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n–ary hyperstructures constructed
from binary quasi–ordered semigroups

Michal Novák

Abstract

Based on works by Davvaz, Vougiouklis and Leoreanu-Fotea in the
field of n–ary hyperstructures and binary relations we present a con-
struction of n–ary hyperstructures from binary quasi-ordered
semigroups. We not only construct the hyperstructures but also study
their important elements such as identities, scalar identities or zeros. We
also relate the results to earlier results obtained for a similar binary con-
struction and include an application of the results on a hyperstructure
of linear differential operators.

1 Introduction

Since its introduction in 1930s, the study of binary hyperstructures has be-
come an established area of research thanks to authors of numerous papers on
the topic as well as thanks to standard books which sum up the basic concepts
of hyperstructure theory and their applications. Yet the step from binary hy-
perstructures to n–ary hyperstructures has been done only recently by Davvaz
and Vougiouklis who in [13] introduced the concept of n–ary hypergroup (some-
times called simply n–hypergroup) and presented n–ary generalization of some
very basic concepts of hyperstructure theory.

Apart from [13] the origins of our paper can be traced back to the issue
introduced to hyperstructure theory by Rosenberg, Corsini, Leoreanu-Fotea,

Key Words: hyperstructures, n–ary hyperstructures, partially ordered and quasi-ordered
sets.

2010 Mathematics Subject Classification: Primary 20N20, 06F15; Secondary 06F05.
Received: 25 July, 2013.
Revised: 1 October, 2013.
Accepted: 8 October, 2013.

147



N–ARY HYPERSTRUCTURES CONSTRUCTED FROM BINARY
QUASI–ORDERED SEMIGROUPS 148

Chvalina and others in works such as [3, 4, 10, 11, 23], i.e. the relation of
hyperstructures and binary relations. Some particular constructions of hyper-
structures associated to quasi-ordered single-valued structures introduced by
Chvalina in [3, 4] have been studied and developped by Corsini, Davvaz, Hei-
dari, Hošková–Mayerová, Nezhad, and others in works such as [5, 8, 10, 14, 21].

This paper generalizes one of Chvalina’s constructions of binary hyper-
structures from single-valued quasi-ordered semigroups. Results recently ob-
tained in the area of n–ary generalization of hyperstructures associated to bi-
nary relations fall into three groups: some, such as Cristea and Ştefănescu in
e.g. [7, 9], generalize the binary relation and construct binary hyperstructures
associated to n–ary relations while others, such as Leoreanu-Fotea and Davvaz
in e.g. [17] generalize the hyperstructure and construct n–ary hyperstructures
associated to binary relations. Finally, the third approach, presented e.g. in [1]
is possible too – as one can study n–ary hyperstructures associated to n–ary
relations. Out of these three options we develop the approach pioneered by
Leoreanu-Fotea and Davvaz in [17].

We make use of n–ary hyperstructure concepts defined in [2, 13, 15]. As far
as the basic binary concepts of hyperstructure theory are concerned, we use
their definitions and meaning included in [10, 12]. For respective definitions
see section 2 or respective places in the paper. Sometimes the definitions are
adjusted in order to keep unified form of notation and/or naming throughout
the paper. This is especially true for definitions and theorems taken from [2].

Notice that the original contruction, which is generalized in this paper,
can be used in a number of contexts including differential equations, inte-
gral and integro–differential equations (hyperstructures of linear differential
operators, Fredholm and Volterra equations), microeconomics (preference re-
lations), chemistry, genetics, etc. For details cf. references of papers written
on the topic by authors such as Chvalina, Hošková–Mayerová, Račková or
Novák. Some more examples may be found in [21] and its references.

Finally, notice that the study of n–ary hyperstructures has important im-
plications in the study of fuzzy hyperstructures and that the connection be-
tween hypergroups and n–ary hypergroups has been thoroughly studied in [16].

2 Basic notions and concepts

In the paper we work with the generalization of the basic concepts of the
hyperstructure theory such as (binary) hyperoperation, semihypergroup and
hypergroup. For their definitions cf. e.g. [10, 12]. Further, we work with the
following three definitions included in [13] in the following wording:

Definition 2.1. Let H be a non-empty set and f be a mapping f : H ×H →
P ∗(H), where P ∗(H) is the set of all non-empty subsets of H. Then f is
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called a binary hyperoperation of H. We denote by Hn the cartesian product
H × . . .×H, where H appears n times. An element of Hn will be denoted by
(x1, . . . , xn), where xi ∈ H for any i with 1 ≤ i ≤ n. In general, a mapping
f : Hn → P ∗(H) is called an n–ary hyperoperation and n is called the arity
of hyperoperation. Let f be an n–ary hyperoperation on H and A1, . . . , An

subsets of H. We define

f(A1, . . . , An) = ∪{f(x1, . . . , xn)|xi ∈ Ai, i = 1, . . . , n}.

We shall use the following abbreviated notation: the sequence xi, xi+1, . . . , xj
will be denoted by xji . For j < i, xji is the empty set. In this convention

f(x1, . . . , xi, yi+1, . . . , yj , zj+1, . . . , zn)

will be written as f(xi1, y
j
i+1, z

n
j+1).

Definition 2.2. A non-empty set H with an n–ary hyperoperation f : Hn →
P ∗(H) will be called an n–ary hypergroupoid and will be denoted by (H, f). An
n–ary hypergroupoid (H, f) will be called an n–ary semihypergroupoid if and
only if the following associative axiom holds:

f(xi−11 , f(xn+i−1
i ), x2n−1n+i ) = f(xj−11 , f(xn+j−1

j ), x2n−1n+j ) (1)

for every i, j ∈ {1, 2, . . . , n} and x1, x2, . . . , x2n−1 ∈ H.

