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Closed graphs are proper interval graphs

Marilena Crupi and Giancarlo Rinaldo

Abstract

Let G be a connected simple graph. We prove that G is a closed
graph if and only if G is a proper interval graph. As a consequence we
obtain that there exist linear-time algorithms for closed graph recogni-
tion.

Introduction

In this note a graph G means a connected simple graph without isolated
vertices, that is, G is connected without loops and multiple edges. Let V (G) =
[n] = {1, . . . , n} be the set of vertices and E(G) the edge set of G.

Let S = K[x1, · · · , xn, y1, · · · , yn] be the polynomial ring in 2n variables
with coefficients in a field K. For i < j, set fij = xiyj − xjyi. The ideal JG
of S generated by the binomials fij = xiyj − xjyi such that i < j and {i, j}
is an edge of G, is called the binomial edge ideal of G. Such class of ideals is
a generalization of the ideal of 2-minors of a 2n-matrix of indeterminates. In
fact, the ideal of 2-minors of a 2n-matrix may be considered as the binomial
edge ideal of a complete graph on [n]. The relevance of this class of ideals for
algebraic statistics is underlined in [14]. Indeed these ideals arise naturally in
the study of conditional independence statements [5]. If ≺ is a monomial order
on S, then a graph G on the vertex set [n] is closed with respect to the given
labelling of the vertices if the generators fij of JG form a quadratic Gröbner
basis [14, 4].

A combinatorial description of this fact is the following. A graph G is closed
with respect to the given labelling of the vertices if the following condition
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is satisfied: for all edges {i, j} and {k, `} with i < j and k < `, one has
{j, `} ∈ E(G) if i = k, and {i, k} ∈ E(G) if j = `.

In particular, G is closed if there exists a labelling for which it is closed.
In the last years different authors [14, 16, 4, 19] concentrated their attention

on the class of closed graphs. The most recent characterization of this class of
graphs is given in [3], where it is proved that a connected graph has a closed
labeling if and only if it is chordal, K1,3-free, and has a property called narrow,
which holds when every vertex is distance at most one from all longest shortest
paths of the graph.

In [4] we have conjectured that by a suitable ordering on the vertices it is
possible to test the closedness of a graph in linear time. In this note we are
able to prove the conjecture.

In the research of a linear-time algorithm for closed graph recognition we
have observed that the class of closed graphs and the class of proper interval
graphs are the same.

Proper interval graphs are the intersection graphs of intervals of the real
line where no interval properly contains another and have been extensively
studied since their inception [10, 12]. There are several representations and
many characterizations of them [8, 13, 18] and some of them through ver-
tex orderings. Such class of graphs has many applications, such as physical
mapping of DNA and genome reconstruction [25, 9].

During the last decade, many linear-time recognition algorithms for proper
interval graphs have been developed [2, 20, 17, 22] and most of them are based
on special breadth-first search (BFS) strategies.

The first linear-time algorithm for interval graph recognition appeared in
1976 [1]. This algorithm uses a lexicographic breadth first search (lexBFS) to
find in linear time the maximal cliques of the graphs and then employs special
structure called PQ-trees to find an ordering of the maximal cliques that char-
acterizes interval graphs. A lexBFS is a breadth first search procedure with
the additional rule that vertices with earlier visited neighbors are preferred
and its vantage is that it can be performed in O(|V (G)|+ |E(G)|) time [24].

The paper is organized as follows. Section 1 contains some preliminaries
and notions that will be used in the paper. In Section 2, we prove our conjec-
ture (Theorem 2.4): Let G be a graph. G is a closed graph if and only if G is
a proper interval graph.

As a consequence we are able to state that by an ordering on the vertices
obtained by a lexBFS research it is possible to test the closedness of a graph
in linear-time.
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1 Preliminaries

In this Section we recall some concepts and a notation on graphs and simplicial
complexes that we will use in the article.

Let G be a graph with vertex set V (G) and edge set E(G).
When we fix a given labelling on the vertices we say that G is a graph on

[n].
Let G be a graph with vertex set [n]. A subset C of [n] is called a clique

of G is for all i and j belonging to C with i 6= j one has {i, j} ∈ E(G).
Two graphs G and H are isomorphic if there exists a bijection between the

vertex sets of G and H, namely φ : V (G) → V (H), such that {u, v} ∈ E(G)
if and only if {φ(u), φ(v)} ∈ E(H).

Set V = {x1, . . . , xn}. A simplicial complex ∆ on the vertex set V is a
collection of subsets of V such that

(i) {xi} ∈ ∆ for all xi ∈ V and

(ii) F ∈ ∆ and G ⊆ F imply G ∈ ∆.

An element F ∈ ∆ is called a face of ∆. A maximal face of ∆ with respect
to inclusion is called a facet of ∆. If ∆ is a simplicial complex with facets
F1, . . . , Fq, we write ∆ = 〈F1, . . . , Fq〉.
Definition 1.1. The clique complex ∆(G) of G is the simplicial complex
whose faces are the cliques of G.

The clique complex plays an important role in the study of the class of
closed graphs [14, 4].

Definition 1.2. A graph G is closed with respect to the given labelling if the
following condition is satisfied:

for all edges {i, j} and {k, `} with i < j and k < ` one has {j, `} ∈ E(G)
if i = k, and {i, k} ∈ E(G) if j = `.

In particular, G is closed if there exists a labelling for which it is closed.

