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Finite groups in which normality, permutability
or Sylow permutability is transitive

Izabela Agata Malinowska

Abstract

Y. Li gave a characterization of the class of finite soluble groups in
which every subnormal subgroup is normal by means of NE -subgroups:
a subgroup H of a group G is called an NE -subgroup of G if NG(H) ∩
HG = H. We obtain a new characterization of these groups related
to the local Wielandt subgroup. We also give characterizations of the
classes of finite soluble groups in which every subnormal subgroup is
permutable or Sylow permutable in terms of NE -subgroups.

1 Introduction and notation

All groups considered here are finite. Characterizations and criteria for a
group to belong to a particular class of groups are still studied by many math-
ematicians. Many of these characterizations or criteria depend specifically on
some subgroup embedding properties. The first nontrivial result in this area
seems to be the theorem of Dedekind on the structure of groups with all sub-
groups normal. Such groups are now called Dedekind groups. Investigation
of classes of groups by using subgroup embedding properties is still applied
and is the central theme of monographs, see for example [5]. In this article we
determine how the embedding properties of several families of subgroups of a
group influence the structure of the group.
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We use conventional notions and notations, as in [5, 18]. Throughout this
paper G stands for a finite group and π(G) denotes the set of primes divid-
ing |G|. For a prime p, Sylp(G) is the set of Sylow p-subgroups of G. A
subgroup H of G is said to be permutable in G if H permutes with every
subgroup of G. A group G is said to be a PT -group (respectively, T -group) if
permutability (respectively, normality) is a transitive relation in G. The first
explicit mentioning of T -groups in the literature was in the forties of 20th cen-
tury. They are a natural generalization of Dedekind groups, since T -groups
are exactly those groups where all subnormal subgroups are normal. By a
result of Ore ([5]) PT -groups are exactly those groups where all subnormal
subgroups are permutable. A subgroup of G is called s-permutable in G if it
permutes with all Sylow subgroups of G. A group G is said to be a PST -
group if s-permutability is a transitive relation in G. By a result of Kegel [5,
Theorem 1.2.14(3)], PST -groups are exactly those groups where all subnormal
subgroups are s-permutable. There are several characterizations in the litera-
ture of finite soluble T -groups, PT -groups and PST -groups (see for example
[5, 15]).

The basic structure of soluble T -groups, PT -groups and PST -groups was
established by Gaschütz, Zacher and Agrawal; this result shows that the classes
of all soluble T -, PT -, and PST -groups are closed under taking subgroups and
under taking epimorphic images (see [5]). Since a simple nonabelian group is
a T -group the first assertion is not true for the class of all T -groups (PT - or
PST -groups).

Recall that, for a prime p, a group G satisfies the property Cp if every
subgroup of a Sylow p-subgroup P of G is normal in its normalizer NG(P ), that
G satisfies Xp if every subgroup of a Sylow p-subgroup P of G is permutable
in NG(P ), and that G satisfies Yp if whenever H and K are p-subgroups of
G with H 6 K, H is s-permutable in NG(K). The properties Cp,Xp,Yp are
inherited by subgroups (see [5, page 68]) and they are closely related to soluble
T -groups, PT -groups and PST -groups (see [5]).

Theorem 1.1. Let G be a group. Then:

(1) G is a soluble PT -group if and only if G satisfies Xp for all p ∈ π(G)
([7], Theorem A);

(2) G is a soluble PST -group if and only if G satisfies Yp for all p ∈ π(G)
([4], Theorem 4);

(3) G is a soluble PT -group if and only if G is a soluble PST -group whose
Sylow subgroups are Iwasawa ([5], Corollary 2.1.12 (1)).

In [9] Berkovich investigated the following concept: a subgroup H of a
finite group G is called an NR-subgroup (Normal Restriction) if, whenever
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K � H, KG ∩ H = K, where KG is the normal closure of K in G. He also
proved that, if all Sylow subgroups of a group G are NR-subgroups, then G
is supersoluble. The notion of NR-subgroup is equivalent to the notion of
normal sensitive subgroup (see [6]) which is in fact equivalent to the notion
of CEP -subgroup (congruence extension property), which is even older and
given in other algebraic structures (see [11]). A subgroup H of a group G is
called an NE -subgroup of G if NG(H) ∩ HG = H (see [14]). NR-subgroups
and NE -subgroups were used for characterizations of soluble T -groups (see
[6, 15, 16]).