Definition 2.3. An n–ary semihypergroup (H, f) in which the equation

b ∈ f(ai−11 , xi, a
n
i+1) (2)

has the solution xi ∈ H for every a1, . . . , ai−1, ai+1, . . . , an, b ∈ H and 1 ≤ i ≤
n, is called an n–ary hypergroup.

Notice that [17] uses the names n–semihypergroup and n–hypergroup in-
stead. With respect to Definition 2.3 also notice that in our paper, especially
in Theorem 4.3, we make use of an equivalent definition of the hypergroup
by means of generalization of the reproductive axiom. For details cf. p. 156
or [13], p. 167.

In the paper we also use generalizations of the concept of identity, scalar
identity, zero element and inverse. The respective n–ary definitions are in-
cluded in section 5 of the paper. Notice that in the binary context we use
them in the following meaning.

Definition 2.4. An element e ∈ H, where (H, ∗) is a hyperstructure, is called
an identity if for all x ∈ H there holds x ∗ e 3 x ∈ e ∗ x. If for all x ∈ H there
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holds x ∗ e = {x} = e ∗ x, then e ∈ H is called a scalar identity. If (H, ∗) is a
hypergroup endowed with at least one identity, then an element a′ ∈ H is called
an inverse of a ∈ H if there is an identity e ∈ H such that a ∗ a′ 3 e ∈ a′ ∗ a.
An element 0 ∈ H is called a zero element of H if for all x ∈ H there holds
x ∗ 0 = {0} = 0 ∗ x.

Notice that the zero element of Definition 2.4 is sometimes called absorb-
ing element or zero scalar element or simply zero scalar. Study of elements
with the above properties (usually when combined in hyperstructures with
two (hyper)operations) is important especially in the context of various types
of ring-like hyperstructures or hyperideals. For implications in the area of
(binary) EL–hyperstructures cf. [20], for some implications in the theory of
hyperideals (in n–ary context) cf. e.g. [2].

3 The binary construction and nature of its n–ary exten-
sion

The original construction, which we are going to extend, has first been pre-
sented in [4] in the following form.

Lemma 3.1. ([4], Theorem 1.3, p. 146) Let (S, ·,≤) be a partially ordered
semigroup. Binary hyperoperation ∗ : S × S → P′(S) defined by

a ∗ b = [a · b)≤ (3)

is associative. The semi-hypergroup (S, ∗) is commutative if and only if the
semigroup (S, ·) is commutative.

2

The hyperstructure (S, ∗) constructed in this way is usually called the
associated hyperstructure to the single-valued structure (S, ·) or an ”Ends
lemma”–based hyperstructure, or an EL–hyperstructure for short. The carrier
set is denoted by S if it is a semigroup or H if it is a group.

Lemma 3.2. ([4], Theorem 1.4, p. 147) Let (S, ·,≤) be a partially ordered
semigroup. The following conditions are equivalent:

10 For any pair (a, b) ∈ S2 there exists a pair (c, c′) ∈ S2 such that b · c ≤ a
and c′ · b ≤ a

20 The associated semi-hypergroup (S, ∗) is a hypergroup.

2
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Remark 3.3. If (S, ·,≤) is a partially ordered group, then if we take c = b−1 ·a
and c′ = a · b−1, then condition 10 is valid. Therefore, if (S, ·,≤) is a partially
ordered group, then its associated hyperstructure is a hypergroup.

Remark 3.4. The wording of the above lemmas is the exact translation of
lemmas from [4]. The respective proofs, however, do not change in any way,
if we regard quasi-ordered structures instead of partially ordered ones as the
anti-symmetry of the relation ≤ is not needed (with the exception of the⇐ im-
plication of the part on commutativity, which does not hold in this case). The
often quoted version of the ”Ends lemma” is therefore the version assuming
quasi–ordered structures.

Example 3.5. Regard the set (R,+,≤), i.e. the partially ordered group of
real numbers. Obviously, (R, ∗), where

a ∗ b = [a+ b)≤ = {x ∈ R; a+ b ≤ x}

for arbitrary real numbers a, b, is a commutative hypergroup.

Example 3.6. Regard the set (P∗(S),∪,⊆) of all non-empty subsets of an
arbitrary set S. Obviously, (P∗(S),∪,⊆) is a partially ordered semigroup which
is not a group and (P∗(S), ∗), where

A ∗B = [A ∪B)⊆ = {X ∈ P∗(S);A ∪B ⊆ X}

for arbitrary subsets A,B of S, is a commutative semihypergroup. One can
prove that it is not a hypergroup. However, one can prove that by including ∅
we get a hypergroup.

In other words, EL–hyperstructures are hyperstructures of arity 2. It is
thus natural to find out whether the construction can be extended to involve
more than two elements.

Analogically to (3) we could define an n-ary hyperoperation
∗ : S × . . .× S︸ ︷︷ ︸

n

→ P∗(S) by

a1 ∗ . . . ∗ an︸ ︷︷ ︸
n

= [a1 · . . . · an︸ ︷︷ ︸
n

)≤ = {x ∈ S; a1 · . . . · an︸ ︷︷ ︸
n

≤ x} (4)

In a standard notation used e.g. by [13] or [17] this would be denoted as a
hyperoperation f : Sn → P∗(S) (or with H instead of S if we wanted to make
use of the distinction semihypergroup vs. hypergroup) defined by

f(an1 ) = [a1 · . . . · an︸ ︷︷ ︸
n

)≤ = {x ∈ S; a1 · . . . · an︸ ︷︷ ︸
n

≤ x}. (5)
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The hypergroupoid would be an n-ary hypergroupoid and would be denoted
in the former case by (S, ∗) and in the latter case by (S, f).∗

However, first of all we need to establish meaning of the very basic concepts
used in (4) or (5). The result of the hyperoperation f(an1 ) applied on elements
a1, . . . , an, n > 2 is the upper end of a single element a1 · . . . · an︸ ︷︷ ︸

n

∈ S. (In

further text we call such an element as generating the upper end.) Yet how
does one obtain this single element? In other words, what is the arity of the
single-valued operation ·? In a general case, · may be a binary operation, an
n−ary operation, or a j–ary operation for some special j such that 2 < j < n.

