < \delta \quad (z \in \mathfrak{U})$$

for some $-\pi \le \alpha - \beta \le \pi$ and $\delta > \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}$.

We give some results for functions belonging to $(\alpha, \beta, \lambda, m, \delta, \Omega)_p - N(g)$ and $(\alpha, \beta, \lambda, m, \delta, \Omega)_p - M(g)$.

2 Main Results

Now we can establish our main results.

Theorem 2.1. If $f \in \mathcal{F}(\lambda, m, \Omega)$ satisfies

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} a_{k+p} - e^{i\beta} b_{k+p} \right|$$

$$\leq \delta - \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}$$
(4)

for some $-\pi \le \alpha - \beta \le \pi$; p > m and $\delta > \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}$, then $f \in (\alpha,\beta,\lambda,m,\delta,\Omega)_p - N(g)$.

Proof. By virtue of (3), we can write

$$\left|\frac{e^{i\alpha} \mathfrak{F}'(f^{(m)}(z))}{z^{p-m-1}} - \frac{e^{i\beta} \mathfrak{F}'(g^{(m)}(z))}{z^{p-m-1}}\right|$$

$$= \left| \frac{p!(p-m)}{(p-m)!} e^{i\alpha} + e^{i\alpha} \sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} a_{k+p} z^{k} - \frac{p!(p-m)}{(p-m)!} e^{i\beta} - e^{i\beta} \sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} b_{k+p} z^{k} \right|$$

$$< \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]} + \sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} a_{k+p} - e^{i\beta} b_{k+p} \right|.$$

If

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} a_{k+p} - e^{i\beta} b_{k+p} \right|$$

$$\leq \delta - \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]},$$

then we observe that

$$\left| \frac{e^{i\alpha} \mathfrak{F}'(f^{(m)}(z))}{z^{p-m-1}} - \frac{e^{i\beta} \mathfrak{F}'(g^{(m)}(z))}{z^{p-m-1}} \right| < \delta \quad (z \in \mathfrak{U}).$$

Thus, $f \in (\alpha, \beta, \lambda, m, \delta, \Omega)_p - N(g)$. This evidently completes the proof of Theorem 2.1.

Remark 2.2. In its special case when

$$m = \Omega = \lambda = \alpha = 0 \text{ and } \beta = \alpha,$$
 (5)

in Theorem 2.1 yields a result given earlier by Altuntaş et al. ([9] p.3, Theorem 1).

We give an example for Theorem 2.1.

Example 2.1. For given

$$g(z) = \frac{p!}{(p-m)!} z^{p-m} + \sum_{k=n}^{\infty} B_{k+p}(\alpha, \beta, \lambda, m, \delta, \Omega) z^{k+p-m} \in \mathcal{F}(\lambda, m, \Omega)$$

$$(n, p \in \mathbb{N} = \{1, 2, 3, ...\}; p > m; \Omega, m \in \mathbb{N}_0)$$

 $we\ consider$

$$f(z) = \frac{p!}{(p-m)!} z^{p-m} + \sum_{k=n}^{\infty} A_{k+p}(\alpha, \beta, \lambda, m, \delta, \Omega) z^{k+p-m} \in \mathcal{F}(\lambda, m, \Omega)$$

$$(n, p \in \mathbb{N} = \{1, 2, 3, ...\}; p > m; \Omega, m \in \mathbb{N}_0)$$

with

$$A_{k+p} = \frac{(p-m)^{\Omega} \{\delta - \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}\} (k+p-m)!(n+p-1)}{(1+\lambda k(p-m)^{-1})(k+p-m)^{\Omega+1}(k+p-1)!(k+p)^{2}(k+p-1)} e^{-i\alpha} + e^{i(\beta-\alpha)} B_{k+p}.$$

Then we have that

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} A_{k+p} - e^{i\beta} B_{k+p} \right|$$

$$= (n+p-1) \left(\delta - \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]} \right) \sum_{k=n}^{\infty} \frac{1}{(k+p-1)(k+p)}.$$
(6)

