

VERSITA Vol. 23(1),2015, 65-72

The Relationships Between p-valent Functions and Univalent Functions

Murat ÇAĞLAR

Abstract

In this paper, we obtain some sufficient conditions for general p-valent integral operators to be the p-th power of a univalent functions in the open unit disk.

1 Introduction

Let $\mathcal{A}(p)$ be the class of functions of the form:

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in \mathbb{N} = \{1, 2, ...\})$$
(1)

which are analytic and p-valent in the unit disc $\mathcal{U} = \{z : |z| < 1\}$. A function $f(z) \in \mathcal{A}(p)$ is called p-valent starlike of order γ if f(z) satisfies

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \gamma \tag{2}$$

for $0 \leq \gamma < p, p \in \mathbb{N}$ and $z \in \mathcal{U}$. By $\mathcal{S}^*(p,\gamma)$, we denote the class of all p-valent starlike functions of order γ . By $\mathcal{S}^*_p(\gamma)$ denote the subclass of $\mathcal{S}^*(p,\gamma)$ consisting of functions $f(z) \in \mathcal{A}(p)$ for which

$$\left|\frac{zf'(z)}{f(z)} - p\right|$$

Key Words: Univalent functions, *p*-valent functions, *p*-valent integral operators. 2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C55, 30C80. Received: 15 April, 2014. Revised: 10 June, 2014.

Accepted: 28 June, 2014.

for $0 \leq \gamma < p, p \in \mathbb{N}$ and $z \in \mathcal{U}$. Also a function $f(z) \in \mathcal{A}(p)$ is called *p*-valent convex of order γ if f(z) satisfies

$$\Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \gamma \tag{4}$$

for $0 \leq \gamma < p, p \in \mathbb{N}$ and $z \in \mathcal{U}$. By $\mathcal{C}(p, \gamma)$, we denote the class of all p-valent convex functions of order γ . It follows from (2) and (4) that

$$f(z) \in \mathcal{C}(p,\gamma) \iff \frac{zf'(z)}{p} \in \mathcal{S}^*(p,\gamma).$$
 (5)

Also $\mathcal{C}_p(\gamma)$ denote the subclass of $\mathcal{C}(p,\gamma)$ consisting of functions $f(z) \in \mathcal{A}(p)$ for which

$$\left|\frac{zf''(z)}{f'(z)} - (p-1)\right|$$

for $0 \leq \gamma < p, p \in \mathbb{N}$ and $z \in \mathcal{U}$.

We define the following general p-valent integral operators:

The first family of p-valent integral operators has the following form:

$$\mathcal{F}^{p}_{\alpha_{1},\dots,\alpha_{n},\beta}(z) = \left\{\beta p \int_{0}^{z} u^{\beta p-1} \prod_{i=1}^{n} \left(\frac{f_{i}(u)}{u^{p}}\right)^{1/\alpha_{i}} du \right\}^{1/\beta}, \tag{7}$$

where the functions f_i for all $i = \overline{1, n}$, $n \in \mathbb{N} = \{1, 2, ...\}$ belongs to the class $\mathcal{A}(p)$ and the parameters β and α_i ($\alpha_i \neq 0$) for all $i = \overline{1, n}$ are complex numbers such that the integral operators in (7) exist.

Remark 1: (7) p-valent integral operator, for p = 1, was studied by Seenivasagan and Breaz (see [14]) (see also the recent investigations on this subject by Baricz and Frasin [2] and Srivastava, Deniz and Orhan [15]). We note that if $\alpha_i = \alpha$ for all $i = \overline{1, n}$ and p = 1, then the p-valent integral operator $\mathcal{F}^p_{\alpha_1,\dots,\alpha_n,\beta}(z)$ reduces to the operator $\mathcal{F}^1_{\alpha,\beta}(z)$ which is related closely to some known integral operators investigated earlier in Geometric Functions Theory (see, for details, [16]). The operators $\mathcal{F}^1_{\alpha,\beta}(z)$ and $\mathcal{F}^1_{\alpha,\alpha}(z)$ were studied by Breaz and Breaz (see [4]) and Pescar (see [12]), respectively. Upon setting $\beta = 1$ and $\alpha = \beta = 1$ in $\mathcal{F}^1_{\alpha,\beta}(z)$, we can obtain the operators $\mathcal{F}^1_{\alpha,1}(z)$ and $\mathcal{F}^1_{1,1}(z)$ which were studied by Breaz and Breaz (see [3]) and Alexander (see [1]), respectively. Furthermore, in their special cases when $p = n = \beta = 1$, and $1/\alpha$ instead of $\alpha_i = \alpha$ for all $i = \overline{1, n}$, the p-valent integral operator in (7) would obviously reduce to the operator $\mathcal{F}^1_{1/\alpha,1}(z)$ which was studied Pescar and Owa (see [13]), for $\alpha \in [0, 1]$ special case of the operator $\mathcal{F}^1_{1/\alpha,1}(z)$ was studied by Miller, Mocanu and Reade (see [11]). Recently, Bulut (see [6]) introduced this operator for p = 1 by using the generalized Al-Oboudi differential operator.