In this paper we suppose that · is a binary operation, i.e. that the product
a1 · . . . · an︸ ︷︷ ︸

n

is an iterated binary operation. This is usually defined in such a

way that for j ≥ 1, n ≥ j we denote by anj a sequence of elements ai, j ≤ i ≤ n
and for the single-valued binary operation sf we define two new operations sitl
and sitr in the following way:

sitl (an1 ) =

{
a1 n = 1
sf (sitl (an−11 ), an) n > 1

and

sitr (an1 ) =

{
a1 n = 1
sf (an, s

it
r (an−11 )) n > 1

Obviously, in a general case sitl (an1 ) 6= sitr (an1 ). However, if the original binary
operation sf is associative, then the two newly defined operations sitl and sitr
are equal and we may write sit instead.

In the paper we will use the notation a1 · . . . · an︸ ︷︷ ︸
n

in the sense of sit(an1 ).

More precisely we should distinguish between sitl (an1 ) and sitr (an1 ) but this
would be redundant because the construction we have been using and which
we attempt to generalize, i.e. Lemma 3.1, assumes asociativity of the single-
valued operation.

Remark 3.7. Notice that the decision on nature of a1 · . . . · an︸ ︷︷ ︸
n

has a number

of implications. If contrary to our assumption one decides to consider this
element as a result of an n–ary operation, then all theorems must be adjusted
to work with n–ary quasi-ordered (semi)groups. These, however, must first be
properly defined. Thus, from a certain point of view, our decision on the nature

∗Further on we will use the standard notation, i.e. define the n–ary hyperoperation using
analogies of (5). Analogies of notation (4) will be used only at places where the explicit
reference to the binary hyperoperation ∗ makes the understanding more straightforward.
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of a1 · . . . · an︸ ︷︷ ︸
n

is not only naturally following from the context but also easier

and more convenient to work with. For details on iterated binary operations,
cf. e.g. [18].

Remark 3.8. Just as we have considered the meaning of a1 · . . . · an︸ ︷︷ ︸
n

and dis-

cussed whether it is a result of an n–ary or an iterated binary single-valued
operation ·, we may discuss the meaning of the symbol a1 ∗ . . . ∗ an︸ ︷︷ ︸

n

. Again, in

a general case it could stand for both an n–ary or an iterated binary hyperop-
eration. Yet as has been suggested above, in the case of the hyperoperation we
choose the n–ary option.

4 Associativity and commutativity

First, discuss the issue of associativity and commutativity in n–ary hyper-
structures defined by (5).

Theorem 4.1. Let (S, ·,≤) be a quasi-ordered semigroup. n–ary hyperopera-
tion f : Sn → P∗(S) defined by (5), i.e. as

f(an1 ) = [a1 · . . . · an︸ ︷︷ ︸
n

)≤ = {x ∈ S; a1 · . . . · an︸ ︷︷ ︸
n

≤ x}.

is associative. Furthermore, it is commutative if the semigroup (S, ·) is com-
mutative.

2

Proof. In order to prove associativity, we will modify the proof of [4],
Lemma 1.6, p. 148, which shows that if we start with a partially ordered
semigroup (S, ·) there holds a ∗ (b ∗ c) = (a ∗ b) ∗ c = [a · b · c)≤.

First of all, suppose the following: x, y, ai ∈ S, i = 1, . . . , n+ 1, x ≤ y and
that (S, ·,≤) is a partially ordered semigroup. This implies that ai · x ≤ ai · y,
x · ai ≤ y · ai and [ai · y)≤ ⊆ [ai · x)≤, [y · ai)≤ ⊆ [x · ai)≤ for i = 1, . . . , n (and
the same for any product of any number of elements of S in position of ai – if
we keep their order).

Second, notice that obviously for all x ∈ S such that an · an+1 ≤ x there
is [a1 · . . . · an−1︸ ︷︷ ︸

n−1

· x)≤ ⊆ [a1 · . . . · an+1︸ ︷︷ ︸
n+1

)≤. This is easy to verify because the

fact that y ∈ [a1 · . . . · an−1︸ ︷︷ ︸
n−1

· x)≤ is equivalent to the fact that a1 · . . . · an−1︸ ︷︷ ︸
n−1

·
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x ≤ y. On the other hand, the fact that an · an+1 ≤ x is equivalent to
a1 · . . . · an+1︸ ︷︷ ︸

n+1

≤ a1 · . . . · an−1︸ ︷︷ ︸
n−1

· x, which due to transitivity of the relation

≤ means that a1 · . . . · an+1︸ ︷︷ ︸
n+1

≤ y, i.e. y ∈ [a1 · . . . · an+1︸ ︷︷ ︸
n+1

)≤. Naturally, it is

not important whether we multiply by x from left or right, i.e. there is also
[x · a3 · . . . · an+1︸ ︷︷ ︸

n−1

)≤ ⊆ [a1 · . . . · an+1︸ ︷︷ ︸
n+1

)≤ for all x ∈ S such that a1 · a2 ≤ x.

