

VERSITA Vol. 23(1),2015, 73-82

# Some remarks on a fractional integro-differential inclusion with boundary conditions

### Aurelian Cernea

### Abstract

We study the existence of solutions for fractional integrodifferential inclusions of order  $q \in (1, 2]$  with families of mixed, closed, strip and integral boundary conditions. We establish Filippov type existence results in the case of nonconvex set-valued maps.

#### Introduction 1

Differential equations with fractional order have recently proved to be strong tools in the modelling of many physical phenomena. As a consequence there was an intensive development of the theory of differential equations and inclusions of fractional order ([13, 15, 16] etc.). Applied problems require definitions of fractional derivative allowing the utilization of physically interpretable initial conditions. Caputo's fractional derivative, originally introduced in [6] and afterwards adopted in the theory of linear visco elasticity, satisfies this demand. Very recently several qualitative results for fractional integro-differential equations were obtained in [1, 10, 12, 14, 17, 18] etc.

This paper is concerned with the following fractional integro-differential inclusion

$$D_{c}^{q}x(t) \in F(t, x(t), V(x)(t)) \quad a.e. \ ([0, T]), \tag{1}$$

Key Words: Differential inclusion, Fractional derivative, Boundary condition. 2010 Mathematics Subject Classification: Primary 34A60, 26A33; Secondary 26A42,

<sup>34</sup>B15. Received: 20 April, 2014.

Revised: 10 June, 2014.

Accepted: 30 June, 2014.

where  $q \in (1, 2]$ ,  $D_c^q$  is the Caputo fractional derivative,  $F : [0, T] \times \mathbf{R} \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$  is a set-valued map and  $V : C([0, T], \mathbf{R}) \to C([0, T], \mathbf{R})$  is a nonlinear Volterra integral operator defined by  $V(x)(t) = \int_0^t k(t, s, x(s)) ds$  with  $k(., ., .) : [0, T] \times \mathbf{R} \times \mathbf{R} \to \mathbf{R}$  a given function.

We study (1) subject to four families of boundary conditions:

i) Mixed boundary conditions

$$Tx'(0) = -ax(0) - bx(T), \quad Tx'(T) = bx(0) + dx(T).$$
(2)

ii) Closed boundary conditions

$$x(T) = \alpha x(0) + \beta T x'(0), \quad T x'(T) = \gamma x(0) + \delta T x'(0), \quad (3)$$

where  $a, b, d, \alpha, \beta, \gamma, \delta \in \mathbf{R}$  are given constants.

iii) Strip boundary conditions

$$x(0) = \sigma \int_{\alpha}^{\beta} x(s)ds, \quad x(1) = \eta \int_{\gamma}^{\delta} x(s)ds, \tag{4}$$

where  $\sigma, \eta \in \mathbf{R}$  and  $0 < \alpha < \beta < \gamma < \delta < 1$ .

iv) Nonlocal Riemann-Liouville type integral boundary conditions

$$x(0) = aI^{\omega}x(\mu), \quad x(1) = bI^{\nu}x(\theta), \tag{5}$$

where  $a, b \in \mathbf{R}$ ,  $\nu, \omega, \mu, \theta \in (0, 1)$  and  $I^q x(.)$  is the Riemann-Liouville fractional integral of order q.

The aim of this note is to show that Filippov's ideas ([7]) can be suitably adapted in order to obtain the existence of solutions for problems (1)-(2), (1)-(3), (1)-(4) and (1)-(5). Recall that for a differential inclusion defined by a lipschitzian set-valued map with nonconvex values, Filippov's theorem ([7]) consists in proving the existence of a solution starting from a given "quasi" solution. Moreover, the result provides an estimate between the "quasi" solution and the solution obtained.

We note that in the case when F does not depend on the last variable, existence results for problems (1)-(2), (1)-(3), (1)-(4) and (1)-(5) may be found in [7,8,9]. In fact, the results in the present paper extend the main results in [7,8,9] to fractional integrodifferential inclusions.

The paper is organized as follows: in Section 2 we recall some preliminary results that we need in the sequel and in Section 3 we prove our main results.

