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A multivalued version of Krasnoselskii’s
theorem in generalized Banach spaces

Ioan-Radu PETRE

Abstract

The purpose of this paper is to extend Krasnoselskii’s fixed point
theorem to the case of generalized Banach spaces for multivalued oper-
ators. As application, we will give an existence result for a system of
Fredholm-Volterra type differential inclusions.

1 Introduction, notations and auxiliary results

It is well known that A.I. Perov (see [17]) extended the classical Banach con-
traction principle in the setting of spaces endowed with vector-valued metrics
(see also A.I. Perov, A.V. Kibenko [18]).

Also, is known that Krasnoselskii’s theorem combine a metrical fixed point
result (a contraction principle) and a topological one (a Schauder-type theo-
rem). Moreover, the multivalued forms of Krasnoselskii’s theorem deals with
the notion of selection. Auxiliary results are needed to ensure that a multi-
valued operator admits a continuous selection. There is also a vast literature
concerning on this aspects in nonlinear analysis, see, for example, [3], [5], [9],
[12], [16], [19], [20], [21], [22], [29], [36], [39], [40].
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Thus, it is obvious that Krasnoselskii’s theorem represents an important
abstract tool in the study of differential and integral inclusions systems. There-
fore, the aim of this paper is to present a multivalued version of Krasnoselskii’s
theorem in vector Banach spaces and a nice existence result for a Fredholm-
Volterra type integral inclusions system.

Now, we recall some basic results (see [2], [8] and [28]), which are needed
for the main results of this paper. Notice that in [28] and [8], are pointed
out some advantages of a vector-valued norm with respect to the usual scalar
norms.

Definition 1.1. ([17]) Let X be a nonempty set and consider the space
Rm+ endowed with the usual component-wise partial order. The mapping
d : X ×X → Rm+ which satisfies all the usual axioms of the metric is called a
generalized metric in the Perov’s sense and (X, d) is called a generalized metric
space.

Let (X, d) be a generalized metric space in Perov’s sense. Thus, if v, r ∈
Rm, v := (v1, v2,. . . , vm) and r := (r1, r2,. . . , rm), then by v ≤ r we mean
vi ≤ ri, for each i ∈ {1, 2,. . . ,m} and by v < r we mean vi < ri, for each
i ∈ {1, 2,. . . ,m}. Also, |v| := (|v1|, |v2|,. . . , |vm|).

If u, v ∈ Rm, with u := (u1, u2,. . . , um) and v := (v1, v2,. . . , vm), then
max(u, v) := (max(u1, v1),. . . ,max(um, vm)). If c ∈ R, then v ≤ c means
vi ≤ c, for each i ∈ {1, 2,. . . ,m}. Notice that, through this paper, we will
make an identification between row and column vectors in Rm. Let (X, d) be
a generalized metric space in Perov’s sense. For r := (r1, · · · , rm) ∈ Rm with
ri > 0 for each i ∈ {1, 2, · · · ,m}, we will denote by

B (x0, r) := {x ∈ X : d (x0, x) < r}

the open ball centered in x0 with radius r and by

B̄ (x0, r) := {x ∈ X : d (x0, x) ≤ r}

the closed ball centered in x0 with radius r.
We mention that for generalized metric spaces in Perov’s sense, the no-

tions of convergent sequence, Cauchy sequence, completeness, open subset
and closed subset are similar to those for usual metric spaces.

Definition 1.2. A square matrix of real numbers is said to be convergent to
zero if and only if its spectral radius ρ(A) is strictly less than 1. In other
words, this means that all the eigenvalues of A are in the open unit disc, i.e.,
|λ| < 1, for every λ ∈ C with det (A− λI) = 0, where I denotes the unit
matrix of Mm,m(R) (see [35]).
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For a matrix A := (aij)i,j∈{1,··· ,m} ∈Mm,m(R) we denote by

|A| := (|aij |)i,j∈{1,··· ,m} ∈Mm,m(R+).

In this context, we say that a non-singular matrix A has the absolute value
property if A−1|A| ≤ I. Some examples of matrices convergent to zero A ∈
Mm,m(R), which also satisfies the property (I −A)−1|I −A| ≤ I are:

1) A =

(
a 0
0 b

)
, where a, b ∈ R+ and max(a, b) < 1;

2) A =

(
a −c
0 b

)
, where a, b, c ∈ R+ and a+ b < 1, c < 1;

3) A =

(
a −a
b −b

)
, where a > 1, b > 0 and |a− b| < 1.