Then consider that the proof of Lemma 1.6 of [4] goes (using the above
considerations for n = 2 and notation a, b, c instead of ai) as follows:

a ∗ (b ∗ c) =
⋃

x∈b∗c

a ∗ x =
⋃

x∈[b·c)≤

[a · x)≤ = [a · b · c)≤ ∪
⋃

x>b·c

[a · x)≤ = [a · b · c)≤

and similarly

(a ∗ b) ∗ c =
⋃

x∈[a·b)≤

[x · c)≤ = [a · b · c)≤,

which combined means that a ∗ (b ∗ c) = (a ∗ b) ∗ c = a ∗ b ∗ c. This can be
denoted as f(a, f(b, c)) = f(f(a, b), c) or f(a1, f(a32)) = f(f(a21), a3) using the
notation (5) for any triple of elements of S.

Analogously we prove that f(a1, f(a42)) = f(f(a31), a4) = f(a41) for any
quadruple of elements of S as well as f(a1, f(a52)) = f(f(a41), a5) = f(a51) for
any quintuple of elements of S. Thus for arity n = 3 we have that

f(ai−11 , f(ai+2
i ), a5i+3) = f(aj−11 , f(ai+2

j ), a5j+3)

for all i, j ∈ {1, 2, 3}, which means that associativity in 3–ary
EL–hypergroupoids (S, f) is secured. Obviously, this consideration can be
repeated for any higher arity n.

Proving commutativity is rather simple: since the single-valued operation
· is commutative and as has been shown above also associative, then all per-
mutations a1 · . . . · an︸ ︷︷ ︸

n

are equal. This means that all respective upper ends

[a1 · . . . · an︸ ︷︷ ︸
n

)≤ are equal because they are generated always by the same ele-

ment. In other words, all permutations of the hyperoperation f are equal, i.e.
the hyperoperation f is commutative.

In [22] implications of the converse of Lemma 3.1 have been studied. The
fact that commutativity of the binary hyperoperation implies commutativity
of the single-valued operation is included already in Lemma 3.1. The same
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fact on binary associativity was proved in [22] as Theorem 3.1. Notice that
in both cases, the relation ≤ must be partial ordering, i.e. not quasi-ordering
only. This follows from the fact that the implication

[a)≤ = [b)≤ ⇒ a = b (6)

is valid only on condition of antisymmetry of the relation ≤, and the respective
proofs make use of (6). For a counterexample of (6) used in the binary context
of Lemma 3.1 cf. e.g. [22], Example 3.15.

Let us now study the converse of Theorem 4.1.

Theorem 4.2. Let (S, ·) be a non-trivial groupoid and ≤ a partial ordering
on S such that for an arbitrary pair of elements (a, b) ∈ S2, a ≤ b, and for an
arbitrary c ∈ S there holds c · a ≤ c · b, a · c ≤ b · c. Further define an n–ary
hyperoperation f (also denoted by ∗) using notation (5) (or (4)).

Then if the hyperoperation f (or ∗) is associative, then the single-valued
operation · is associative too. Furthermore, if the hyperoperation f (or ∗) is
commutative, then the single-valued operation · is commutative too.

2

Proof. The fact that the hyperoperation f (or ∗) is associative, means that all
permutations f(ai−11 , f(an+i−1

i ), a2n−1n+i ) for an arbitrary i ∈ {1, 2, . . . , n} are
equal, i.e. if an arbitrary element x ∈ S belongs to one of the permutations
f(ai−11 , f(an+i−1

i ), a2n−1n+i ), it belongs to all other ones.

Suppose an arbitrary x ∈ f(ai−11 , f(an+i−1
i ), a2n−1n+i ) for some

i ∈ {1, 2, . . . , n}, e.g. for i = 1. This means that x ∈ f(f(an1 ), a2n−1n+1 ), i.e.
using the ∗ notation, x ∈ a1 ∗ . . . ∗ an︸ ︷︷ ︸

n

∗ an+1 ∗ . . . ∗ a2n−1︸ ︷︷ ︸
n−1

. This means that

there exists an element x1 ∈ a1 ∗ . . . ∗ an︸ ︷︷ ︸
n

such that x ∈ x1 ∗an+1 ∗ . . . ∗ a2n−1︸ ︷︷ ︸
n−1

.

In other words, for these elements there holds that a1 · . . . · an︸ ︷︷ ︸
n

≤ x1 and

x1 · an+1 · . . . · a2n−1︸ ︷︷ ︸
n−1

≤ x. Thanks to the properties assumed in the theorem

this – when combined – means that

(a1 · . . . · an︸ ︷︷ ︸
n

) · (an+1 · . . . · a2n−1︸ ︷︷ ︸
n−1

) ≤ x1 · (an+1 · . . . · a2n−1︸ ︷︷ ︸
n−1

) ≤ x

and thanks to assumed transitivity of the relation ≤ we get that

x ∈ [(a1 · . . . · an︸ ︷︷ ︸
n

) · (an+1 · . . . · a2n−1︸ ︷︷ ︸
n−1

))≤. (7)
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Yet we could have started with any other permutation
f(ai−11 , f(an+i−1

i ), a2n−1n+i ) and apply analogous reasoning on it. E.g. for i = 2
we have that x ∈ a1 ∗ (a2 ∗ . . . ∗ an+1︸ ︷︷ ︸

n

) ∗ an+2 ∗ . . . ∗ a2n−1︸ ︷︷ ︸
n−1

and conclude that

x ∈ [a1 · (a2 · . . . · an+1︸ ︷︷ ︸
n

) · (an+2 · . . . · a2n−1︸ ︷︷ ︸
n−2

))≤, (8)

and since f(ai−11 , f(an+i−1
i ), a2n−1n+i ) are equal for i = 1 and i = 2 (just as

for any other i ∈ {1, 2, . . . , n}) and we supposed an arbitrary element x ∈
f(ai−11 , f(an+i−1

i ), a2n−1n+i ), we get that the upper ends in (7) and (8) (just as
any other upper end which results from using another i) are equal too.

Since we assume that the relation ≤ is antisymmetric, using implication (6)
we get that also the elements generating the upper ends are equal. As a result,
the single-valued operation · is associative.

