
DOI: 10.1515/auom-2015-0008
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A novel approach of the conformal mappings
with applications in biotribology

Olivia Florea

Abstract

In this paper, the flow of an incompressible non Newtonian fluid be-
tween two eccentric cylinders is considered. The aim of this study is
to determine the flow in the case of the stationary movement of some
viscous fluids between two eccentric cylinders with the generators par-
allel with Oz axis. Using the Mobius conformal mapping are obtained
two concentric cylinders. The expression of velocity is deduced with the
separation of variable method.

1 Indroduction

The flow of fluid through a ring is a classical problem that had attracted
several researchers because of its enormous applications in the real life. An
analytic solution for the flow of viscous Newtonian fluid through vertical ring
can be found in the classical textbooks of Bird. et.al [3].

Studies [7]-[18] present the analytic and numerical results for the flow of
different type of fluids between concentric cylinders. In this paper we will
consider the case when the geometry of the two cylinders is not concentric.
The aim of this study is to determine the flow in the case of the stationary
movement of some viscous fluids between two non-concentric cylinders with
the generators parallel with Oz axis. It is considered that the viscous fluid
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is incompressible and the section of the movement domain is the ring delim-
ited by two circles with the centers on Ox axis: (C2, O, r2), (C1, O1, r1), with
r1 < r2, the circle C1 is inside of the circle C2, the distance between the two
centers of the circles is OO1 = d.

We have to solve the problem of the movement of the viscous fluid which
is generated by the pressure gradient ∂p

∂z = k1 and by the gravitational poten-
tial −ρg sin(α), the angle between the generators and the Ox axis is α. To
solve the proposed problem it is used the conformal mapping method and the
variable separation method.

The problem of reflection and transmission of plane waves at an imper-
fect boundary between two thermally conducting micropolar elastic solid half
spaces with two temperature is investigated in the papers [16], [11]. For
the boundary value problem considered in the context of dipolar bodies with
stretch, in the paper [12],[10] the authors use some results from the theory of
semigroups of the linear operators in order to prove the existence and unique-
ness of a weak solution. In the papers [13], [14] the authors have studied
different types of problems in microstretch thermoelastic medium.

This study has multiple applications in biotribology and lubrification, in
the thermodynamics of viscous fluids. The mathematical model can be ap-
plied in the study of the torsion of elastic fibers, in thermoelasticity or elec-
tromagnetism. In the study of rheology, rheometry is used to experimentally
determine rheological properties of materials. A rheometer is an instrument,
which can impose a strain and measures the resulting torque or it can exert a
torque on a material and measures its response with time. A rheometer can
be of the controlled stress type or the controlled rate type. To characterize
the rheological behavior of the material, different flow test techniques such as
steady shear or oscillatory shear could be used. The measuring systems used
on the rheometer can be selected from the following geometries based on the
material properties: cone and plate, parallel plate, concentric cylinder [2], [5].
A fluid sample is introduced between the inner and outer cylindrical surfaces,
which are disposed eccentrically relative to one another. Relative mechanical
movement of the members, which is related to both shear and displacement
of the liquid disposed between them, provides an indication of the rheological
properties of the liquid, [9], [17]. A new approach of a non newtonian fluid
in the knee osteoarthrosis for the synovial fluid was presentetd in [6], where
the study is about the Stokes’ second problem, when the wall is driven in an
oscillatory shearing motion.
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2 Formulation of the problem

The equations of movement Navier - Stokes for the incompressible, viscous
fluids on which acts the gravitational force are [1]:

du
dt = − 1

ρ
∂p
∂x + ν · ∇2u

dv
dt = − 1

ρ
∂p
∂y + ν · ∇2v

dw
dt = − 1

ρ

(
∂p
∂z − ρg sin(α)

)
+ ν · ∇2w

(1)

where
d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

here, p is the pressure, ρ is the density of the fluid, µ is the kinematic viscosity
coefficient. The equation of continuity is:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2)

if the flow direction is supossed to be parallel with Oz axis, then the velocity
has the direction of z if u and v vanish. Therefore, the continuity equation
became:

∂w

∂z
= 0 or w = w(x, y, t)

this relation shows that the velocity is constant on a parallel direction with
the central line. By substituting u = v = 0 we have: ∂p