Finally, in view of the telescopic series, we obtain

$$\sum_{k=n}^{\infty} \frac{1}{(k+p-1)(k+p)} = \lim_{\zeta \to \infty} \sum_{k=n}^{\zeta} \left[\frac{1}{k+p-1} - \frac{1}{k+p} \right]$$

$$= \lim_{\zeta \to \infty} \left[\frac{1}{n+p-1} - \frac{1}{\zeta+p} \right]$$

$$= \frac{1}{n+p-1}.$$

$$(7)$$

Using (7) in (6), we get

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} A_{k+p} - e^{i\beta} B_{k+p} \right|$$
$$= \delta - \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}.$$

Therefore, we say that $f \in (\alpha, \beta, \lambda, m, \delta, \Omega)_p - N(g)$. Also, Theorem 2.1 gives us the following corollary.

Corollary 2.3. If $f \in \mathcal{F}(\lambda, m, \Omega)$ satisfies

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} ||a_{k+p}| - |b_{k+p}||$$

$$\leq \delta - \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}$$

for some $-\pi \leq \alpha - \beta \leq \pi$ and $\delta > \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}$, and $\arg(a_{k+p}) - \arg(b_{k+p}) = \beta - \alpha \ (n,p \in \mathbb{N} = \{1,2,3,\ldots\} \ ; \ m \in \mathbb{N}_0, \ p > m)$, then $f \in (\alpha,\beta,\lambda,m,\delta,\Omega)_p - N(g)$.

Proof. By Theorem 2.1, we see the inequality (4) which implies that $f \in (\alpha, \beta, \lambda, m, \delta, \Omega)_n - N(g)$.

Since $\arg(a_{k+p}) - \arg(b_{k+p}) = \beta - \alpha$, if $\arg(a_{k+p}) = \alpha_{k+p}$, we see $\arg(b_{k+p}) = \alpha_{k+p} - \beta + \alpha$. Therefore,

$$e^{i\alpha}a_{k+p} - e^{i\beta}b_{k+p} = e^{i\alpha}|a_{k+p}|e^{i\alpha_{k+p}} - e^{i\beta}|b_{k+p}|e^{i(\alpha_{k+p}-\beta+\alpha)}$$

$$=(|a_{k+p}|-|b_{k+p}|)e^{i(\alpha_{k+p}+\alpha)}$$

implies that

$$|e^{i\alpha}a_{k+p} - e^{i\beta}b_{k+p}| = ||a_{k+p}| - |b_{k+p}||.$$
 (8)

Using (8) in (4) the proof of the corollary is complete.

Next, we can prove the following theorem.

Theorem 2.4. If $f \in \mathcal{F}(\lambda, m, \Omega)$ satisfies

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} a_{k+p} - e^{i\beta} b_{k+p} \right|$$

 $\leq \delta - \frac{p!}{(p-m)!} \sqrt{2[1-\cos(\alpha-\beta)]} \quad (z \in \mathcal{U}).$

 $\begin{array}{ll} for \; some \; -\pi \leq \alpha - \beta \leq \pi; \; p > m \; \; and \quad \delta > \frac{p!}{(p-m)!} \sqrt{2[1-\cos(\alpha-\beta)]} \; \; then \\ f \in (\alpha,\beta,\lambda,m,\delta,\Omega)_p - M(g). \end{array}$

The proof of this theorem is similar with Theorem 2.1.

Corollary 2.5. If $f \in \mathcal{F}(\lambda, m, \Omega)$ satisfies

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| |a_{k+p}| - |b_{k+p}| \right|$$

$$\leq \delta - \frac{p!}{(p-m)!} \sqrt{2[1-\cos(\alpha-\beta)]} \quad (z \in \mathcal{U}).$$

for some $-\pi \leq \alpha - \beta \leq \pi$; p > m and $\delta > \frac{p!}{(p-m)!} \sqrt{2[1 - \cos(\alpha - \beta)]}$ and $\arg(a_{k+p}) - \arg(b_{k+p}) = \beta - \alpha$, then $f \in (\alpha, \beta, \lambda, m, \delta, \Omega)_p - M(g)$.