The second family of p-valent integral operators has the following form:

$$\mathcal{G}^p_{\alpha_1,\dots,\alpha_n,\beta}(z) = \left\{\beta p \int_0^z u^{\beta p-1} \prod_{i=1}^n \left(\frac{f_i'(u)}{pu^{p-1}}\right)^{\alpha_i} du\right\}^{1/\beta} \tag{8}$$

where the functions $f_i \in \mathcal{A}(p)$ for all $i = \overline{1, n}$ and the parameters β and α_i for all $i = \overline{1, n}$ are complex numbers such that the *p*-valent integral operators in (8) exist.

Remark 2: For p = 1, $\mathcal{G}^{1}_{\alpha_{1},...,\alpha_{n},\beta}(z)$ was introduced by Breaz and Breaz (see [5]). Additionally, for $\beta = 1$, $\mathcal{G}^{p}_{\alpha_{1},...,\alpha_{n},1}(z)$ was studied by Frasin (see [9]). Hallenbeck and Livingston (see [10]) defined p-subordination chains and

Hallenbeck and Livingston (see [10]) defined p-subordination chains and they obtained some results for $f \in \mathcal{A}(p)$ to be the p-th power of a univalent functions in \mathcal{U} . Recently, Deniz (see [7]) investigated some results for $f \in \mathcal{A}(p)$ to be the p-th power of a univalent functions in \mathcal{U} by using p-subordination chains method. Also, Deniz et al. (see [8]) submitted a paper which includes sufficient conditions for a p-valent integral operator to be the p-th power of a univalent function in \mathcal{U} by using p-subordination chains method.

In our present investigation, we need one of sufficient conditions which we recall here as Theorem 1.1 below. This theorem is of fundemental importance to our investigation.

Theorem 1.1. ([8]) Let $f \in \mathcal{A}(p)$ and α complex number such that $\Re(\alpha) > 0$. Suppose that

$$\frac{1-|z|^{2p\Re(\alpha)}}{\Re(\alpha)} \left| \frac{zf''(z)}{f'(z)} - (p-1) \right| \leqslant p \tag{9}$$

is true for all $z \in \mathcal{U}$, then the integral operator

$$\mathcal{H}_{\alpha}(z) = \left[\alpha \int_{0}^{z} u^{p(\alpha-1)} f'(u) du\right]^{1/\alpha}$$
(10)

is the p-th power of a univalent function in \mathcal{U} where the principal branch is considered.

2 Main Results

Firstly, we obtain sufficient conditions for (7) p-valent integral operator to be the p-th power of a univalent function in \mathcal{U} .

Theorem 2.1. Let $f_i \in S^*(p, \gamma_i)$ $(0 \le \gamma_i < p)$ for all $i = \overline{1, n}$. If the parameters β and α_i $(\alpha_i \ne 0)$ for all $i = \overline{1, n}$ are complex numbers and

$$p\Re\left(\beta\right) \ge 1 - p + \sum_{i=1}^{n} \frac{\left(p - \gamma_i\right)}{|\alpha_i|} \tag{11}$$

then the integral operator $\mathfrak{F}^p_{\alpha_1,\ldots,\alpha_n,\beta}$ defined by (7) is the p-th power of a univalent function in \mathfrak{U} where the principal branch is considered.