∂x = 0; ∂p∂y = 0. Based

on the mentioned considerations the third equation form (1) can be written
in the following form:

dw

dt
=
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
⇔ dw

dt
=
∂w

∂t

or
∂w

∂t
= −1

ρ

(
∂p

∂z
− ρg sin(α)

)
+ ν

(
∂2w

∂x2
+
∂2w

∂y2

)
(3)

Writing the above equation in polar coordinates we have:

∂w

∂t
= −1

ρ

(
∂p

∂z
− ρg sin(α)

)
+ ν

(
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)
(4)
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The initial boundary conditions are:{
w(r, θ, t = 0) = 0
w(r, θ, t)|C1 = w(r, θ, t)|C2 = 0

(5)

The fluid flow is assured by the gravitational effect; we divide by ν, the dy-
namic viscosity is µ = νρ, and it is obtained:

1

µ

∂w

∂t
= − 1

νρ

(
∂p

∂z
− ρg sinα

)
+
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

Noting by Ω = ∂p
∂z − ρg sinα and neglecting the derivative of w in report with

the time, the equation above becomes:

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
=

Ω

µ
(6)

that is equivalent with

∆ =
Ω

µ
(6’)

Lemma 1. The equation (6) has the particular solution:

wp =
Ω

2µ
r2 sin2 θ (7)

Proof.
∂wp
∂r

=
Ωr

µ
sin2 θ,

∂2wp
∂r2

=
Ω

µ
sin2 θ,

∂wp
∂θ

=
Ωr2

2µ
sin(2θ),

∂2wp
∂θ2

=
Ωr2

µ
cos(2θ)

Replacing in (6) it is obtained the identity:

2Ω

2µ
sin2 θ +

Ω

µ

(
1− 2 sin2 θ

)
=

Ω

µ
⇔ Ω

µ
=

Ω

µ

In the equation (6) we perform the change of unknown functionW = w−wp
which will lead to the homogeneous equation:

∆W = 0 (8)
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3 Main results

To solve the proposed problem it is absolutely necessary for the two cylin-
ders to be concentric with the center in the origin of coordinates system. It
is necessary a conformal mapping of Möbius type such as the new circles will
be: C ′1

(
0, 1

a

)
, C ′2 (0, a). In the fig. 1 are represented the transversal sections

for the geometry of the cylinders before and after the conformal mapping:

Figure 1: (a) initial geometry of eccentric cylinders; (b) the Mobius conformal
mapping

Lemma 2. The conformal mapping that transforms the circles
C1(O1(d, 0), r1), C2(O(0, 0), r2) into the circles C ′1

(
0, 1

a

)
, C ′2 (0, a) is:

Z = a
z − br2

r2 − bz
= f(z), b ∈ (0, 1) (9)

Proof. We verify that the conformal mapping is well chosen:
for z = r2 we have: f(r2) = a and for z = −r2 we have: f(−r2) = −a.
For the homographic transformation to exist Z = az+b

cz+d the complex coefficients
a, b, c, d satisfy the condition ad− bc 6= 0. In our case the complex coefficients
satisfy the condition r2 − b2r2 = r2(1− b2) > 0, (∀)b ∈ (0, 1).

The homographic transform (9) impose the following conversions:

f(x′1)→ x”
1; f(x1)→ x̃1
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where x̃1 = −x”
1 and x1 = r1+d; x′1 = d−r1. Replacing the previous notations

we have:

f(x′1) = −1

a
; f(x1) =

1

a
.

These are equivalent with f(x1) = −f(x′1) and in this manner we will obtain
an equation in the unknown b:

r1 + d− br2

r2 − br1 − bd
= − d− r1 − br2

r2 − bd+ br1

that is equivalent with:

r1+d
r2
− b

1− b r1+d
r2

= −
r1−d
r2
− b

1− bd−r1r2

(10)

To simplify the equation (10) we make the following notations:

r1 + d

r2
= p;

d− r1

r2
= q; 0 < q < p < 1.

Replacing these new notations in (10) it is obtained an algebraic equation of
second degree:

b2(p− q) + 2b(pq − 1) + p− q = 0

with the solutions:

b1,2 =
1− pq ±

√
(p2 − 1)(q2 − 1)

p− q

Because it is necessary to respect the imposed condition, that b ∈ (0, 1) the
convenient solution is:

b =
1− pq −

√
(p2 − 1)(q2 − 1)

p− q
(11)

Next we have to determine the value of parameter a > 0, and for this we will
use the relation:

f(x1) =
1

a
⇔ a2 =

r2 − b(r1 + d)

r1 + d− br2
⇔ a2 =

1− bp
p− b

Solving the last relation we obtain:

a =

√
p2q − q + p

√
(p2 − 1)(q2 − 1)

p2 − 1 +
√

(p2 − 1)(q2 − 1)
(12)
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The validation of the good choise of the conformal mapping is obtained
with Maple software, see fig.2.