Our next result as follows.

Theorem 2.6. If $f \in (\alpha, \beta, \lambda, m, \delta, \Omega)_p - N(g), 0 \le \alpha < \beta \le \pi$; p > m and $\arg(e^{i\alpha}a_{k+p} - e^{i\beta}b_{k+p}) = k\phi$, then

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} a_{k+p} - e^{i\beta} b_{k+p} \right|$$

$$\leq \delta - \frac{p!}{(p-m-1)!} (\cos \alpha - \cos \beta).$$

Proof. For $f \in (\alpha, \beta, \lambda, m, \delta, \Omega)_n - N(g)$, we have

$$\begin{split} & \left| \frac{e^{i\alpha}\mathcal{F}'(f^{(m)}(z))}{z^{p-m-1}} - \frac{e^{i\beta}\mathcal{F}'(g^{(m)}(z))}{z^{p-m-1}} \right| \\ & = \left| \frac{p!(e^{i\alpha} - e^{i\beta})}{(p-m-1)!} + \sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} (e^{i\alpha}a_{k+p} - e^{i\beta}b_{k+p})z^k \right| \\ & = \left| \frac{p!(e^{i\alpha} - e^{i\beta})}{(p-m-1)!} + \sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} (e^{i\alpha}a_{k+p} - e^{i\beta}b_{k+p})e^{ik\phi}z^k \right| \\ & < \delta. \end{split}$$

Let us consider z such that $\arg z = -\phi$. Then $z^k = |z|^k e^{-ik\phi}$. For such a point $z \in \mathcal{U}$, we see that

$$\begin{split} & \left| \frac{e^{i\alpha}\mathcal{F}'(f(z))}{z^{p-m-1}} - \frac{e^{i\beta}\mathcal{F}'(g(z))}{z^{p-m-1}} \right| \\ & = & \left| \frac{p!(e^{i\alpha} - e^{i\beta})}{(p-m-1)!} + \sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha}a_{k+p} - e^{i\beta}b_{k+p} \right| |z|^k \right| \\ & = \left[\left(\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha}a_{k+p} - e^{i\beta}b_{k+p} \right| |z|^k + \frac{p!(\cos\alpha - \cos\beta)}{(p-m-1)!} \right)^2 \right. \\ & \qquad \qquad \left. + \left(\frac{p!(\sin\alpha - \sin\beta)}{(p-m-1)!} \right)^2 \right]^{\frac{1}{2}} < \delta. \end{split}$$

This implies that

$$\left(\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} a_{k+p} - e^{i\beta} b_{k+p} \right| |z|^k + \frac{p!(\cos\alpha - \cos\beta)}{(p-m-1)!} \right)^2$$

or

$$\frac{p!}{(p-m-1)!}(\cos\alpha - \cos\beta) + \sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha}a_{k+p} - e^{i\beta}b_{k+p} \right| |z|^{k+p} dz$$

for $z \in \mathcal{U}$. Letting $|z| \longrightarrow 1^-$, we have that

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega+1}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} a_{k+p} - e^{i\beta} b_{k+p} \right|$$

$$\leq \delta - \frac{p!}{(p-m-1)!} (\cos \alpha - \cos \beta).$$

Remark 2.7. Applying the parametric substitutions listed in (5), Theorem 2.4 and 2.6 would yield a set of known results due to Altuntaş et al. ([9] p.5, Theorem 4; p.6, Theorem 7).