In particular, if E is a linear space, then ‖ · ‖ : E → Rm+ is a vector-valued
norm if (in a similar way to the vector-valued metric) it satisfies the classical
axioms of a norm. In this case, the pair (E, ‖ · ‖) is called a generalized
normed space. If the generalized metric generated by the norm ‖ · ‖ (i.e.,
d(x, y) := ‖x− y‖) is complete then the space (E, ‖ · ‖) is called a generalized
Banach space.

In the context of a generalized metric space (X, d), we will use the following
notations and definitions.

P (X) - the set of all nonempty subsets of X;
P (X) = P (X) ∪ {∅};
Pb (X) - the set of all nonempty bounded subsets of X;
Pb,cl (X) - the set of all nonempty bounded and closed subsets of X;

If (X, ‖ · ‖) is a generalized normed space, then:
Pb,cl,cv (X) - the set of all nonempty bounded, closed and convex subsets

of X;
Pcp,cv (X) - the set of all nonempty compact and convex subsets of X.

Let (X, d) be a metric space. Then we introduce the following functionals.

Dd : P (X) × P (X) → R+, Dd (A,B) = inf {d (a, b) : a ∈ A, b ∈ B} - the
gap functional;

ρd : P (X)×P (X)→ R+∪{+∞}, ρd (A,B) = sup {D (a,B) : a ∈ A} - the
excess functional;

Hd : P (X) × P (X) → R+ ∪ {+∞}, Hd (A,B) = max{ρ(A,B), ρ(B,A)} -
the Pompeiu-Hausdorff functional.



A MULTIVALUED VERSION OF KRASNOSELSKII’S THEOREM IN
GENERALIZED BANACH SPACES 180

If (X, d) is a generalized metric space with d(x, y) :=

 d1(x, y)
· · ·

dm(x, y)

, then

we denote by

D(A,B) :=

 Dd1(A,B)
· · ·

Ddm(A,B)

 the vector gap functional on P (X),

by

ρ(A,B) :=

 ρd1(A,B)
· · ·

ρdm(A,B)

 the vector excess functional,

and by

H(A,B) :=

 Hd1(A,B)
· · ·

Hdm(A,B)

 the vector Pompeiu-Hausdorff functional.

For a multivalued operator F : X → P (X), we denote by Fix(F ) the
fixed point set of F , i.e., Fix(F ) := {x ∈ X | x ∈ F (x)}. The symbol
Graph(F ) := {(x, y) ∈ X ×X : y ∈ F (x)} denotes the graph of F .

For some topological aspects in generalized metric spaces see, for example,
[32], [9], [38], [39]. We recall now the following Schauder type theorem.

Theorem 1.3. ([9]) Let (X, ‖·‖) be a generalized Banach space, let Y ∈
Pcv (X) and g : Y → Y be a continuous operator with relatively compact
range. Then g has at least one fixed point in Y .

If (X, d) is a generalized metric space, then F : X → P (X) is said to be
a multivalued weak Picard operator if, for each x ∈ X and y ∈ F (x), there
exists a sequence (xn)n∈N such that:

i) x0 = x, x1 = y;

ii) xn+1 ∈ F (xn);

iii) the sequence (xn)n∈N is convergent to a fixed point of F .

A sequence (xn)n∈N satisfying (i) and (ii) is said to be a sequence of suc-
cessive approximations for F starting from (x0, x1) ∈ Graph(F ).
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Definition 1.4. ([2]) Let (X, d) be a generalized metric space, Y ⊂ X and
F : Y → P (X) be a multivalued operator. Then, F is called a multivalued
A-contraction if and only if, A ∈ Mm,m (R+) is a matrix convergent to zero
and for any x, y ∈ Y and for each u ∈ F (x), there exists v ∈ T (y) such that

d (u, v) ≤ Ad (x, y) .

Notice now that using the generalized Pompeiu-Hausdorff functional on
Pb,cl (X), the concept of multivalued contraction mapping introduced by S.B.
Nadler Jr. can be extended to generalized metric spaces in the sense of Perov.