Proving commutativity of the single-valued operation · is rather straightfor-
ward. If the hyperoperation f is commutative, then f(an1 ) is the same regard-
less of the permutation of elements a1, . . . , an. According to definition of the
hyperoperation f marked as (5), this means that all upper ends [a1 · . . . · an︸ ︷︷ ︸

n

)≤

are the same regardless of the permutation of elements a1, . . . , an. However,
on condition of antisymmetry of the relation ≤, from (6) we immediately get
that also a1 · . . . · an︸ ︷︷ ︸

n

is the same regardless of the permutation of elements

a1, . . . , an, which together with already proved associativity means that the
single-valued operation · is commutative.

Now we can proceed to conditions on which an n–ary EL–semihypergroup
becomes an n–ary hypergroup. Recall that the concept of n–ary hypergroup
may be defined in two equivalent ways: either as Definition 2.3 or by expanding
the reproductive axiom, i.e. expanding validity of

x ∗H = H ∗ x = H

for all x ∈ H, to the form

H ∗ . . . ∗H︸ ︷︷ ︸
i−1

∗ x ∗H ∗ . . . ∗H︸ ︷︷ ︸
n−i

= H (9)

for all x ∈ H and all i = {1, 2, . . . , n} using notation (4) or

f(Hi−1, x,Hn−i) = H (10)

for all x ∈ H and all i = {1, 2, . . . , n} using notation (5).
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Since in the Ends lemma context obviously f(Hi−1, x,Hn−i) ⊆ H for an
arbitrary i ∈ {1, 2, . . . , n}, we must concentrate on the other inclusion, i.e.
secure that

H ⊆ H ∗ . . . ∗H︸ ︷︷ ︸
i−1

∗ x ∗H ∗ . . . ∗H︸ ︷︷ ︸
n−i

, (11)

or H ⊆ f(Hi−1, x,Hn−i), for all x ∈ H and i = {1, 2, . . . , n}.

Theorem 4.3. Let (H, ·,≤) be a quasi-ordered group. The n–ary
EL–semihypergroup constructed using Theorem 4.1 is an n–ary hypergroup.

2

Proof. As has been suggested above, we need to verify validity of inclusion (11).
To do this, suppose an arbitrary element h ∈ H and first of all suppose that
we need to verify that H ⊆ H ∗ x or H ⊆ x ∗H. Obviously, h · x−1 ∈ H and
x−1 · h ∈ H. Thus we get that h · x−1 · x = h ≤ h (since ≤ is reflexive) and
x · x−1 · h = h ≤ h, i.e h ∈ [(h · x−1) · x)≤ ⊆

⋃
g∈H

[g · x)≤ = H ∗ x as well as

h ∈ x ∗H.
Yet instead of h · x−1 ∈ H we may write h · h−1 · h · x−1 ∈ H ∗ H =⋃

f∈H,g∈H
[f ·g)≤ (and instead of x−1 ·h ∈ H we may write x−1 ·h·h−1 ·h ∈ H∗H)

and we can repeat this for any number of instances of H.

Remark 4.4. Securing the existence of elements, which in the proof of The-
orem 4.3 provide that an arbitrary element h ∈ H is in relation with the fixed
x ∈ H, i.e. of elements (h · h−1) · . . . · (h · h−1)︸ ︷︷ ︸

n−1

· (h · x−1) and (x−1 · h) ·

(h−1 · h) · . . . · (h−1 · h)︸ ︷︷ ︸
n−1

, is not a problem in a group. However, in a semi-

group, this is not straightforward. Notice that if such elements do exist for a
given n, then the n–ary EL–semihypergroup is an n–ary hypergroup even if
the underlying single-valued structure is a semigroup. As a special case of this
we get the condition used in Lemma 3.2.

5 Important elements

Papers dealing with various aspects of n–ary hypergroups such as [2, 13, 17]
usually need to work with the n–ary generalization of the concept of identity
element and concepts similar to it. Let us include the respective definitions
as well – yet when actually using them we expand them from hypergroups to
semihypergroups.
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Definition 5.1. ([13], p. 168) Element e of an n–ary hypergroup (H, f) is
called a neutral (identity) element if

f(e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

)

includes x for all x ∈ H and all 1 ≤ i ≤ n.

Regarding such elements (with the novelty of expanding the above defini-
tion onto semihypergroups) we might prove the following in the Ends lemma
context.

Theorem 5.2. Let (S, f) be an n–ary EL–semihypergroup associated to a
quasi–ordered monoid (S, ·,≤) with the identity u. Then

1. If e ∈ S is an identity of (S, f), then e · . . . · e︸ ︷︷ ︸
n−1

≤ u.

2. If e ≤ u for some e ∈ S, then e is an identity of (S, f).

2

Proof. In order to prove part 1 suppose that e ∈ S is an identity of (S, f), i.e.
that x ∈ f(e, . . . , e︸ ︷︷ ︸

i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) for all x ∈ H and all i such that 1 ≤ i ≤ n.

In the context of definition of the hyperoperation f – see (5) – the inclusion
means that x ∈ [e · . . . · e︸ ︷︷ ︸

i−1

, x, e · . . . · e︸ ︷︷ ︸
n−i

)≤, i.e. e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

≤ x. Since

this holds for all x ∈ S, we may e.g. set x = u, where u is the identity of (S, ·).
And we get the statement.