Theorem 2.8. If $f \in (\alpha, \beta, \lambda, m, \delta, \Omega)_p - M(g), 0 \le \alpha < \beta \le \pi$ and $\arg(e^{i\alpha}a_{k+p} - e^{i\beta}b_{k+p}) = k\phi$, then

$$\sum_{k=n}^{\infty} \frac{(k+p-m)^{\Omega}(k+p)!(1+\lambda k(p-m)^{-1})}{(p-m)^{\Omega}(k+p-m)!} \left| e^{i\alpha} a_{k+p} - e^{i\beta} b_{k+p} \right|$$

$$\leq \delta + \frac{p!}{(p-m-1)!}(\cos\beta - \cos\alpha).$$

The proof of this theorem is similar with Theorem 2.6.

Remark 2.9. Taking $\lambda = \alpha = \Omega = m = 0$, $\beta = \alpha$ and p = 1, in Theorem 2.8, we arrive at the following theorem due to Orhan et al.[1].

Theorem 2.10. If $f \in (\alpha, \delta) - N(g)$ and $\arg(a_n - e^{i\alpha}b_n) = (n-1)\varphi$ (n = 2, 3, 4, ...), then

$$\sum_{n=2}^{\infty} n \left| a_n - e^{i\alpha} b_n \right| \le \delta + \cos \alpha - 1.$$

We give an application of following lemma due to Miller and Mocanu [2] (see also, [11]).

Lemma 2.1. Let the function

$$w(z) = b_n z^n + b_{n+1} z^{n+1} + b_{n+2} z^{n+2} + \dots$$
 $(z \in \mathcal{U})$

be regular in \mathbb{U} with $w(z) \neq 0$, $(n \in \mathbb{U})$. If $z_0 = r_0 e^{i\theta_0}$ $(r_0 < 1)$ and $|w(z_0)| = \max_{|z| \leq r_0} |w(z)|$, then $z_0 w'(z_0) = qw(z_0)$ where q is real and $q \geq n \geq 1$.

Applying the above lemma, we derive

Theorem 2.11. If $f \in \mathcal{F}(\lambda, m, \Omega)$ satisfies

$$\left| \frac{e^{i\alpha} \mathfrak{F}'(f^{(m)}(z))}{z^{p-m-1}} - \frac{e^{i\beta} \mathfrak{F}'(g^{(m)}(z))}{z^{p-m-1}} \right| < \delta(p+n-m) - \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}$$

for some $-\pi \le \alpha - \beta \le \pi$; p > m and $\delta > \left(\frac{p!}{(p+n-m)(p-m-1)!}\right)\sqrt{2[1-\cos(\alpha-\beta)]}$, then

$$\left|\frac{e^{i\alpha}\mathcal{F}(f^{(m)}(z))}{z^{p-m}} - \frac{e^{i\beta}\mathcal{F}(g^{(m)}(z))}{z^{p-m}}\right| < \delta + \frac{p!}{(p-m)!}\sqrt{2[1-\cos(\alpha-\beta)]} \quad (z\in\mathcal{U}).$$

Proof. Let us define w(z) by

$$\frac{e^{i\alpha} \mathcal{F}(f^{(m)}(z))}{z^{p-m}} - \frac{e^{i\beta} \mathcal{F}(g^{(m)}(z))}{z^{p-m}} = \frac{p!}{(p-m)!} (e^{i\alpha} - e^{i\beta}) + \delta w(z). \tag{9}$$

Then w(z) is analytic in \mathcal{U} and w(0) = 0. By logarithmic differentiation, we get from (9) that

$$\frac{e^{i\alpha}\mathcal{F}'(f^{(m)}(z))-e^{i\beta}\mathcal{F}'(g^{(m)}(z))}{e^{i\alpha}\mathcal{F}(f^{(m)}(z))-e^{i\beta}\mathcal{F}(g^{(m)}(z))}-\frac{p-m}{z}=\frac{\delta w\prime(z)}{\frac{p!}{(p-m)!}(e^{i\alpha}-e^{i\beta})+\delta w(z)}.$$