Definition 1.5. ([2]) Let (X, d) be a generalized metric space, Y ⊆ X and let
F : Y → Pb,cl (X) be a multivalued operator. Then, F is called a multivalued
A-contraction in the sense of Nadler if and only if, A ∈Mm,m (R+) is a matrix
convergent to zero and

H (F (x) , F (y)) ≤ Ad (x, y) , for any x, y ∈ Y .

If X, Y are two generalized metric spaces, then a multivalued operator
F : X → P (Y ) is said to be:

a) lower semi-continuous (briefly l.s.c.) in x0 ∈ X if and only if, for any
open set U ⊂ X such that F (x0) ∩ U 6= ∅, there exists a neighborhood V for
x0 such that for any x ∈ V , we have that F (x) ∩ U 6= ∅.

b) Hausdorff lower semi-continuous (briefly H-l.s.c.) in x0 ∈ X if and
only if, for any ε = (ε1, · · · , εm) ∈ Rm+ with εi > 0 for each i ∈ {1, · · · ,m},
there exists η = (η1, · · · , ηm) ∈ Rm+ with ηi > 0 for each i ∈ {1, · · · ,m}, such
that for any x ∈ B (x0, η), we have F (x0) ⊂ V (F (x) ; ε), where

V (F (x) ; ε) = {x ∈ X : D (x, F (x)) ≤ ε} .

Now, we recall several auxiliary results proved in paper [19].

Theorem 1.6. ([19]) Let (X, d) be a complete generalized metric space and
F : X → Pcl (X) be a multivalued A-contraction in Nadler’s sense. Then,
for each x ∈ X and y ∈ F (x), there exists a sequence (xn)n∈N of successive
approximations for F starting from (x, y) ∈ Graph(F ), which converge to a
fixed point x∗ ∈ X of F and we have the following estimations:

(a) d(xn, x
∗) ≤ An (I −A)

−1
d (x0, x1) , for any n ∈ N∗.

(b) d (x0, x
∗) ≤ (I −A)

−1
d (x0, x1).

Another useful result for our aim is the following data dependence lemma.
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Lemma 1.7. ([19]) Let (X, d) be a complete generalized metric space and
F1, F2 : X → Pb,cl (X) be two multivalued A-contractions in Nadler’ sense.
Then:

ρ (Fix (F1) ,Fix (F2)) ≤ (I −A)
−1


sup
x∈X

ρd1(F1(x), F2(x))

· · ·
sup
x∈X

ρdm(F1(x), F2(x))

 .

Also, we need an extended result of a Rybinski-type selection theorem.

Theorem 1.8. ([19]) Let (X, d) be a generalized metric space and Y be a
closed subset of a generalized Banach space (Z, ‖·‖). Assume that the multi-
valued operator F : X × Y → Pcl,cv (Y ) satisfies the following conditions:

i) A is a matrix convergent to zero and

H (F (x, y1) , F (x, y2)) ≤ A ‖y1 − y2‖ , for each (x, y1) , (x, y2) ∈ X × Y ;

ii) for every y ∈ Y , F (·, y) is H-l.s.c. on X.

Then there exists a continuous mapping f : X × Y → Y such that:

f (x, y) ∈ F (x, f (x, y)) , for each (x, y) ∈ X × Y .

Lemma 1.9. ([32]) Let (X, ‖·‖) be a generalized Banach space. Then:

H (Y + Z, Y +W ) ≤ H (Z,W ) , for each Y,Z,W ∈ Pb (X) .

We recall that a measurable multivalued operator F : [a, b] → Pcp (Rn) is
said to be integrably bounded if and only if, there exists a Lebesgue integrable
function m : [a, b]→ Rn such that for each v ∈ F (t), we have ‖v‖ ≤ m (t), a.e.
on [a, b]. For a measurable and integrably bounded multivalued operator F ,
the set S1

F of all Lebesgue integrable selections for F is closed and nonempty
(see [6]).

2 Main results

In this section, we prove a Krasnoselskii type fixed point theorem in gen-
eralized Banach spaces for a sum of two multivalued operators, where one of
the operators satisfies a multivalued A-contraction condition in Nadler’s sense
and the other operator satisfies a compactness condition. Also, an application
to a Fredholm-Volterra type differential inclusions system is given here. No-
tice that both results deals with the absolute value property of matrixes that
converges to zero.
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Theorem 2.1. Let (X, ‖·‖) be a generalized Banach space and
Y ∈ Pb,cl,cv (X). Assume that the operators F : Y → Pb,cl,cv (X),
G : Y → Pcp,cv (X) satisfies the properties:

i) F (y1) +G (y2) ⊂ Y , for each y1, y2 ∈ Y ;

ii) F is a multivalued A-contraction mapping in Nadler’s sense;

iii) G is l.s.c and G (Y ) is relatively compact;

iv) the matrix I −A has the absolute value property.