## 2 Preliminaries

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance of the closed subsets  $A, B \subset X$  is defined by

$$d_H(A, B) = \max\{d^*(A, B), d^*(B, A)\}, d^*(A, B) = \sup\{d(a, B); a \in A\},\$$

where  $d(x, B) = \inf_{y \in B} d(x, y)$ .

Let I = [0, T], we denote by  $C(I, \mathbf{R})$  the Banach space of all continuous functions from I to **R** with the norm  $||x(.)||_C = \sup_{t \in I} |x(t)|$  and  $L^1(I, \mathbf{R})$  is the Banach space of integrable functions  $u(.): I \to \mathbf{R}$  endowed with the norm  $||u(.)||_1 = \int_0^T |u(t)| dt$ . **Definition 2.1.** a) The fractional integral of order  $\alpha > 0$  of a Lebesgue

integrable function  $f:(0,\infty)\to \mathbf{R}$  is defined by

$$I^{\alpha}f(t) = \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s) \mathrm{d}s,$$

provided the right-hand side is pointwise defined on  $(0, \infty)$  and  $\Gamma(.)$  is the (Euler's) Gamma function defined by  $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$ .

b) The Caputo fractional derivative of order  $\alpha > 0$  of a function f:  $[0,\infty) \to \mathbf{R}$  is defined by

$$D_c^{\alpha} f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t (t-s)^{-\alpha+n-1} f^{(n)}(s) \mathrm{d}s,$$

where  $n = [\alpha] + 1$ . It is assumed implicitly that f is n times differentiable whose *n*-th derivative is absolutely continuous.

We recall (e.g., [13]) that if  $\alpha > 0$  and  $f \in C(I, \mathbf{R})$  or  $f \in L^{\infty}(I, \mathbf{R})$  then  $(\mathbf{D}_{c}^{\alpha}I^{\alpha}f)(t) \equiv f(t).$ 

The next two technical results are proved in [2].

**Lemma 2.2.** The unique solution  $x(.) \in C(I, \mathbf{R})$  of problem

$$D_c^q x(t) = f(t) \quad a.e. ([0,T]),$$
 (6)

with boundary conditions (2) is given by  $x(t) = \int_0^T G_1(t,s)f(s)ds$ , where  $G_1(.,.)$  is the Green function defined by

$$G_{1}(t,s) := \begin{cases} \frac{(t-s)^{q-1}}{\Gamma(q)} - \frac{1}{\Delta_{1}} \left( \frac{[T(b+d)+(b^{2}-ad)t](T-s)^{q-1}}{T\Gamma(q)} + \frac{[(a+b)t-(1+b)T](T-s)^{q-2}}{\Gamma(q-1)} \right) & \text{if } 0 \le s < t \le T, \\ -\frac{1}{\Delta_{1}} \left( \frac{[T(b+d)+(b^{2}-ad)t](T-s)^{q-1}}{T\Gamma(q)} + \frac{[(a+b)t-(1+b)T](T-s)^{q-2}}{\Gamma(q-1)} \right) \\ & \text{if } 0 \le t < s \le T, \end{cases}$$

with  $\Delta_1 = (1+b)(b+d) - (a+b)(d-1) \neq 0$ . Note that

$$|G_1(t,s)| \le \frac{T^{q-1}}{\Gamma(q)} \cdot (1 + \frac{|b+d+b^2 - ad| + (q-1)|a-1|}{|\Delta_1|}) =: M_1 \quad \forall t, s \in I.$$

**Lemma 2.3.** The unique solution  $x(.) \in C(I, \mathbf{R})$  of problem (6)-(3) is given by  $x(t) = \int_0^T G_2(t, s) f(s) ds$ , where the Green function defined by

$$G_{2}(t,s) := \begin{cases} \frac{(t-s)^{q-1}}{\Gamma(q)} - \frac{1}{\Delta_{2}} \left( \frac{[T(1-\delta)+\gamma t](T-s)^{q-1}}{T\Gamma(q)} + \frac{[(1-\alpha)t-(1-\beta)T](T-s)^{q-2}}{\Gamma(q-1)} \right) & \text{if } 0 \le s < t \le T, \\ \frac{1}{\Delta_{2}} \left( \frac{[T(1-\delta)+\gamma t](T-s)^{q-1}}{T\Gamma(q)} + \frac{[(1-\alpha)t-(1-\beta)T](T-s)^{q-2}}{\Gamma(q-1)} \right) \\ & \text{if } 0 \le t < s \le T, \end{cases}$$

with  $\Delta_2 = \gamma(1-\beta) + (1-\alpha)(1-\delta) \neq 0$ . Note that

$$|G_2(t,s)| \leq \frac{T^{q-1}}{\Gamma(q)} \cdot (1 + \frac{|1 - \delta + \gamma| + (q-1)|\alpha - \beta|}{|\Delta_2|}) =: M_2 \quad \forall t, s \in I.$$