Since

$$\frac{e^{i\alpha}\mathfrak{F}'(f^{(m)}(z))-e^{i\beta}\mathfrak{F}'(g^{(m)}(z))}{z^{p-m}\left(\frac{p!}{(p-m)!}(e^{i\alpha}-e^{i\beta})+\delta w(z)\right)}=\frac{p-m}{z}+\frac{\delta w\prime(z)}{\frac{p!}{(p-m)!}(e^{i\alpha}-e^{i\beta})+\delta w(z)},$$

we see that

$$\frac{e^{i\alpha} \mathfrak{F}'(f^{(m)}(z))}{z^{p-m-1}} - \frac{e^{i\beta} \mathfrak{F}'(g^{(m)}(z))}{z^{p-m-1}} = \frac{p!}{(p-m-1)!} (e^{i\alpha} - e^{i\beta}) + \delta w(z) \left(p-m + \frac{zw\prime(z)}{w(z)}\right).$$

This implies that

$$\left|\frac{e^{i\alpha}\mathcal{F}'(f^{(m)}(z))}{z^{p-m-1}} - \frac{e^{i\beta}\mathcal{F}'(g^{(m)}(z))}{z^{p-m-1}}\right| = \left|\frac{p!}{(p-m-1)!}(e^{i\alpha} - e^{i\beta}) + \delta w(z)\left(p-m + \frac{zw\prime(z)}{w(z)}\right)\right|.$$

We claim that

$$\left| \frac{e^{i\alpha} \mathfrak{F}'(f^{(m)}(z))}{z^{p-m-1}} - \frac{e^{i\beta} \mathfrak{F}'(g^{(m)}(z))}{z^{p-m-1}} \right| < \delta(p-m+n) - \frac{p!}{(p-m-1)!} \sqrt{2[1-\cos(\alpha-\beta)]}$$

in \mathcal{U} .

Otherwise, there exists a point $z_0 \in \mathcal{U}$ such that $z_0w'(z_0) = qw(z_0)$ (by Miller and Mocanu's Lemma) where $w(z_0) = e^{i\theta}$ and $q \ge n \ge 1$.

Therefore, we obtain that

$$\begin{split} \left| \frac{e^{i\alpha} \mathcal{G}'(f^{(m)}(z))}{z_0^{p-m-1}} - \frac{e^{i\beta} \mathcal{G}'(g^{(m)}(z))}{z_0^{p-m-1}} \right| &= \left| \frac{p!}{(p-m-1)!} (e^{i\alpha} - e^{i\beta}) + \delta e^{i\theta} \left(p - m + q \right) \right| \\ &\geq \delta \left(p + q - m \right) - \left| \frac{p!}{(p-m-1)!} (e^{i\alpha} - e^{i\beta}) \right| \\ &\geq \delta \left(p + n - m \right) - \frac{p!}{(p-m-1)!} \sqrt{2[1 - \cos(\alpha - \beta)]}. \end{split}$$

This contradicts our condition in Theorem 2.11.

Hence, there is no $z_0 \in \mathcal{U}$ such that $|w(z_0)| = 1$. This means that |w(z)| < 1 for all $z \in \mathcal{U}$.

Thus, have that

$$\begin{split} \left| \frac{e^{i\alpha} \mathfrak{F}(f^{(m)}(z))}{z^{p-m}} - \frac{e^{i\beta} \mathfrak{F}(g^{(m)}(z))}{z^{p-m}} \right| &= \left| \frac{p!}{(p-m)!} (e^{i\alpha} - e^{i\beta}) + \delta w(z) \right| \\ &\leq \frac{p!}{(p-m)!} \left| e^{i\alpha} - e^{i\beta} \right| + \delta \left| w(z) \right| \\ &< \delta + \frac{p!}{(p-m)!} \sqrt{2[1 - \cos(\alpha - \beta)]}. \end{split}$$

Upon setting m=0, $\alpha=\varphi, \wp=\mathfrak{F}$ and $\beta=\alpha$ in Theorem 2.11, we have the following corollary given by Sağsöz et al.[6].