Figure 2: The conformal mapping

For the particular solution (7) we should apply the conformal mapping i.e.:

y2 = r2 sin2 θ = F (R,Θ)

From the relation (9) we can obtain the expression z = F (Z):

z = r2
Z + ab

a+ bZ
(13)

using the algebric form of a complex number, relation (13) becomes:

x+ iy = r2
X + iY + ab

a+ b(X + iY )
(13’)

Writing the conjugate of the above equation, we have:

x− iy = r2
X − iY + ab

a+ b(X − iY )
(13”)
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Subtracting the two above equations it is obtained:

y = r2
aY (1− b2)

(a+ bX)2 +m2Y 2
⇔ . (14)

The polar coordinates are:{
X = R cos Θ
Y = R sin Θ

⇔ R2 = X2 + Y 2

Replacing the polar coordinates in the equation (14) and then lifting at square
we can write:

y2 = r2
2

a2Y 2(1− b2)2

(a2 + 2abX + b2R2)2
⇔ y2 = r2

2

a2R2 sin2 Θ(1− b2)2

(a2 + 2abR cos Θ + b2R2)2
= F (R,Θ)

(15)
Based on the variable change W = w−wp the conditions on the boundary (5)
become: {

W |C1 = w|C1 − wp|C1 = 0− Ω
2µy

2|C1 = − Ω
2µF

(
1
a ,Θ

)
W |C2

= w|C2
− wp|C2

= 0− Ω
2µy

2|C2
= − Ω

2µF (a,Θ)

Using the relations (14) the boundary conditions are: W |C1
= − Ω

2µ
r22(1−b2)2

a4
sin2 Θ(

1+ 2b
a2

cos Θ+ b2

a4

)2

W |C2
= − Ω

2µr
2
2(1− b2)2 sin2 Θ

(1+2b cos Θ+b2)2

(16)

Noting by:

φ(Θ) =
sin2 Θ(

1 + 2b
a2 cos Θ + b2

a4

)2 ; ψ(Θ) =
sin2 Θ

(1 + 2b cos Θ + b2)
2

The boundary conditions can be written in the following form:{
W |C1 = − Ω

2µ
r22(1−b2)2

a4 φ(Θ)

W |C2
= − Ω

2µr
2
2(1− b2)2ψ(Θ)

(17)

Proposition 1. The particular solution for the equation (8) written in polar
coordinates:

∂2W

∂R2
+

1

R

∂W

∂R
+

1

R2

∂2W

∂Θ2
= 0 (18)

is:
Wp = A lnR+B, A,B ∈ R (19)
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Theorem 1. The general solution of the equation (18) is:

W = A lnR+B +

∞∑
n=1

(
anR

n + bnR
−n) cos(nΘ), (20)

where an and bn are the coefficients of Fourier series.

Proof. Using the variable separation method we want to find W = X(R) ·
Y (Θ). Replacing in (18) we have:

X ′′Y +
1

R
X ′Y +

1

R2
XY ′′ = 0

Dividing the above relation through XY we have:

R2X
′′

X
+R

X ′

X
= −Y ”

Y
= λ2 (21)

Therefore, we will obtain two differential equations of second degree. First of
them is:

Y ′′ + λ2Y = 0

which has the solution Y = C1 cos(λΘ). Due to the fact that W is an even
function, W (−Θ) = W (Θ) the sine term doesn’t appear anymore. The second
equation that is obtained from (21) is a differential equation of second degree
of Euler type:

R2X ′′ +RX ′ − λ2X = 0

with the solution X̃ = Rn. Replacing this solution in Euler differential equa-
tion we obtain:

n(n− 1)Rn + nRn − λ2Rn = 0⇔ λ = ±n

The solution of the Euler differential equation is:

X(R) = C3R
λ + C4R

−λ

Therefore, we have:

Wn(R,Θ) = X(R) · Y (Θ) = (anR
n + bnR

−n)C1 cos(nΘ)

this relation leads us to the solution of homogeneous equation:

Wo(R,Θ) =

∞∑
n=1

Wn(R,Θ).
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Hence, the general solution (20) is obtained. Returning to the boundary con-
ditions (17) we have:

W |C1 = − Ω
2µ

r22(1−b2)2

a4
φ(Θ) = A ln 1

a
+B +

∞∑
n=1

(
an
(

1
a

)n
+ bn

(
1
a

)−n)
cos(nΘ)

W |C2 = − Ω
2µ
r2
2(1− b2)2ψ(Θ) = A ln a+B +

∞∑
n=1

(
an · an + bn · a−n

)
cos(nΘ)

(22)

We will use the Fourier method to determine the Fourier coefficients:

−A ln a+B = 2
π

π∫
0

− Ω
2µ

r2(1−b2)2

a4 φ(Θ)dΘ

A ln a+B = 2
π

π∫
0

− Ω
2µr

2
2(1− b2)2ψ(Θ)dΘ

an · a−n + bn · an = 2
π

π∫
0

− Ω
2µ

r22(1−b2)2

a4 φ(Θ) cos(nΘ)dΘ

an · an + bn · a−n = 2
π

π∫
0

− Ω
2µr

2
2(1− b2)2ψ(Θ) cos(nΘ)dΘ

(23)

The Fourier development of the functions:

Φ(Θ) = − Ω

2µ

r2
2(1− b2)2

a4
φ(Θ)

Ψ(Θ) = − Ω

2µ
r2
2(1− b2)2ψ(Θ)

in cosine series is:

Φ(Θ) = α1
0 +

∞∑
n=1

α1
n cos(nΘ), for R = 1

a

Ψ(Θ) = α2
0 +

∞∑
n=1

α2
n cos(nΘ), for R = a

(24)

with:

α1
0 = 2

π

π∫
0

Φ(Θ)dΘ α2
0 = 2

π

π∫
0

Ψ(Θ)dΘ

α1
n = 2

π

π∫
0

Φ(Θ) cos(nΘ)dΘ α2
n = 2

π

π∫
0

Ψ(Θ) cos(nΘ)dΘ
(25)

Based on the relations (25), the equations (23) can be written:{
− A ln a+B = α1

0

A ln a+B = α2
0
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respectively, {
an · a−n + bn · an = α1

n

an · an + bn · a−n = α1
n

Hence, the coefficients from (23) function of αi0, α
i
n, i = 1, 2 are:

A =
α2

0−α
1
0

2 ln a B =
α1

0+α2
0

2

an =
α2
na
n−α1

na
−n

a2n−a−2n bn =
α1
na
n−α2

na
−n

a2n−a−2n

(26)

Next we determine the Fourier coefficients from (25). For this we have to
compute the following integrals:

I1
0 = 2

π

π∫
0

φ(Θ)dΘ = 2
π

π∫
0

sin2 Θ(
1+ 2b

a2
cos Θ+ b2

a4

)2 dΘ

I2
0 = 2

π

π∫
0

ψ(Θ)dΘ = 2
π

π∫
0

sin2 Θ
(1+2b cos Θ+b2)2

dΘ

I1
n = 2

π

π∫
0

φ(Θ) cos(nΘ)dΘ = 2
π

π∫
0

sin2 Θ(
1+ 2b

a2
cos Θ+ b2

a4

)2 cos(nΘ)dΘ

I2
n = 2

π

π∫
0

ψ(Θ) cos(nΘ)dΘ = 2
π

π∫
0

sin2 Θ
(1+2b cos Θ+b2)2

cos(nΘ)dΘ

We propose to compute the following integral using the residues theorem,
where a ∈ (0, 1):

I =

π∫
0

sin2 Θ

(1− 2a cos Θ + a2)2
dθ =

1

2

π∫
0

1

(1− 2a cos Θ + a2)2
dθ −

1

2

π∫
0

cos 2Θ

(1− 2a cos Θ + a2)2
dΘ

to find the result of the above integral which is composed by two integrals
that can be written in the general form:

J =

π∫
0

cos kΘ

(1− 2a cos Θ + a2)2
dΘ

We use the variable change: z = eiΘ. Because Θ ∈ [0, π] the new domain will
be the superior half plane of |z| = 1. Thus the new form of J is:

J =
1

2i

∫
|z|=1

z2k + 1

zk−1(az2 − z(1 + a2) + a)2
dz
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The singularities will be: z = 0 ∈ ∂D pole of k − 1 degree and z = a ∈ ∂D
pole of second degree. Using the theorem of semi residues we finally obtain:

J =
πak

(1− a2)3

[
k + 1− (k − 1)a2

]
(27)

Replacing in (27) k = 0, k = 2 respectively, we obtain the result for I:

I =
π

2(1− a2)

Under these conditions, for a→ −b
a2 we obtain:

I1
0 =

a4

a4 − b2

and for a→ −b we obtain:

I2
0 =

1

1− b2
.