For simplicity, in the following results T = 1.

The next result is proved in [3].

**Lemma 2.4.** For a given function  $f(.) \in C(I, \mathbf{R})$  the unique solution of problem (6)-(4) is given by

$$\begin{split} x(t) &= \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} f(s) ds + \frac{\sigma}{\Delta} [-(\frac{\eta}{2}(\delta^2 - \gamma^2) - 1) + \\ t(\eta(\delta - \gamma) - 1)] \int_{\alpha}^{\beta} (\int_0^s \frac{(s-m)^{q-1}}{\Gamma(q)} f(m) dm) ds + \frac{1}{\Delta} [\frac{\sigma}{2}(\beta^2 - \alpha^2) - \\ (\sigma(\beta - \alpha) - 1)t] [\eta \int_{\gamma}^{\delta} (\int_0^s \frac{(s-m)^{q-1}}{\Gamma(q)} f(m) dm) ds - \int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s) ds], \end{split}$$

where

$$\Delta = \left[\frac{\eta}{2}(\delta^2 - \gamma^2) - 1\right] \left[\sigma(\beta - \alpha) - 1\right] - \left[\frac{\sigma}{2}(\beta^2 - \alpha^2)\right] \left[\eta(\delta - \gamma) - 1\right] \neq 0.$$

Denote  $A(t,s) = \frac{(t-s)^{q-1}}{\Gamma(q)} \chi_{[0,t]}(s), \ B(t,s) = \frac{\sigma}{\Delta\Gamma(q)} [-(\frac{\eta}{2}(\delta^2 - \gamma^2) - 1) + t(\eta(\delta-\gamma)-1)] \frac{1}{q} [(\beta-s)^q \chi_{[0,\beta]}(s) - (\alpha-s)^q \chi_{[0,\alpha]}(s)], \ C(t,s) = \frac{1}{\Delta\Gamma(q)} [\frac{\sigma}{2}(\beta^2 - \alpha^2) - (\sigma(\beta-\alpha)-1)t] \frac{\eta}{q} [(\delta-s)^q \chi_{[0,\delta]}(s) - (\gamma-s)^q \chi_{[0,\gamma]}(s)], \ D(t,s) = -\frac{1}{\Delta\Gamma(q)} [\frac{\sigma}{2}(\beta^2 - \alpha^2) - (\sigma(\beta-\alpha)-1)t](1-s)^{q-1} \ \text{and} \ G_3(t,s) = A(t,s) + B(t,s) + C(t,s) + D(t,s),$ where  $\chi_S(.)$  is the characteristic function of the set S. Then the solution x(.) in Lemma 3 may be written as  $x(t) = \int_0^1 G_3(t,s)f(s)ds$ . Moreover, for any  $t, s \in I$  we have

$$\begin{aligned} |G_{3}(t,s)| &\leq \frac{1}{\Gamma(q)} + \frac{\sigma}{|\Delta|\Gamma(q)} [|\frac{\eta}{2}(\delta^{2} - \gamma^{2}) - 1| + |\eta(\delta - \gamma) - 1|] \frac{\beta^{q} + \alpha^{q}}{q} + \\ &\frac{1}{|\Delta|\Gamma(q)} [|\frac{\sigma}{2}(\beta^{2} - \alpha^{2})| + |\sigma(\beta - \alpha) - 1|] [\frac{\eta}{q}(\delta^{q} + \gamma^{q}) + 1] =: M_{3}. \end{aligned}$$

The proof of the following lemma may be found in [4].