Proof. Define the function

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(u)}{u^p}\right)^{1/\alpha_i} du.$$
 (12)

It is easy to see that

$$h'(z) = \prod_{i=1}^{n} \left(\frac{f_i(z)}{z^p}\right)^{1/\alpha_i}.$$
(13)

Differentiating (13) logarithmically and multiplying by z, we obtain

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \frac{1}{\alpha_i} \left(\frac{zf_i'(z)}{f_i(z)} - p \right).$$
(14)

In the light of the hypothesis of Theorem 2.1, we have

$$\begin{aligned} \frac{1-|z|^{2p\Re(\beta)}}{\Re(\beta)} & \left|1-p+\frac{zh''(z)}{h'(z)}\right| \\ = & \frac{1-|z|^{2p\Re(\beta)}}{\Re(\beta)} \left|1-p+\sum_{i=1}^{n}\frac{1}{\alpha_{i}}\left(\frac{zf_{i}'(z)}{f_{i}(z)}-p\right)\right| \\ \leq & \frac{1-|z|^{2p\Re(\beta)}}{\Re(\beta)} \left[1-p+\sum_{i=1}^{n}\frac{1}{|\alpha_{i}|}\left|\frac{zf_{i}'(z)}{f_{i}(z)}-p\right|\right] \\ \leq & \frac{1}{\Re(\beta)} \left[1-p+\sum_{i=1}^{n}\frac{1}{|\alpha_{i}|}\left(p-\gamma_{i}\right)\right] \leq p. \end{aligned}$$

Hence by Theorem 1.1, we get the integral operator $\mathcal{F}^p_{\alpha_1,\ldots,\alpha_n,\beta}$ defined by (7) is the p-th power of a univalent function in \mathcal{U} where the principal branch is considered. This completes the proof.

Letting $\beta = n = 1$, $\frac{1}{\alpha_1} = \frac{1}{\alpha}$, $\gamma_1 = \gamma$ and $f_1 = f$ in Theorem 2.1, we obtain following corollary.

Corollary 2.2. Let $f \in S^*(p, \gamma)$. If the parameter $\alpha \left(|\alpha| \neq \frac{1}{2} \right)$ is complex number and

$$p \ge \frac{|\alpha| - \gamma}{2 |\alpha| - 1} \tag{15}$$

then the integral operator

$$\mathcal{F}^p_{\alpha}(z) = \int_0^z p u^{p-1} \left(\frac{f(u)}{u^p}\right)^{1/\alpha} du \tag{16}$$

is the p-th power of a univalent function in \mathcal{U} where the principal branch is considered.

By taking $\alpha = 1$ in Corollary 2.2, we get:

Corollary 2.3. Let $f \in S^*(p, \gamma)$. If

$$p \ge 1 - \gamma \tag{17}$$

 $then \ the \ integral \ operator$

$$\mathcal{F}^p(z) = p \int_0^z \frac{f(u)}{u} du \tag{18}$$

is the p-th power of a univalent function in \mathcal{U} where the principal branch is considered.

In the next theorem, we derive another sufficient condition for (8) p-valent integral operator to be the p-th power of a univalent function in \mathcal{U} .

Theorem 2.4. Let $f_i \in \mathcal{C}(p, \gamma_i)$ $(0 \le \gamma_i < p)$ for all $i = \overline{1, n}$. If the parameters β and α_i for all $i = \overline{1, n}$ are complex numbers and

$$p\Re\left(\beta\right) \ge 1 - p + \sum_{i=1}^{n} |\alpha_i| \left(p - \gamma_i\right) \tag{19}$$

then the integral operator $\mathfrak{G}^p_{\alpha_1,\ldots,\alpha_n,\beta}$ defined by (8) is the p-th power of a univalent function in \mathfrak{U} where the principal branch is considered.

Proof. We define

$$g(z) = \int_0^z \prod_{i=1}^n \left(\frac{f'_i(u)}{pu^{p-1}}\right)^{\alpha_i} du.$$
 (20)

It is easy to see that

$$g'(z) = \prod_{i=1}^{n} \left(\frac{f'_i(z)}{pz^{p-1}}\right)^{\alpha_i}.$$
 (21)

Differentiating (21) logarithmically and multiplying by z, we obtain

$$\frac{zg''(z)}{g'(z)} = \sum_{i=1}^{n} \alpha_i \left(\frac{zf''_i(z)}{f'_i(z)} - (p-1) \right).$$
(22)