In analogous mode we compute the following integral:

In(a) =

∫ π

0

sin2 Θ

(1− 2a cos Θ + a2)2
cos(nΘ)dΘ =

1

2

∫ π

0

1− cos2Θ

(1− 2a cos Θ + a2)2
cos(nΘ)dΘ =

=
1

2

∫ π

0

cosnΘ

(1− 2a cos Θ + a2)2
cos(nΘ)dΘ−

1

2

∫ π

0

cos 2Θ cosnΘ

(1− 2a cos Θ + a2)2
cos(nΘ)dΘ

=
1

2

∫ π

0

cosnΘ

(1− 2a cos Θ + a2)2
cos(nΘ)dΘ−

1

2

∫ π

0

cos(n+ 2)Θ + cos(n− 2)Θ

2(1− 2a cos Θ + a2)2
cos(nΘ)dΘ

Using the (27) relation we have:

In(a) =
1

2

πan

(1− a2)3
(n+1−(n−1)a

2
)−

1

4

πan+2

(1− a2)3
(n+3−(n+1)a

2
)−

1

4

πan−2

(1− a2)3
(n−1−(n−3)a

2
)

In(a) =
πan−2

4(1− a2)
(a2(n+ 1) + 1− n) (28)

Substituting in (28) a→ − b
a2 we obtain:

I1
n =

π
(
− b
a2

)n−2

2
(

1−
(
− b
a2

)2)
[(
− b

a2

)2

(n+ 1) + 1− n

]

and for a→ −b we have:

I2
n =

π(−b)n−2

2(1− b2)
(b2(n+ 1) + 1− n)
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In these conditions we can determine the coefficients from (25):

α
1
0 = −

Ω

2µ

r22(1− b2)2

a4
I
1
0 = −

Ω

2µ

r22(1− b2)2

a4 − b2

α
2
0 = −

Ω

2µ
r
2
2(1− b2)

2
I
2
0 = −

Ω

2µ
r
2
2(1− b2)

α
1
n = −

Ω

2µ

r22(1− b2)2

a4
I
1
n = −

Ω

4µ

r22(1− b2)2

a4

π
(
− b
a2

)n−2(
1−

(
− b
a2

)2
) [(− b

a2

)2

(n+ 1) + 1− n
]

α
2
n = −

Ω

2µ
r
2
2(1− b2)

2
I
2
n = −

Ω

4µ
r
2
2(1− b2)π(−b)n−2

(b
2
(n+ 1) + 1− n)

With these computations we can find the Fourier coefficients (26):

A =
Ω

4µ ln a
r2
2(1− b2)

1− a4

a4 − b2

B = − Ω

4µ
r2
2(1− b2)

1− 2b2 + a4

a4 − b2

an =
1

a2n − a−2n


−an Ω

4µ
r2
2(1− b2)π(−b)n−2(b2(n+ 1) + 1− n)+

+a−n Ω
4µ

r22(1−b2)2

a4

π
(
− b
a2

)n−2(
1−
(
− b
a2

)2)
[(
− b
a2

)2
(n+ 1) + 1− n

] 
bn =

1

a2n − a−2n


a−n Ω

4µ
r2
2(1− b2)π(−b)n−2(b2(n+ 1) + 1− n)−

−an Ω
4µ

r22(1−b2)2

a4

π
(
− b
a2

)n−2(
1−
(
− b
a2

)2)
[(
− b
a2

)2
(n+ 1) + 1− n

] 

4 Numerical analysis

In the following graphics (see fig. 3), the dependence of W = W (R,Θ) is
represented using Maple software. It is observed that the solution is a stable
one, and that there are no perturbations.
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Figure 3: (a) Dependence of W by radius (b) Dependence of W by radius
angle
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