**Lemma 2.5.** For a given  $f(.) \in C(I, \mathbf{R})$  the unique solution of the problem (6)-(5) is given by

$$\begin{aligned} x(t) &= \frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} f(s) ds + (c_1 - tc_4) \int_0^\mu \frac{(\mu-s)^{q+\omega-1}}{\Gamma(q+\omega)} f(s) ds + \\ (c_2 + c_3 t) [b \int_0^\theta \frac{(\theta-s)^{q+\nu-1}}{\Gamma(q+\nu)} f(s) ds - \frac{1}{\Gamma(q)} \int_0^1 (1-s)^{q-1} f(s) ds], \end{aligned}$$

where

$$c_{1} = \frac{a}{c} \left(1 - \frac{b\theta^{\nu+1}}{\Gamma(\nu+2)}\right), \ c_{2} = \frac{a\mu^{\omega+1}}{c\Gamma(\omega+2)}, \ c_{3} = \frac{1}{c} \left(1 - \frac{a\mu^{\omega}}{\Gamma(\omega+1)}\right), \ c_{4} = \frac{a}{c} \left(1 - \frac{b\theta^{\nu}}{\Gamma(\nu+1)}\right), \ c_{4} = \frac{a}{c} \left(1 - \frac{b\theta^{\nu}}{\Gamma(\nu+2)}\right), \ c_{5} = \left(1 - \frac{a\mu^{\omega}}{\Gamma(\omega+1)}\right) \left(1 - \frac{b\theta^{\nu+1}}{\Gamma(\nu+2)}\right) + \frac{a\mu^{\omega+1}}{\Gamma(\omega+2)} \left(1 - \frac{b\theta^{\nu}}{\Gamma(\nu+1)}\right).$$

It is implicitly assumed that  $c \neq 0$ . Denote  $A_1(t,s) = \frac{(t-s)^{q-1}}{\Gamma(q)} \chi_{[0,t]}(s), B_1(t,s) = (c_1 - tc_4) \frac{(\mu-s)^{q+\omega-1}}{\Gamma(q+\omega)} \chi_{[0,\mu]}(s),$   $C_1(t,s) = b(c_2 + c_3 t) \frac{(\theta-s)^{q+\nu-1}}{\Gamma(q+\nu)} \chi_{[0,\theta]}(s), D_1(t,s) = -(c_2 + c_3 t) \frac{(1-s)^{q-1}}{\Gamma(q)}$  and  $G_4(t,s) = A_1(t,s) + B_1(t,s) + C_1(t,s) + D_1(t,s),$  then the solution x(.) in Lemma 4 may be written as  $x(t) = \int_0^1 G_4(t,s) f(s) ds$ . Moreover, for any  $t, s \in I$ we have

$$\begin{aligned} |G_4(t,s)| &\leq \frac{1}{\Gamma(q)} + (|c_1| + |c_4|) \frac{\mu^{q+\omega-1}}{\Gamma(q+\omega)} + |b|(|c_2| + |c_3|) \frac{\theta^{q+\nu-1}}{\Gamma(q+\nu)} + \\ (|c_2| + |c_3|) \frac{1}{\Gamma(q)} &=: M_4 \end{aligned}$$

#### 3 The main results

In order to prove our results we need the following hypotheses.

**Hypothesis.** i)  $F(.,.): I \times \mathbf{R} \times \mathbf{R} \to \mathcal{P}(\mathbf{R})$  has nonempty closed values and is  $\mathcal{L}(I) \otimes \mathcal{B}(\mathbf{R} \times \mathbf{R})$  measurable.

ii) There exists  $L(.) \in L^1(I, (0, \infty))$  such that, for almost all  $t \in I, F(t, .., .)$ is L(t)-Lipschitz in the sense that

 $d_H(F(t, x_1, y_1), F(t, x_2, y_2)) \le L(t)(|x_1 - x_2| + |y_1 - y_2|) \quad \forall \ x_1, x_2, y_1, y_2 \in \mathbf{R}.$ 

iii)  $k(.,.,.): I \times \mathbf{R} \times \mathbf{R} \to \mathbf{R}$  is a function such that  $\forall x \in \mathbf{R}, (t,s) \to \mathbf{R}$ k(t, s, x) is measurable.

iv) 
$$|k(t,s,x) - k(t,s,y)| \le L(t)|x-y|$$
 a.e.  $(t,s) \in I \times I$ ,  $\forall x, y \in \mathbf{R}$ .