Then F +G has a fixed point in Y .

Proof. We show that for any x ∈ Y , the operator Tx : Y → Pcp,cv (Y ),
Tx (y) = F (y) +G (x) is a multivalued A-contraction. We have that

H (Tx (y1) , Tx (y2)) = H (F (y1) +G (x) , F (y2) +G (x))

≤ H (F (y1) , F (y2)) ≤ A ‖y1 − y2‖ , for any y1, y2 ∈ Y .

Thus, Tx is a multivalued A-contraction. By Theorem 1.6, it follows that for
any x ∈ Y the fixed point set for the multivalued operator Tx, Fix (Tx) =
{y ∈ F (y) +G (x)} is nonempty and closed.

Since, the multivalued operator

U : Y × Y → Pcp,cv (Y ) , U(x, y) = F (y) +G (x)

satisfies the hypothesis of Theorem 1.8, there exists a continuous mapping
u : Y ×Y → Y such that u (x, y) ∈ F (u (x, y))+G (x), for each (x, y) ∈ Y ×Y .

We define C : Y → Pcl (Y ), C (x) = Fix (Tx) and we consider the
singlevalued operator c : Y → Y , c (x) = u (x, x), for each x ∈ Y .

Now, we prove that c (Y ) is relatively compact. For this purpose it is
sufficient to show that C (Y ) is relatively compact. Since G (Y ) is relatively
compact, we have that G (Y ) is also totally bounded (see [38], pp. 500).
Thus, for any ε ∈ Rm+ (with εi > 0 for each i ∈ {1, . . . ,m}), there exists
Z = {x1, . . . , xn} ⊂ Y such that G (Y ) ⊂ {z1, . . . , zn} + B̄ (0, |I −A|ε) ⊂
{G (x1) , . . . , G (xn)} + B̄ (0, |I −A|ε), where zi ∈ G (xi) for any
i ∈ {1, 2, . . . , n}.

It follows that, for any x ∈ Y , G (x) ⊂
n
∪
i=1
G (xi)+ B̄ (0, |I −A|ε) and thus,
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there exists an element xk ∈ Z such that ρ (G (x) , G (xk)) ≤ |I −A|ε. Then

ρ [C (x) , C (xk)] = ρ [Fix (Tx) ,Fix (Txk
)]

≤ (I −A)
−1


sup
y∈Y

ρd1 [Tx(y), Txk
(y)]

· · ·
sup
y∈Y

ρdm [Tx(y), Txk
(y)]



= (I −A)
−1


sup
y∈Y

ρd1 [F (y) +G(x), F (y) +G(xk)]

· · ·
sup
y∈Y

ρdm [F (y) +G(x), F (y) +G(xk)]



≤ (I −A)
−1


sup
y∈Y

ρd1 [G(x), G(xk)]

· · ·
sup
y∈Y

ρdm [G(x), G(xk)]


≤ (I −A)

−1 |I −A|ε = ε.

It follows that for any v ∈ C (x), there exists wk ∈ C (xk) such that ‖v − wk‖ ≤
ε. Thus, for any x ∈ Y , C (x) ⊂

n
∪
k=1

B̄ (wk, ε). So, C (Y ) is relatively compact.

Moreover, the operator c : Y → Y satisfies the assumptions of Theorem
1.3. Let x∗ ∈ Y be a fixed point for c. Hence, we have that x∗ = c (x∗) ∈
F (c (x∗)) +G (x∗) = F (x∗) +G (x∗).

Now, using Theorem 2.1 we can obtain a nice existence result for a system
of Fredholm-Volterra type integral inclusions.