One of the purposes of this paper is to characterize soluble PST -groups
and PT -groups in terms of NE -subgroups. These results are inspired by the
results [5, Corollary 2.2.24] and [7, Theorem D] (see Lemma 2.2). We show that
some subgroup embedding properties, which have been used to characterize
soluble T -groups, can also be used to characterize soluble PT - and PST -
groups. In [17] we gave the characterization of soluble PST -groups in terms of
NR-subgroups. In this paper we give another proof of it. We also characterize
soluble PT -groups in terms of NR-subgroups.

The second purpose of this paper is to obtain new characterizations of
Cp-groups and soluble T -groups related to the local Wielandt subgroup. The
motivation for these results comes from results of Bryce, Cossey, Ballester-
Bolinches, Esteban-Romero and Kaplan [10, 4, 13]. We obtain a character-
ization of Cp-groups (Theorem 3.6) like Kaplan’s characterization of soluble
T -groups [13]. We also observe that Kaplan’s result [13, Theorem 1] related
to the Wielandt subgroups of metabelian groups extends to the class of all
soluble groups of p-length one for all p.

2 Groups in which permutability or Sylow permutability
is transitive

We say that a group G satisfies NEp if every normal subgroup of a Sylow
p-subgroup of G is an NE -subgroup of G. A group G satisfies NRp if a Sylow
p-subgroup of G is an NR-subgroup of G (see [16]). A subgroup H of a group
G is said to be pronormal in G if for every g ∈ G, H and Hg are conjugate
in their join 〈H,Hg〉. A group G satisfies Hp if every normal subgroup of a
Sylow p-subgroup of G is pronormal in G [1, 7]. The following lemmas show
the relations between the NEp–, NRp–, Hp–, Yp– and Xp–properties.

Lemma 2.1. Let G be a group and let p be a prime.

(1) If G satisfies NEp, then G satisfies NRp.

(2) If G satisfies NRp, then G satisfies Hp.
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Proof. Let P be a Sylow p-subgroup of G and let H � P .
(1) By the assumptions, since P ∩HG 6 NG(H)∩HG = H it follows that G
satisfies NRp.
(2) This is Proposition 2.8(2) from [16].

Lemma 2.2. Let G be a group and let p be a prime. Then:

(1) G satisfies Yp if and only if every subgroup of G satisfies Hp [5, Corollary
2.2.24];

(2) G satisfies Xp if and only if G satisfies Hp and G has Iwasawa Sylow
p-subgroups [7, Theorem D].

Lemma 2.3. [16, Theorems 2.10–2.11] Let p be a prime and let G be a p-
soluble group. Then:

(1) G satisfies Hp if and only if G satisfies NRp;

(2) every subgroup of G satisfies Hp if and only if every subgroup of G
satisfies NRp.

By Lemmas 2.2 and 2.3 we obtain the following corollaries.

Corollary 2.4. Let p be a prime and let G be a p-soluble group. Then:

(1) G satisfies Yp if and only if every subgroup of G satisfies NRp.

(2) G satisfies Xp if and only if G satisfies NRp and G has Iwasawa Sylow
p-subgroups.

Examples 2.1-2.3 indicate differences between the classes of groups used in
characterizations of soluble PST - and PT -groups in Theorem 1.1 and the ones
in Theorems 2.6-2.7. Examples 2.1-2.2 show that the converse of Lemma 2.1(1)
does not hold (even in the soluble universe).

Example 2.1. Let G = A5, the alternating group of degree 5. Then G
satisfies Y5 and every subgroup of G satisfies NR5. We will show that G does
not satisfy NE 5. Let H = 〈(12345)〉. Then |NG(H)| = 10 and HG∩NG(H) =
NG(H) 6= H, therefore H is not an NE -subgroup of G.