As far as part 2 is concerned, suppose that e ≤ u, where u is the identity
of (S, ·). Since (S, ·,≤) is a quasi-ordered monoid, we have that also e · x ≤
u · x = x and e · e · x ≤ e · x for an arbitrary x ∈ S. From transitivity of the
relation ≤ we get that e · e · x ≤ x, i.e. x ∈ [e · e · x)≤ = f(e, e, x). But we
could have also multiplied by x from the left and get x · e ≤ x · u = x. Then
from e · x ≤ x we get that e · x · e ≤ x · e and from transitivity we get that
e · x · e ≤ x, i.e. x ∈ [e · x · e)≤, i.e. x ∈ f(e, x, e). Finally, from x · e ≤ x and
x · e · e ≤ x · e we get that x ∈ f(x, e, e), which completes the proof for arity
n = 3. In order to prove the statement for higher arities we may obviously
use the same strategies.

Remark 5.3. Notice that for arity n = 2 Theorem 5.2 turns into equivalence
stating that e ∈ S is an identity of (S, f) if and only if e ≤ u, which has
already been included in [19] as Theorem 3.4. Further notice that we obtain
the same result for idempotent · and n > 2.
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Corollary 5.4. If in Theorem 5.2 (S, ·,≤) is a quasi-ordered group, then if
e ∈ S is an identity of (S, f), then also e · . . . · e︸ ︷︷ ︸

n−1

≤ e−1 · . . . · e−1︸ ︷︷ ︸
n−1

.

2

Proof. We continue the proof of part 1 of Theorem 5.2. By n−1 times repeated
multiplication by e−1 we get that u ≤ e−1 · . . . · e−1︸ ︷︷ ︸

n−1

and thanks to transitivity

of the relation ≤ we get the statement.

Corollary 5.5. The identity u of (S, ·) is an identity of its associated n–ary
EL–semihypergroup (S, f).

Proof. Obvious.

Example 5.6. If we regard the hypergroup (R, f), where

f(an1 ) = [a1 + . . .+ an︸ ︷︷ ︸
n

)≤ = {x ∈ R; a1 + . . .+ an︸ ︷︷ ︸
n

≤ x}

for arbitrary real numbers a1, . . . , an, we get that 0 and all negative numbers
are all identities of this hypergroup. Also, obviously, x+ . . .+ x︸ ︷︷ ︸

n−1

≤ 0 for both

0 and an arbitrary negative x.

Example 5.7. If we regard the set (P(S), f) (with ∅ included), where

f(An
1 ) = [A1 ∪ . . . ∪An︸ ︷︷ ︸

n

)⊆ = {X ∈ P∗(S);A1 ∪ . . . ∪An︸ ︷︷ ︸
n

⊆ X}

we get that this hypergroup has the only identity ∅.

Scalar neutral elements (or scalar identities) are such elements, where the
inclusion in Definition 5.1 is substituted by equality.

Definition 5.8. ([2], p. 380) Element e of an n–ary hypergroup (H, f) is
called a scalar neutral element if

{x} = f(e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) (12)

for every 1 ≤ i ≤ n and for every x ∈ H.
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Remark 5.9. Notice that in [2] a slightly different notation is used: instead
of f(e, . . . , e︸ ︷︷ ︸

i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) the authors write f(e(i−1), x, e(n−i)). Also notice that

sometimes, e.g. [13], p. 168, the concept of a more general term scalar is used
when defining that the element a ∈ H is called a scalar if |f(xi1, a, x

n
i+2)| = 1

for all x1, . . . , xi, xi+2, . . . , xn ∈ H, i.e. defining that f(e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

)

must be a one-element set, not neccessarily the set {x} as in the case of scalar
neutral element.

As has been done with Theorem 5.2, let us now permit a more general case
of scalar neutral elements in semihypergroups. To be consistent in naming
concepts we prefer the name scalar identity to scalar neutral element further
on.

Theorem 5.10. Let (S, ·,≤) be a non-trivial quasi-ordered semigroup and
(S, f) an n–ary EL–semihypergroup associated to it. If e ∈ S is a scalar
identity of (S, f), then

x = e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

(13)

for all x ∈ S and all 1 ≤ i ≤ n.

2

Proof. Suppose that in (S, f) there exists a scalar neutral identity e. This
means that for every x ∈ S and every i such that 1 ≤ i ≤ n there is

{x} = f(e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

).

Yet thanks to the definition of the hyperoperation f this means that

{x} = [e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

)≤.

Since ≤ is reflexive, there is

e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

∈ [e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

)≤,

which means that x = e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

for all x ∈ S and all i such that

1 ≤ i ≤ n.
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Remark 5.11. Obviously, if for some x ∈ S or some i ∈ {1, . . . , n} condi-
tion (13) does not hold, then e ∈ S is not a scalar identity of (S, f). This
equivalent condition might be a better tool for finding scalar identities than the
Theorem itself.

Corollary 5.12. The identity u of a quasi-ordered semigroup (S, ·,≤) is a
scalar identity of (S, f) associated to (S, ·,≤) if and only if ≤ is the identity
relation.

2

Proof. By definition

f(u, . . . , u︸ ︷︷ ︸
i−1

, x, u, . . . , u︸ ︷︷ ︸
n−i

) = [u · . . . · u︸ ︷︷ ︸
i−1

· x · u · . . . · u︸ ︷︷ ︸
n−i

)≤ = [x)≤.

This is equal to {x} for reflexive ≤ and all x ∈ S if and only if ≤ is the identity
relation.

Remark 5.13. Notice that for arity n = 2 condition (13) turns into x = e·x =
x · e for all x ∈ S which is possible only for e = u, where u is the identity of
(S, ·). And we immediately conclude that ≤ must be the identity relation. As a
result, there do not exist any non-trivial canonical hyperstructures constructed
using Lemma 3.1.

Example 5.14. If we regard the hypergroup (R, f) from Example 5.6, we see
that condition (13) can hold for e = 0 only, which means that (R, ∗) does not
have a scalar identity.

Apart from identities and scalar identities we might consider zero elements
(or absorbing elements) of n–ary hyperstructures.