Theorem 2.2. Let I = [0, a] (with a > 0) be an interval of the real axis and
let us consider the following inclusions system in C (I,Rn)× C (I,Rp):{

x1 (t) ∈ λ11
∫ t
0
K1 (t, s, x1 (s) , x2 (s)) ds+ λ12

∫ a
0
L1 (t, s, x1 (s) , x2 (s)) ds

x2 (t) ∈ λ21
∫ t
0
K2 (t, s, x1 (s) , x2 (s)) ds+ λ22

∫ a
0
L2 (t, s, x1 (s) , x2 (s)) ds

for t ∈ I, where λij ∈ R, i, j ∈ {1, 2}. We assume that:

i) K1 : I2×Rn×Rp → Pcl,cv (Rn), K2 : I2×Rn×Rp → Pcl,cv (Rp) are two
l.s.c., measurable and integrable bounded multivalued operators;

ii) L1 : I2 × Rn × Rp → Pcp,cv (Rn), L2 : I2 × Rn × Rp → Pcp,cv (Rp) are
two l.s.c., measurable and integrable bounded (by two integrable functions
mL1 , mL2) multivalued operators;
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iii) there exists the matrix A =

(
a11 a12
a21 a22

)
∈ M2,2 (R+) such that for

each (t, s, u1, u2), (t, s, v1, v2) ∈ I2×Rn×Rp and for i ∈ {1, 2}, we have:

H (Ki (t, s, u1, u2) ,Ki (t, s, v1, v2)) ≤ ai1 |u1 − v1|+ ai2 |u2 − v2| ;

iv)

(
|λ11|
|λ21|

)
≤

(
R1

2a(a11R1+a12R2)
R2

2a(a21R1+a22R2)

)
and

(
|λ12|
|λ22|

)
≤

(
R1

2ML1
a

R2

2ML2
a

)
, where

ML1
= max
t,s∈[0,a]

|mL1
|Rn , ML2

= max
t,s∈[0,a]

|mL2
|Rp

and mLi
represents the set of continuous selections for the multivalued

operator t 7→ λi2
∫ a
0
Li (t, s, x1 (s) , x2 (s)) ds for x1 ∈ C (I,Rn) and x2 ∈

C (I,Rp).

v) the matrix I −M has the absolute value property, where

M =

(
|λi1| aij

τ

)
i,j=1,2

, τ > 0.

Then, there exists
(
x01, x

0
2

)
∈ C (I,Rn)×C (I,Rp) such that our inclusions

system has at least one solution x∗ := (x∗1, x
∗
2) ∈ B̄

(
x01, R1

)
× B̄

(
x02, R2

)
⊂

C (I,Rn)× C (I,Rp).

Proof. For the sake of simplicity let us denote X1 := Rn, X2 := Rp and
X := C (I,X1)×C (I,X2). Let F1, G1 : X → P (C (I,X1)) be two multivalued
operators given by:

F1 (x1, x2) =

{
u ∈ X : u (t) ∈ λ11

∫ t

0

K1 (t, s, x1 (s) , x2 (s)) ds a.e. on I

}
,

G1 (x1, x2) =

{
v ∈ X : v (t) ∈ λ12

∫ a

0

L1 (t, s, x1 (s) , x2 (s)) ds a.e. on I

}
.

Let F2, G2 : X → P (C (I,X2)) be two multivalued operators given by:

F2 (x1, x2) =

{
u ∈ X : u (t) ∈ λ21

∫ t

0

K2 (t, s, x1 (s) , x2 (s)) ds a.e. on I

}
,

G2 (x1, x2) =

{
v ∈ X : v (t) ∈ λ22

∫ a

0

L2 (t, s, x1 (s) , x2 (s)) ds a.e. on I

}
.

Then, F =

(
F1

F2

)
, G =

(
G1

G2

)
: X → P (X).
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For x = (x1, x2) −→ F (x) = (F1 (x) , F2 (x)), G (x) = (G1 (x) , G2 (x)).
Obviously, x∗ = (x∗1, x

∗
2) is a solution for our inclusions system if and only if

x∗ is a fixed point for F (x) + G (x). We need to show that the multivalued
operators F and G satisfies the assumptions of Theorem 2.1. By Ascoli-Arzelà
theorem, we have that F : X → Pcp,cv (X).

Let x := (x1, x2), y := (y1, y2) ∈ X and let u = (u1, u2) ∈ F (x). That is
u1 ∈ F1 (x), u2 ∈ F2 (x). Then u1, u2 ∈ X and

u1 (t) ∈ λ11
∫ t

0

K1 (t, s, x1 (s) , x2 (s)) ds a.e. on I, respectively

u2 (t) ∈ λ21
∫ t

0

K2 (t, s, x1 (s) , x2 (s)) ds a.e. on I.