Example 2.2. Let G be the semidirect product of a quaternion group P of
order 8 with a cyclic group Q of order 3, which induces the automorphism
permuting cyclically the three maximal subgroups of the quaternion group.
Then G satisfies Y3 and every subgroup of G satisfies NR3. We will show that
G does not satisfy NE 3. Since QG ∩NG(Q) = G ∩QP ′ = QP ′ 6= Q, Q is not
an NE -subgroup of G.
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The following example shows that the converse of Lemma 2.1(2) does not
hold for non-p-soluble groups. It also shows that Corollary 2.4 is not true for
non-p-soluble groups.

Example 2.3. Let G = PSL(2, 53). Then a Sylow 3-subgroup of G is cyclic
of order 33. Since a normalizer of any nontrivial 3-subgroup of G is dihedral
of order 2 · 33, G satisfies C3, so it satisfies Y3. Let H be a subgroup of order
32 and P be a Sylow 3-subgroup of G such that H < P . Then HG∩NG(H) =
NG(H) 6= H and HG ∩ P = P 6= H. Therefore neither G satisfies NR3 nor G
satisfies NE 3.

The following example shows that the class of all NRp-groups (NEp-groups)
is not closed under taking subgroups.

Example 2.4. Let p be an odd prime and let P = 〈a, b, c | ap = bp = cp =
1, [a, b] = c〉 be an extraspecial group of order p3 and exponent p. Let x be
the automorphism of P order 2 given by ax = a−1, bx = b−1. Let G = P o 〈x〉
be the corresponding semidirect product. It is easily seen that G satisfies
NRp and NEp. Let H = 〈b, c, x〉. Then 〈b, c〉 is a Sylow p-subgroup of H,
〈bc〉� 〈b, c〉 but (〈bc〉)H ∩ 〈b, c〉 = 〈b, c〉, so H does not satisfy NRp. Therefore
H does not satisfy NEp.

Theorem 2.5. If G is a soluble PST -group, then G satisfies NEp for all
p ∈ π(G).

Proof. Let G be a soluble PST -group. Assume that p ∈ π(G), P is a Sylow
p-subgroup of G and H is a normal subgroup of P . We will show that NG(H)∩
HG = H.

Let L the nilpotent residual ofG. By [5, Theorem 2.1.8] L is an abelian Hall
subgroup of odd order of G in which G acts by conjugation as a group of power
automorphisms. Therefore G = LM , where M is a nilpotent Hall subgroup of
G and L∩M = 1. Let p ∈ π(L). Since every subgroup of L is normal in G, it
follows that G satisfies NEp. Therefore we can assume that P 6M . Then H
is normal in M . Hence NG(H) = NL(H)M and HG = HL = [L,H]H. Since
L ∩M = 1, it follows that NL(H) = CL(H). By [12, III.13.4] we have that
L = [L,H] × CL(H). Consequently, NG(H) ∩ HG = CL(H)M ∩ [L,H]H =(
CL(H)M ∩ [L,H]

)
H =

(
CL(H) ∩ [L,H]

)
H = H. This ends the proof.

Theorem 2.6. Let G be a group. The following conditions are equivalent:

(1) G is a soluble PST -group;

(2) every subgroup of G satisfies NEp for all p ∈ π(G);

(3) every subgroup of G satisfies NRp for all p ∈ π(G).
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Proof. (1)⇒(2) Since the class of all soluble PST -groups is closed under tak-
ing subgroups by Corollary 2.1.9 from [5] it follows that G and its subgroups
satisfy NEp for all p ∈ π(G) by Theorem 2.5.
(2)⇒(3) Follows by Lemma 2.1 (1).
(3)⇒(1) By Lemmas 2.1 (2) and 2.2(1) G satisfies Yp for every p ∈ π(G).
Hence G is a soluble PST -group by Theorem 1.1(2).

Theorem 2.7. Let G be a group. The following conditions are equivalent:

(1) G is a soluble PT -group;

(2) G satisfies NEp and G has Iwasawa Sylow p-subgroups for every p ∈
π(G);

(3) G satisfies NRp and G has Iwasawa Sylow p-subgroups for every p ∈
π(G);

Proof. (1)⇒(2) Follows by Theorems 2.5 and 1.1(3).
(2)⇒(3) Follows by Lemma 2.1 (1).
(3)⇒(1) Follows by Lemmas 2.1 (2), 2.2(2) and Theorem 1.1(1).