Definition 5.15. ([2], p. 380) Element 0 of an n–ary hypergroup (H, f) is
called a zero element if

{0} = f(x1, . . . , xi−1︸ ︷︷ ︸
i−1

, 0, xi+1, . . . , xn︸ ︷︷ ︸
n−i

) (14)

for every 1 ≤ i ≤ n and for every (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Hn−1.

Obviously, the zero element is unique. The following Theorem might be
used to detect it. We see that only maximal elements of (S,≤) can be zero
elements. As in the case of identities and scalar identities of (S, f) we might
again expand the definition onto semihypergroups.
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Theorem 5.16. Let (S, ·,≤) be a non-trivial quasi-ordered semigroup and
(S, f) an n–ary EL–semihypergroup associated to it. If 0 is the zero element
of (S, f), then 0 is the maximal element of (S,≤).

2

Proof. From (14) in the definition of the zero element and from the definition
of the hyperoperation f we get that

[x1 · . . . · xi−1︸ ︷︷ ︸
i−1

· 0 · xi+1 · . . . · xn︸ ︷︷ ︸
n−i

)≤ = {0} (15)

for every i such that 1 ≤ i ≤ n and for every (x1, . . . , xi−1, xi+1, . . . , xn) ∈
Sn−1. Since the relation ≤ is reflexive, there is

x1 · . . . · xi−1︸ ︷︷ ︸
i−1

· 0 · xi+1 · . . . · xn︸ ︷︷ ︸
n−i

∈ [x1 · . . . · xi−1︸ ︷︷ ︸
i−1

· 0 · xi+1 · . . . · xn︸ ︷︷ ︸
n−i

)≤,

which combined with (15) means that for a zero element 0 there must be
x1 · . . . · xi−1︸ ︷︷ ︸

i−1

· 0 · xi+1 · . . . · xn︸ ︷︷ ︸
n−i

= 0 for every i such that 1 ≤ i ≤ n and for

every (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Sn−1. Yet if this holds, (15) reduces to
[0)≤ = {0}, which means that 0 is the maximal element of the relation ≤.

Example 5.17. Since there are no maximal elements in (R,+,≤) there are
no zero elements in (R, f) from Example 5.6.

Example 5.18. If we want to describe zero elements in (P(S), f) from Ex-
ample 5.7, we must concentrate on the only maximal element of (P(S),∪,⊆),
i.e. on P(S) itself. We easily verify that it is a zero element of (P(S), f).

Inverse elements in n–ary hyperstructures are studied e.g. in [2]. The
property of having a unique inverse element required in [2] is taken over from
the definition of canonical n–ary hypergroup included in [15]. Notice that
canonical n–ary hypergroups are a special class of commutative n–ary hy-
perstructures (moreover, with the unique identity e having a certain further
property), i.e. the definition of inverse elements included in [2], which has
been taken over from [15], must be adjusted to a more general case.

In the following text the notation perm{a1, . . . , an} stands for the set of
all permutations of elements a1, . . . , an.

Definition 5.19. Element x′ of an n–ary hypergroup (H, f) is called an in-
verse element to x ∈ H if there exists an identity e ∈ H such that

e ∈ f(perm{x, x′, e, . . . , e︸ ︷︷ ︸
n−2

}) (16)
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for every 1 ≤ i ≤ n.

Theorem 5.20. Let (H, f) be an n–ary EL–hypergroup associated to a quasi-
ordered group (H, ·,≤). For an arbitrary x ∈ H there holds

1. if x′ ≤ x−1, then x′ is an inverse of x in (H, f),

2. if x′ is an inverse of x in (H, f), then a ≤ x−1 for all a ∈ perm{x′ ·
e · . . . · e︸ ︷︷ ︸
2(n−2)

},

where x−1 denotes the inverse of x ∈ H in (H, ·) and e is some (unspecified)
identity of (H, f).

2

Proof. Suppose that x ∈ H, x′ ∈ H are arbitrary and denote by the upper
index −1 the inverse in (H, ·). Finally, denote by u the identity of (H, ·).
Throughout the proof recall (5) on page 151 for the definition of the hyperop-
eration f using the single-valued operation · and the relation ≤.

ad 1: If x′ ≤ x−1, then also x′ · x ≤ x−1 · x = u and x · x′ ≤ x · x−1 = u.
Moreover, we can multiply by the element u any number of times, or
”insert” it anywhere ”in between” x and x′ or x′ and x on the left side.
Since according to Corollary 5.5 u is an identity of (H, f), we have that
x′ is an inverse of x.

ad 2: Suppose that x′ is an inverse of x in (H, f). This means that there exists
an identity e ∈ H such that (16) holds. This means that

x · x′ · e · . . . · e︸ ︷︷ ︸
arbitrary permutation of n elements

≤ e

When we multiply this by e · . . . · e︸ ︷︷ ︸
n−2

, we get

x · x′ · e · . . . · e︸ ︷︷ ︸
arbitrary permutation of x,x′ and 2(n−2) instances of e

≤ e · . . . · e︸ ︷︷ ︸
n−1

.

However, from Theorem 5.2 and transitivity of the relation ≤ we get
that

x · x′ · e · . . . · e︸ ︷︷ ︸
arbitrary permutation of x,x′ and 2(n−2) instances of e

≤ u
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which is equivalent to

x′ · e · . . . · e︸ ︷︷ ︸
arbitrary permutation of x′ and 2(n−2) instances of e

≤ x−1.

It can be easily verified that commutativity / non-commutativity of the
single-valued operation · is not relevant in the last step.

Remark 5.21. Notice that for arity n = 2 there is 2(n − 2) = 0, i.e. Theo-
rem 5.20 turns into an equivalence which enables us to describe the set of all
inverses of an arbitrary x ∈ H (denoted as i(x)) in a far more elegant way by

i(x) = (x−1]≤ = {x′ ∈ G;x′ ≤ x−1}, (17)

which has already been shown as [19], Theorem 3.9.