We use next the following notations

$$M(t) := L(t)(1 + \int_0^t L(u)du), \quad t \in I, \quad M_0 = \int_0^T M(t)dt.$$

**Theorem 3.1.** Assume that Hypothesis is satisfied and  $M_1M_0 < 1$ . Let  $y(.) \in C(I, \mathbf{R})$  be such that Ty'(0) = -ay(0) - by(T), Ty'(T) = by(0) + dy(T) and there exists  $p(.) \in L^1(I, \mathbf{R}_+)$  with  $d(D^q_c y(t), F(t, y(t), V(y)(t))) \leq p(t)$  a.e. (I).

Then there exists  $x(.) \in C(I, \mathbf{R})$  a solution of problem (1)-(2) satisfying for all  $t \in I$ 

$$|x(t) - y(t)| \le \frac{M_1}{1 - M_1 M_0} \int_0^T p(t) dt.$$
(7)

*Proof.* The set-valued map  $t \to F(t, y(t), V(y)(t))$  is measurable with closed values and

$$F(t, y(t), V(y)(t)) \cap \{D_c^q y(t) + p(t)[-1, 1]\} \neq \emptyset$$
 a.e. (I).

It follows (e.g., Theorem 1.14.1 in [5]) that there exists a measurable selection  $f_1(t) \in F(t, y(t), V(y)(t))$  a.e. (I) such that

$$|f_1(t) - D_c^q y(t)| \le p(t)$$
 a.e. (I) (8)

Define  $x_1(t) = \int_0^T G_1(t,s) f_1(s) ds$  and one has

$$|x_1(t) - y(t)| \le M_1 \int_0^T p(t) dt.$$

We claim that it is enough to construct the sequences  $x_n(.) \in C(I, \mathbf{R})$ ,  $f_n(.) \in L^1(I, \mathbf{R})$ ,  $n \ge 1$  with the following properties

$$x_n(t) = \int_0^T G_1(t, s) f_n(s) ds, \quad t \in I,$$
(9)

$$f_n(t) \in F(t, x_{n-1}(t), V(x_{n-1})(t)) \quad a.e. (I),$$
<sup>(10)</sup>

$$|f_{n+1}(t) - f_n(t)| \le L(t)(|x_n(t) - x_{n-1}(t)| + \int_0^t L(s)|x_n(s) - x_{n-1}(s)|ds) \quad a.e. (I)$$
(11)

If this construction is realized then from (8)-(11) we have for almost all  $t \in I$ 

$$|x_{n+1}(t) - x_n(t)| \le M_1 (M_1 M_0)^n \int_0^T p(t) dt \quad \forall n \in \mathbf{N}.$$

Indeed, assume that the last inequality is true for n-1 and we prove it for n. One has

$$|x_{n+1}(t) - x_n(t)| \le \int_0^T |G_1(t, t_1)| \cdot |f_{n+1}(t_1) - f_n(t_1)| dt_1 \le C_0$$

$$M_{1} \int_{0}^{T} L(t_{1})[|x_{n}(t_{1}) - x_{n-1}(t_{1})| + \int_{0}^{t_{1}} L(s)|x_{n}(s) - x_{n-1}(s)|ds]dt_{1} \le M_{1}$$
$$\int_{0}^{T} L(t_{1})(1 + \int_{0}^{t_{1}} L(s)ds)dt_{1}.M_{1}^{n}M_{0}^{n-1} \int_{0}^{T} p(t)dt = M_{1}(M_{1}M_{0})^{n} \int_{0}^{T} p(t)dt$$

Therefore  $\{x_n(.)\}$  is a Cauchy sequence in the Banach space  $C(I, \mathbf{R})$ , hence converging uniformly to some  $x(.) \in C(I, \mathbf{R})$ . Therefore, by (11), for almost all  $t \in I$ , the sequence  $\{f_n(t)\}$  is Cauchy in **R**. Let f(.) be the pointwise limit of  $f_n(.)$ .