3 Groups in which normality is transitive

For a subgroup K of G, K sn G stands for ”K is subnormal in G ”. The
Wielandt subgroup of a group G, denoted by ω(G), is the intersection of the
normalizers of all subnormal subgroups of G. Let Soc(G) denote the socle of
G, i.e. the subgroup generated by all minimal normal subgroups of G. In [20]
Wielandt proved that ω(G) > Soc(G) for every group G, hence in partcular
ω(G) > 1 whenever G > 1. Groups G satisfying ω(G) = G are T -groups.

Let p be a prime. A p′-perfect group is one with no non-trivial factor
groups of order coprime to p. In [10] Bryce and Cossey defined ωp(G), the
local Wielandt subgroup of a group G, to be the intersection of the normalizers
of all p′-perfect subnormal subgroups of G. They showed that for a group G,
ω(G) =

⋂
p∈π(G)

ωp(G) (they proved it for soluble groups, but the same proof is

true for all groups). Groups G satisfying G = ωp(G) are groups for which every
p′-perfect subnormal subgroup is normal. Such groups are called Tp-groups.
In the same paper Bryce and Cossey showed that in the soluble universe the
classes Tp are local definitions of the local class of all T -groups.

In [13] Kaplan introduced the following notion.

Definition 3.1. ([13]) Let G be a group. We define ω∗(G) to be the set of all
elements x ∈ G with the following properties:

x ∈ NG(H)⇒ x ∈ NG(K) for each K �H 6 G.
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By definition ω∗(G) is a subset of ω(G). In [13] Kaplan showed that G
is a soluble T -group if and only if ω∗(G) = G. A p-soluble group G has p-
length one (lp(G) = 1) if and only if for every prime p, G/Op′(G) has a normal
Sylow p-subgroup (see [19]). Kaplan also proved that if G is a metanilpotent
group, then ω(G) = ω∗(G). It is easy to see that a metanilpotent group has
p-length one for all primes p. In [8] Beidleman and Heineken proved that every
soluble NNS -group (group in which all subnormal subgroups have subnormal
normalizers) is of p-length one for all primes p. They showed also that a soluble
NNS -group need not be metanilpotent.

It can been seen that Kaplan’s result [13, Theorem 1] related to the
Wielandt subgroups of metabelian groups extends to the class of all soluble
groups of p-length one for all p. We will need the following lemmas.

Lemma 3.1. ([13, Lemma 2.1]) Let G be a group. Then x ∈ ω∗(G) if and
only if x ∈ ω(H) for each subgroup H 6 G such that x ∈ H.

Lemma 3.2. ([2, 3.4] and [19, 5.40]) A group G has p-length one for all primes
p if and only if HN/N ∩ ω(G/N) 6 ω(HN/N) for all H 6 G and N �G.

Corollary 3.3. Let G be a group G of p-length one for all primes p. Then
ω∗(G) = ω(G).

Proof. We should only prove that ω(G) ⊆ ω∗(G). Let x ∈ ω(G) \ ω∗(G). Let
A be any subgroup of G such that x ∈ A. By Lemma 3.2 A ∩ ω(G) 6 ω(A).
Hence x ∈ ω(A) for any A 6 G such that x ∈ A. By Lemma 3.1 it follows
that x ∈ ω∗(G), a contradiction.

There exists a soluble group G with lp(G) > 1 for some p such that ω∗(G) 6=
ω(G). Namely l2(S4) = 2, ω∗(S4) = 1 and ω(S4) = Soc(S4).

Definition 3.2. Let G be a group and let p be a prime. We define ω∗p(G) to
be the set of all elements x of G with the following property:

x ∈ NG(H)⇒ x ∈ NG(K) for each p′-perfect subgroup K of G

and H 6 G such that K sn H.

It is clear by definition that ω∗p(G) is a subset of ωp(G). Notice that
x ∈ ω∗p(G) implies x ∈ ω∗p(A) for each A 6 G containing x. Example 3.1
shows that ω∗p(G) need not be a subgroup of G.