In the light of the hypothesis of Theorem 2.4, we have

$$\begin{aligned} \frac{1 - |z|^{2p\Re(\beta)}}{\Re(\beta)} & \left| 1 - p + \frac{zg''(z)}{g'(z)} \right| \\ = & \frac{1 - |z|^{2p\Re(\beta)}}{\Re(\beta)} \left| 1 - p + \sum_{i=1}^{n} \alpha_i \left(\frac{zf_i''(z)}{f_i'(z)} - (p-1) \right) \right| \\ \leq & \frac{1 - |z|^{2p\Re(\beta)}}{\Re(\beta)} \left[1 - p + \sum_{i=1}^{n} |\alpha_i| \left| \frac{zf_i''(z)}{f_i'(z)} - (p-1) \right| \right] \\ \leq & \frac{1}{\Re(\beta)} \left[1 - p + \sum_{i=1}^{n} |\alpha_i| (p - \gamma_i) \right] \le p. \end{aligned}$$

Consequently, by Theorem 1.1, we get the integral operator $\mathcal{G}^p_{\alpha_1,\ldots,\alpha_n,\beta}$ defined by (8) is the p-th power of a univalent function in \mathcal{U} where the principal branch is considered. Thus, the proof is completed.

For $\beta = n = 1$, $\alpha_1 = \alpha$, $\gamma_1 = \gamma$ and $f_1 = f$ in Theorem 2.4, we get following corollary.

Corollary 2.5. Let $f \in \mathcal{C}(p, \gamma)$. If the parameter $\alpha(|\alpha| \neq 2)$ is complex number and

$$p \ge \frac{1 - \gamma |\alpha|}{2 - |\alpha|} \tag{23}$$

then the integral operator

$$\mathcal{G}^p_{\alpha}(z) = \int_0^z p u^{p-1} \left(\frac{f'(u)}{p u^{p-1}}\right)^{\alpha} du \tag{24}$$

is the p-th power of a univalent function in \mathcal{U} where the principal branch is considered.

If we choose $\alpha = 1$ in Corollary 2.5, we have:

Corollary 2.6. Let $f \in \mathcal{C}(p, \gamma)$. If

$$p \ge 1 - \gamma \tag{25}$$

then the integral operator

$$\mathcal{G}^p(z) = \int_0^z f'(u) du \tag{26}$$

is the p-th power of a univalent function in \mathcal{U} where the principal branch is considered.

References

- J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (Ser. 2) 17 (1915), 12–22.
- [2] A. Baricz and B. A. Frasin, Univalence of integral operators involving Bessel functions, Appl. Math. Lett. 23 (2010), 371–376.
- [3] D. Breaz and N. Breaz, Two integral operators, Stud. Univ. Babeş-Bolyai. Math. 47 (3) (2002), 13–19.
- [4] D. Breaz and N. Breaz, The univalent conditions for an integral operator on the classes S_p and T₂, J. Approx. Theory Appl. 1 (2005), 93–98.
- [5] D. Breaz and N. Breaz, Univalence conditions for certain integral operators, Stud. Univ. Babeş-Bolyai Math. 47 (2) (2002), 9–15.
- [6] S. Bulut, Univalence preserving integral operators defined by generalized Al-Oboudi differential operators, An. Şt. Univ. Ovidius Constanta. Vol. 17(1) (2009), 37–50.
- [7] E. Deniz, *p*-subordination chains and *p*-valence criteria, Journal of Inequalities and Applications. 2013.1 (2013), 1-7.
- [8] E. Deniz, H. Orhan, M. Çağlar, Sufficient conditions for p-valence of an integral operator (submitted).
- [9] B. A. Frasin, New general integral operators of p-valent functions, Journal of Inequatilies Pure and Applied Mathematics 10 (4) (2009), 9 pp.
- [10] D. J. Hallenbeck and A. E. Livingston, Subordination chains and p-valent functions, preprint 1975.
- [11] S. S. Miller, P. T. Mocanu, and M. O. Reade, *Starlike integral operators*, Pacific J. Math. **79** (1978), 157–168.
- [12] V. Pescar, New criteria for univalence of certain integral operators, Demonstratio Math. 33 (2000), 51–54.

- [13] V. Pescar and S.Owa, Sufficient conditions for univalence of certain integral operators, Indian J. Math. 42 (2000), 347–351.
- [14] N. Seenivasagan and D. Breaz, Certain sufficient conditions for univalence, Gen. Math. 15 (4) (2007), 7–15.
- [15] H. M. Srivastava, E. Deniz and H. Orhan, Some general univalence criteria for a family of integral operators, Appl. Math. Comput. 215 (2010), 3696–3701.
- [16] H. M. Srivastava and S. Owa (Editors), *Current Topics in Analytic Func*tion Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

Murat ÇAĞLAR, Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100, Kars, Turkey. Email: mcaglar25@gmail.com