Example 5.22. If we regard the hypergroup (R, f) from Example 5.6, we see
that all a ∈ R such that a ≤ −x are inverses of an arbitrary real number x
in (R, f). We also see that we might set e = 0 and Theorem 5.20 turns into
equivalence.

6 A more complex example

The hyperstructures (R, f) and (P(S), f) used to demonstrate the use of the
above obtained results are quite simple and straightforward ones. Let us
therefore conclude with a more complex example.

Example 6.1. In paper [6] the authors deal with the relation of hyperstruc-
tures and homogeneous second order linear differential equations

y′′ + p(x)y′ + q(x)y = 0, (18)

such that p ∈ C+(I), q ∈ C(I), where Ck(I) denotes the commutative ring
of all continuous real functions of one variable defined on an open interval I
of reals with continuous derivatives up to order k ≥ 0 (instead of C0(I) the
authors write only C(I)), and C+(I) denotes its subsemiring of all positive
continuous functions. They denote the set of nonsingular ordinary differential
equations (18) by A2, the pair of functions p, q by [p, q], D = d

dx and the
identity operator by Id. The notation L(p, q) is reserved for the differential
operator L(p, q) = D2 + p(x)D + q(x)Id, i.e. the notation L(p, q)(y) = 0 is
the equation (18). The set

LA2(I) = {L(p, q) : C2(I)→ C(I); [p, q] ∈ C+(I)× C(I)} (19)



N–ARY HYPERSTRUCTURES CONSTRUCTED FROM BINARY
QUASI–ORDERED SEMIGROUPS 165

is the set of all such operators. Finally for an arbitrary r ∈ R the notation
χr : I → R stands for the constant function with value r.

Proposition 1 of [6] states that if we define multiplication of operators by

L(p1, q1) · L(p2, q2) = L(p1p2, p1q2 + q1) (20)

and if we define that L(p1, q1) ≤ L(p2, q2) if

p1(x) = p2(x), q1(x) ≤ q2(x) for all x ∈ I, (21)

then (LA2(I), ·,≤) is a noncommutative partially ordered group with the unit
element (identity) L(χ1, χ0). Using Lemma 3.1 and a further proof included
in [6] we get that if we put

L(p1, q1) ∗ L(p2, q2) =

= {L(p, q) ∈ LA2(I);L(p1, q1) · L(p2, q2) ≤ L(p, q)} = (22)

= {L(p1p2, q); q ∈ C(I), p1q2 + q1 ≤ q} ,

then (LA2(I), ∗) is a (transposition) hypergroup ([6], Theorem 3).†

Expand now the binary hyperoperation ∗ defined in (22) for arity n = 3
and suppose the 3–ary hypergroupoid (LA2(I), f), where

f (L(p1, q1), L(p2, q2), L(p3, q3)) = [L(p1, q1) · L(p2, q2) · L(p3, q3))≤ , (23)

for arbitrary operators, where · is defined as (20) and ≤ is defined as (21).
According to Theorem 4.1 and Theorem 4.3, (LA2(I), f) is a noncommu-

tative 3–ary hypergroup. According to Theorem 5.2, all operators L(p, q) such
that p ≡ 1, q(x) ≤ 0 for all x ∈ I, are identities of (LA2(I), f) and one can
easily verify that also part 1 of the Theorem holds.

In order to describe scalar identities of (LA2(I), f), Theorem 5.10 states
that we have to examine operators L(a, b) such that for an arbitrary operator
L(r, s) ∈ LA2(I) there simultaneously holds

L(r, s) = L(a, b) · L(r, s) · L(a, b)

L(r, s) = L(r, s) · L(a, b) · L(a, b)

L(r, s) = L(a, b) · L(a, b) · L(r, s)

If the operator L(a, b) does not have this property, then it is not a scalar
identity. Yet since the result of the twice repeated multiplication in (23) is

†Notice that if we do not restrict our considerations to positive continuous functions p
and suppose that p(x) 6= 0 for all x ∈ I, then we for sure know only that (LA2(I), ∗) is a
semihypergroup. However, it can be shown that even in this case it is a hypergroup.
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L(p1, p2p3, p1p2q3 + p1q2 + q1), we have that the above conditions in fact mean
that

L(r, s) = L(a2r, arb+ as+ b)

L(r, s) = L(a2r, rab+ rb+ s)

L(r, s) = L(a2r, a2s+ ab+ b)

which obviously holds for a ≡ 1, b ≡ 0 only. Thus by Corollary 5.12 we get
that there are no scalar identities in (LA2(I), f).

Theorem 5.16 states that maximal elements of (LA2(I),≤) are the only
potential zero elements of (LA2(I), f). However, no such elements exist in
(LA2(I),≤), i.e. there are no zero elements in (LA2(I), f).

As far as inverse elements of (LA2(I), f) are concerned, the operator
L( 1

p ,−
q
p ) is the single-valued inverse of L(p, q) ∈ LA2(I). Thus according to

Theorem 5.20 all operators L(r, s) ∈ LA2(I), where r(x) = 1
p(x) , s(x) ≤ − q(x)

p(x)

for all x ∈ I are inverses of an arbitrary operator L(p, q) in (LA2(I), f).

7 Conclusion

This paper has contributed to the study of n–ary hyperstructures started
only recently by [13, 17] and especially to the development of the theoretical
background of hyperstructures constructed from quasi– or partially ordered
semigroups, i.e. to one of classical areas in the hyperstructure theory. Some
particular results obtained earlier in papers such as e.g. [19, 21, 22] can now
be regarded as special cases of results obtained for n–ary hyperstructures in
this paper. Thanks to this, some results included in e.g. [3, 4, 5, 14] may be
studied or described more easily or from a different perspective.
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