Lemma 3.4. Let G be a group and let p be a prime. Then x ∈ ω∗p(G) if and
only if x ∈ ωp(H) for each subgroup H 6 G such that x ∈ H.
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Proof. Assume first that x ∈ ω∗p(G) and let x ∈ H 6 G. Suppose that K is a
subnormal p′-perfect subgroup of H. Since x ∈ H 6 NG(H) and x ∈ ω∗p(G)
we have x ∈ NG(K). Therefore x ∈ ωp(H).

For the other direction assume that x ∈ ωp(H) for each H 6 G such
that x ∈ H. Suppose that K sn L 6 G, K is a p′-perfect subgroup of G
and x ∈ NG(L). Then x ∈ ωp

(
NG(L)

)
and since K sn NG(L) we have that

x ∈ NG(K). Therefore x ∈ ω∗p(G).

Lemma 3.5. Let G be a group. Then ω∗(G) =
⋂

p∈π(G)

ω∗p(G).

Proof. It is an immediate consequence of the definitions that ω∗(G) 6 ω∗p(G)
for every prime p.

For the other direction, set W =
⋂

p∈π(G)

ω∗p(G) and let K�H 6 G. Now K

can be written as a product of subnormal subgroups of H each of which has a
unique maximal normal subgroup and hence is p′-perfect for some p. But all
such subgroups are normalized by W and so W 6 ω∗(G).

Example 3.1. Kaplan showed that for a group G, ω∗(G) does not have to be
a subgroup of G. Namely, for the alternating group A5, the set ω∗(A5) is the
set of all elements of G with order distinct from 3. We have ω∗(A5) 6 ω∗2(A5).
We set H = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 and K = 〈(1, 2)(3, 4)〉. Then (1, 2, 3) ∈
NA4

(H) \NA4
(K). Similar considerations give ω∗(A5) = ω∗2(A5).

In the following Theorem we use some observations from [3].

Theorem 3.6. Let G be a group and let p be a prime. Then G satisfies Cp if
and only if G = ω∗p(G).

Proof. Clearly, if G = ω∗p(G), then G satisfies Cp.
Conversely, assume that K sn H 6 G and K is a p′-perfect subgroup of

G. We will show that K �NG(H). Since the property Cp is subgroup-closed
it is enough to consider the case K �H �G. Let Kp be a Sylow p-subgroup
of K and Hp be a Sylow p-subgroup of H such that Kp 6 Hp. Since G
satisfies Cp, we have that Kp �NG(Hp). Hence by the Frattini argument we
obtain G = HNG(Hp) = KNH(Kp)NG(Hp) = KNG(Kp). Hence, since K is
p′-perfect it follows that KG

p = KK
p = K. Therefore K is normal in G. This

ends the proof.

Corollary 3.7. Let G be a group. Then G is a soluble T -group if and only if
G = ω∗p(G) for every p ∈ π(G).

Proof. Follows by Theorem 3.6 and [5, Theorem 2.2.2].
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4 Conclusions and further research

All our previous results show that investigation of classes of groups by using
subgroup embedding properties is still fruitful. We have used NE -subgroups,
NR-subgroups and the generalization of the local Wielandt subgroup to char-
acterize soluble T -, PT - and PST -groups. In the literature these subgroups
were also applied to obtain characterizations and criteria for a group to belong
to a particular class of groups (see for example [9, 14]). They will surely be
the subject to some further research.

Finally, we mention five open problems concerning to this topic.

Problem 1. Find all groups G such that ω∗(G) = ω(G).

Problem 2. Let G be a group. Study the structures of G and ω∗(G) when
ω∗(G) is a subgroup of G.

Problem 3. Let p be a prime. Find all groups G such that ω∗p(G) = ωp(G).

Problem 4. Let p be a prime and let G be a group. Study the structures of
G and ω∗p(G) when ω∗p(G) is a subgroup of G.

We say that a group G satisfies NEp if every maximal subgroup of a Sylow
p-subgroup of G is an NE -subgroup of G. It can be proved that G is a soluble
PST -group if and only if every subgroup of G satisfies NEp for all p ∈ π(G).

Problem 5. Is it true that G is a soluble PT -group if and only if G satisfies
NEp and has Iwasawa Sylow p-subgroups for every p ∈ π(G) ?
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