Moreover, one has

$$|x_n(t) - y(t)| \le |x_1(t) - y(t)| + \sum_{i=1}^{n-1} |x_{i+1}(t) - x_i(t)| \le M_1 \int_0^T p(t) dt + \sum_{i=1}^{n-1} (M_1 \int_0^T p(t) dt) (M_1 M_0)^i = \frac{M_1 \int_0^T p(t) dt}{1 - M_1 M_0}.$$
(12)

On the other hand, from (8), (11) and (12) we obtain for almost all  $t \in I$ 

$$\begin{aligned} |f_n(t) - D_c^q y(t)| &\leq \sum_{i=1}^{n-1} |f_{i+1}(t) - f_i(t)| + |f_1(t) - D_c^q y(t)| \leq \\ L(t) \frac{M_1 \int_0^T p(t) dt}{1 - M_1 M_0} + p(t). \end{aligned}$$

Hence the sequence  $f_n(.)$  is integrably bounded and therefore  $f(.) \in L^1(I, \mathbf{R})$ .

Using Lebesgue's dominated convergence theorem and taking the limit in (9), (10) we deduce that x(.) is a solution of (1)-(2). Finally, passing to the limit in (12) we obtained the desired estimate on x(.).

It remains to construct the sequences  $x_n(.), f_n(.)$  with the properties in (9)-(11). The construction will be done by induction.

Since the first step is already realized, assume that for some  $N \geq 1$  we already constructed  $x_n(.) \in C(I, \mathbf{R})$  and  $f_n(.) \in L^1(I, \mathbf{R})$ , n = 1, 2, ...N satisfying (9), (11) for n = 1, 2, ...N and (10) for n = 1, 2, ...N - 1. The set-valued map  $t \to F(t, x_N(t), V(x_N)(t))$  is measurable. Moreover, the map  $t \to L(t)(|x_N(t) - x_{N-1}(t)| + \int_0^t L(s)|x_N(s) - x_{N-1}(s)|ds)$  is measurable. By the lipschitzianity of F(t, .) we have that for almost all  $t \in I$ 

$$F(t, x_N(t)) \cap \{f_N(t) + L(t)(|x_N(t) - x_{N-1}(t)| + \int_0^t L(s)|x_N(s) - x_{N-1}(s)|ds)[-1, 1]\} \neq \emptyset.$$

Theorem 1.14.1 in [5] yields that there exist a measurable selection  $f_{N+1}(.)$  of  $F(., x_N(.), V(x_N)(.))$  such that for almost all  $t \in I$ 

$$|f_{N+1}(t) - f_N(t)| \le L(t)(|x_N(t) - x_{N-1}(t)| + \int_0^t L(s)|x_N(s) - x_{N-1}(s)|ds).$$

We define  $x_{N+1}(.)$  as in (9) with n = N + 1. Thus  $f_{N+1}(.)$  satisfies (10) and (11) and the proof is complete.

The proofs of the next three theorems are similar to the proof of Theorem 3.1.

**Theorem 3.2.** Assume that Hypothesis is satisfied and  $M_2M_0 < 1$ . Let  $y(.) \in C(I, \mathbf{R})$  be such that  $y(T) = \alpha y(0) + \beta T y'(0)$ ,  $Ty'(T) = \gamma y(0) + \delta T y'(0)$  and there exists  $p(.) \in L^1(I, \mathbf{R})$  with  $d(D^q_c y(t), F(t, y(t, V(y)(t)))) \leq p(t)$  a.e. (I).

Then there exists  $x(.) \in C(I, \mathbf{R})$  a solution of problem (1)-(3) satisfying for all  $t \in I$ 

$$|x(t) - y(t)| \le \frac{M_2}{1 - M_2 M_0} \int_0^T p(t) dt.$$

**Theorem 3.3.** Assume that Hypothesis is satisfied and  $M_3M_0 < 1$ . Let  $y(.) \in C(I, \mathbf{R})$  be such that  $y(0) = \sigma \int_{\alpha}^{\beta} y(s) ds$ ,  $y(1) = \eta \int_{\gamma}^{\delta} y(s) ds$  and there exists  $p(.) \in L^1(I, \mathbf{R}_+)$  with  $d(D_c^q y(t), F(t, y(t), V(y)(t))) \leq p(t)$  a.e. (I).