Theorem 1.3. Let G be a graph. The following conditions are equivalent:

(1) there exists a labelling [n] of G such that G is closed on [n];

(2) JG has a quadratic Gröbner basis with respect to some term order ≺ on
S;

(3) there exists a labelling of G such that all facets of ∆(G) are intervals
[a, b] ⊆ [n].

Proof. (1) ⇔ (2): see [4], Theorem 3.4.
(1) ⇔ (3): see [16], Theorem 2.2.
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2 The result

In this Section we prove that closed graphs are proper interval graphs and
viceversa.

Definition 2.1. A graph G is an interval graph if to each vertex v ∈ V (G)
a closed interval Iv = [`v, rv] of the real line can be associated, such that two
distinct vertices u, v ∈ V (G) are adjacent if and only if Iu ∩ Iv 6= ∅.

The family {Iv}v∈V (G) is an interval representation of G.

Definition 2.2. A graph G is a proper interval graph if there is an interval
representation of G in which no interval properly contains another.

If G is a graph, a vertex ordering σ for G is a permutation of V (G). We
write u ≺σ v if u appears before v in σ.

Ordering σ is called a proper interval ordering if for every triple u, v, w of
vertices of G where u ≺σ v ≺σ w and {u,w} ∈ E(G), one has {u, v}, {v, w} ∈
E(G). This condition is called the umbrella property [13].

The vertex orderings allow to state many characterizations of proper in-
terval graphs. We quote the next result from [18, Theorem 2.1].

Theorem 2.3. A graph G is a proper interval graph if and only if G has a
proper interval ordering.

Now we are in position to state and prove the result of the paper.

Theorem 2.4. Let G be a graph. The following conditions are equivalent:

(1) G is a closed graph;

(2) G is a proper interval graph.

Proof. Since a graph G is closed if and only if each connected component is
closed we may assume that the graph G is connected.
(1)⇒ (2). Let G be a closed graph.

Claim 1. There exists a proper interval graph H such that G is isomorphic
to H.

Since G is closed then there exists a labelling [n] of G such that all facets
of the clique complex ∆(G) are intervals [a, b] ⊆ [n] (Theorem 1.3), that is

∆(G) = 〈[a1, b1], [a2, b2], . . . , [ar, br]〉, (2.1)

with 1 = a1 < a2 < . . . < ar < n, 1 < b1 < b2 < . . . < br = n with ai < bi and
ai+1 ≤ bi, for i ∈ [r].
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Set ε =
1

n
. Define the following closed intervals of the real line:

Ik = [k, b(k) + kε],

where
b(k) = max{bi : k ∈ [ai, bi]}, for k = 1, . . . , n. (2.2)

Let H be the interval graph on the set V (H) = {I1, . . . , In} and let

ϕ : V (G) = [n]→ V (H)

be the map defined as follows:

ϕ(k) = Ik.

ϕ is an isomorphism of graphs.
In fact, let {k, `} ∈ E(G) with k < `. We will show that {ϕ(k), ϕ(`)} =

{Ik, I`} ∈ E(H), that is, Ik ∩ I` 6= ∅.
It is

Ik = [k, b(k) + kε], I` = [`, b(`) + `ε].

Suppose Ik ∩ I` = ∅. Then b(k) + kε < ` and consequently b(k) < `. It
follows that does not exist a clique containing the edge {k, `}. A contradiction.

Now, suppose that {Ik, I`} ∈ E(H), with k < `. We will prove that
{k, `} ∈ E(G).

Since Ik ∩ I` 6= ∅, then b(k) + kε ≥ `. By the meaning of ε and by the
assumption k < `, it follows that kε < 1 and so b(k) ≥ `. Hence from (2.1)
and (2.2), {k, `} ∈ E(G).

Since G is closed and consequently a K1,3-free graph [23], the isomorphism
ϕ assures that H is a proper interval graph.

Hence G is up to isomorphism a proper interval graph and (2) follows.

(2)⇒ (1). Let G be a proper interval graph.

Claim 2. There exists a closed graph H such that G is isomorphic to H.

Let {Iv}v∈V (G) be an interval representation of G, with |V (G)| = n.
From Theorem 2.3, there exists a proper interval ordering σ of G. Let

σ = (I1, . . . , In) be such vertex ordering. It is Ij ≺σ Ik if and only if j < k.
Let H be the graph with vertex set V (H) = [n] and edge set E(H) =

{{i, j} : {Ii, Ij} ∈ E(G)}.
We prove that H is a closed graph on [n].
Let {i, j}, {k, `} ∈ E(H) with i < j and k < `.
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Suppose i = k. Since {i, j}, {i, `} ∈ E(H), then {Ii, Ij}, {Ii, I`} ∈ E(G).
If i < j < `, then Ii ≺σ Ij ≺σ Ik. Hence since σ satisfies the umbrella

property and {Ii, I`} ∈ E(G), it follows that {Ii, Ij}, {Ij , I`} ∈ E(G). Thus
{j, `} ∈ E(H).

Repeating the same reasoning for i < ` < j, it follows that {j, `} ∈ E(H)
again.

Similarly for j = `, one has {i, k} ∈ E(H). Hence H is a closed graph.
It is easy to verify that the proper interval graph G is isomorphic to the

closed graph H by the map ψ : V (G) → V (H) = [n], that sends every closed
interval Ij ∈ V (G) to the integer j ∈ V (H).

Hence G is up to isomorphism a closed graph and (1) follows.

Remark 2.5. For the implication (2) ⇒ (1), see also [19, Proposition 1.8]
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