Corollary 2.12. If $f \in \wp(\Omega, \lambda)$ satisfies

$$\left| \frac{e^{i\alpha} \wp'(f(z))}{z^{p-1}} - \frac{e^{i\beta} \wp'(g(z))}{z^{p-1}} \right| < \delta(p+n) - p\sqrt{2[1 - \cos(\varphi - \alpha)]}$$

for some $-\pi \le \alpha - \beta \le \pi$; and $\delta > \left(\frac{p}{(p+n)}\right)\sqrt{2[1-\cos(\alpha-\beta)]}$, then

$$\left|\frac{e^{i\alpha}\wp(f(z))}{z^p} - \frac{e^{i\beta}\wp(g(z))}{z^p}\right| < \delta + \sqrt{2[1-\cos(\varphi-\alpha)]} \quad (z\in \mathfrak{U})\,.$$

References

- [1] H. Orhan, E. Kadıoğlu and S. Owa, (α, δ) Neighborhood for certain analytic functions, International Symposium on Geometric Function Theory and Applications (Edited by S. Owa and Y. Polatoğlu), T. C. Istanbul Kultur University Publ., 2008, 207-213.
- [2] Miller, S.S and Mocanu, P.T, Second order differential inequalities in the complex plane, J. Math. Anal.Appl., 65, 289-305, (1978).
- [3] G. S. Sălăgean, Subclasses of univalent functions, Complex analysis Proc. 5th Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math. 1013 (1983) 362-372.
- [4] H. M. Srivastava and H. Orhan, Coefficient inequalities and inclusion relations for some families of analytic and multivalent functions, Appl. Math. Lett. 20 (2007), 686-691.

- [5] H. Orhan, Neighborhoods of a certain class of p-valent functions with negative coefficients defined by using a differential operator, Math. Ineq. Appl. Vol. 12, Number 2, (2009), 335-349.
- [6] F. Sağsöz, and M. Kamali, $(\varphi, \alpha, \delta, \lambda, \Omega)_p$ -Neighborhood for some classes of multivalent functions, J. Ineq. Appl., (2013), 2013:152.
- [7] Goodman, A.W, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8, 598-601, (1957).
- [8] Ruscheweyh, S., Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81, 521-527, (1981).
- [9] F. Altuntaş, S. Owa and M. Kamali, $(\alpha, \delta)_p$ -Neighborhood for certain class of multivalent functions, PanAmer. Math. J., Vol. **19**, (2009), No. 235-46.
- [10] Frasin, B. A., (α, β, δ) -Neighborhood for certain analytic functions with negative coefficients, Eur. J. Pure Appl.Math. 4 (1), 14-19 (2011).
- [11] I. S. Jack, Functions starlikenes and convex of order α , J. London Math. Soc. **2**(3) (1971), 469-474.
- [12] Walker, J. B., A note on neighborhoods of analytic functions having positive real part, Int. J. Math. Math. Sci. 13, 425-430, (1990).
- [13] Owa, S., Saitoh, H. and Nunokawa, M., Neighborhoods of certain analytic functions, Appl. Math. Lett. 6, 73-77, (1993).
- [14] Altıntaş, O. and Owa, S., Neighborhood for certain analytic functions with negative coefficients, Int. J. Math. Math. Sci. 19, 797-800, (1996).
- [15] Kugita, K., Kuroki, K. and Owa, S., (α, β) -Neighborhood for functions associated with Salagean differential operator and Alexander integral operator, Int. J. Math. Anal. Vol. 4, 2010, No. 5, 211-220.

Halit ORHAN, Department of Mathematics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey. Email: orhanhalit607@gmail.com