Then there exists  $x(.) \in C(I, \mathbf{R})$  a solution of problem (1)-(4) satisfying for all  $t \in I$ 

$$|x(t) - y(t)| \le \frac{M_3}{1 - M_3 M_0} \int_0^1 p(t) dt.$$

**Theorem 3.4.** Assume that Hypothesis is satisfied and  $M_4M_0 < 1$  Let  $y(.) \in C(I, \mathbf{R})$  be such that  $y(0) = aI^{\omega}y(\mu), y(1) = bI^{\nu}y(\theta)$  and there exists  $p(.) \in L^1(I, \mathbf{R}_+)$  with  $d(D_c^q y(t), F(t, y(t), V(y)(t))) \leq p(t)$  a.e. (I).

Then there exists  $x(.) \in C(I, \mathbf{R})$  a solution of problem (1)-(5) satisfying for all  $t \in I$ 

$$|x(t) - y(t)| \le \frac{M_4}{1 - M_4 M_0} \int_0^1 p(t) dt.$$

**Remark 3.5.** If F(.,.,.) does not depend on the last variable the fractional integrodifferential inclusion (1) reduces to

$$D_c^q x(t) \in F(t, x(t))$$
 a.e. (I)

and Theorem 3.1 yields Theorem 3.3 in [7], Theorem 3.2 yields Theorem 3.4 in [7], Theorem 3.3 yields Theorem 3.4 in [8] and Theorem 3.4 yields Theorem 3.5 in [9].

### References

 Aghajani, A., Jalilian, Y., Trujillo, J.J., On the existence of solutions of fractional integro-differential equations, Fract. Calc. Appl. Anal. 15 (2012), 44-69.

- [2] Ahmad, B., Nieto, J.J., Pimentel, J., Some boundary value problems of fractional differential equations and inclusions, Computers and Mathematics with Applications 62 (2011), 1238-1250.
- [3] Ahmad, B., Ntouyas, S.K., Existence results for nonlocal boundary value problems of fractional differential equations and inclusions with strip conditions, Boundary Value Problems 55 (2012), 1-21.
- [4] Ahmad, B., Ntouyas, S.K., Existence of solutions for fractional differential inclusions with four-point nonlocal Riemann-Liouville type integral boundary conditions, Filomat 27 (2013), 1027-1036.
- [5] Aubin, J.P., Cellina, A., Differential Inclusions, Springer, Berlin, 1984.
- [6] Caputo, M., Elasticità e Dissipazione, Zanichelli, Bologna, 1969.
- [7] Cernea, A., A note on the existence of solutions for some boundary value problems of fractional differential inclusions, Fract. Calc. Appl. Anal. 15 (2012), 183-194.
- [8] Cernea, A., On a fractional differential inclusion with strip boundary conditions, J. Fract. Calc. Appl. 4 (2013), 169-176.
- [9] Cernea, A., On a fractional differential inclusion with nonlocal Riemann-Liouville type integral boundary conditions, Libertas Math. 33 (2013), 37-46.
- [10] Chalishajar, D.N., Karthikeyan, K., Existence and uniqueness results for boundary value problems of higher order fractional integro-differential equations involving Gronwall's inequality in Banach spaces, Acta Math. Scientia **33B** (2013), 758-772.
- [11] Filippov, A.F., Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621.
- [12] Karthikeyan, K., Trujillo, J.J., Existence and uniqueness results for fractional integro-differential equations with boundary value conditions, Commun Nonlinear Sci. Numer. Simulat. 17 (2012), 4037-4043.
- [13] Kilbas, A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- [14] Marin, M., Florea, O., On temporal behavior of solutions in Thermoelasticity of porous micropolar bodies, An. St. Univ. Ovidius Constanţa 22 (2014), 169-188.

- [15] Miller, K., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
- [16] Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.
- [17] Sharma, K., Marin, M., Reflection and transmision of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids, An. St. Univ. Ovidius Constanţa 22 (2014), 151-175.
- [18] Wang, J.R., Wei, W., Yang, Y., Fractional nonlocal integro-differential equations of mixed type with time varying generating operators and optimal control, Opuscula Math. 30 (2010), 361-381.

Aurelian CERNEA, Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014 Bucharest, Romania. Email: acernea@fmi.unibuc.ro