It follows that there exists a mapping k1x ∈ S1
K1(·,·,x1(·),x2(·)), respectively k2x ∈

S1
K2(·,·,x1(·),x2(·)) such that

u1 (t) ∈ λ11
∫ t

0

k1x (t, s) ds a.e. on I, respectively

u2 (t) ∈ λ21
∫ t

0

k2x (t, s) ds a.e. on I.

For i ∈ {1, 2}, from the relation

HXi
(Ki (t, s, x1 (t) , x2 (t)) ,Ki (t, s, y1 (t) , y2 (t)))

≤ ai1 |x1 (t)− y1 (t)|X1
+ ai2 |x2 (t)− y2 (t)|X2

,

we get that there exists w1 ∈ K1 (t, s, y1 (t) , y2 (t)), respectively
w2 ∈ K2 (t, s, y1 (t) , y2 (t)) such that∣∣k1x (t, s)− w1

∣∣
X1
≤ a11 |x1 (t)− y1 (t)|X1

+ a12 |x2 (t)− y2 (t)|X2
, respectively∣∣k2x (t, s)− w2

∣∣
X2
≤ a21 |x1 (t)− y1 (t)|X1

+ a22 |x2 (t)− y2 (t)|X2
.

Thus, the multivalued operator T = (T1, T2), defined by

T1 (t, s) = K1 (t, s, y1 (t) , y2 (t)) ∩KT1
(t, s) ,

T2 (t, s) = K2 (t, s, y1 (t) , y2 (t)) ∩KT2
(t, s)

has nonempty values and is measurable, where

KTi (t, s) =
{
wi :

∣∣∣ki
x (t, s)− wi

∣∣∣ ≤ ai1 |x1 (t)− y1 (t)|X1
+ ai2 |x2 (t)− y2 (t)|X2

}
,

for i ∈ {1, 2}.
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Let k1y be a measurable selection for T1, respectively k2y be a measurable
selection for T2 (which exists by Kuratowski-Ryll-Nardzewski’s selection the-
orem, see [7]), then k1y (t, s) ∈ K1 (t, s, y1 (t) , y2 (t)), respectively k2y (t, s) ∈
K2 (t, s, y1 (t) , y2 (t)) and∣∣k1x (t, s)− k1y (t, s)

∣∣
X1
≤ a11 |x1 (t)− y1 (t)|X1

+ a12 |x2 (t)− y2 (t)|X2
,∣∣k2x (t, s)− k2y (t, s)

∣∣
X2
≤ a21 |x1 (t)− y1 (t)|X1

+ a22 |x2 (t)− y2 (t)|X2
.

We define v1 (t) = λ11
∫ t
0
k1y (t, s) ds, respectively v2 (t) = λ21

∫ t
0
k2y (t, s) ds. It

follows that v1 (t) ∈ F1 (y), respectively v2 (t) ∈ F2 (y) and for i ∈ {1, 2}, we
have

|ui (t)− vi (t)|Xi

≤ |λi1|
∫ t

0

∣∣kix (t, s)− kiy (t, s)
∣∣
Xi
ds

≤ |λi1|
(
ai1

∫ t

0

|x1 (s)− y1 (s)|X1
ds+ ai2

∫ t

0

|x2 (s)− y2 (s)|X2
ds

)
= |λi1|

(
ai1 ||x1 − y1||B1

∫ t

0

eτsds+ ai2 ||x2 − y2||B2

∫ t

0

eτsds

)
≤ |λi1|

τ
eτt
(
ai1 ||x1 − y1||B1

+ ai2 ||x2 − y2||B2

)
,

where ||u||B :=

(
||u1||B1

||u2||B2

)
=

 sup
t∈[0,a]

e−τt |u1 (t)|X1

sup
t∈[0,a]

e−τt |u2 (t)|X2

, τ > 0 denotes the

Bielecki-type norm on the generalized Banach space X. Thus, for i ∈ {1, 2},
we obtain that

||ui − vi||Bi
≤ |λi1|

τ

(
ai1 ||x1 − y1||B1

+ ai2 ||x2 − y2||B2

)
and similarly, interchanging the roles between x and y, for i ∈ {1, 2}, we get
that

HBi (Fi (x) , Fi (y)) ≤ |λi1|
τ

(
ai1 ||x1 − y1||B1

+ ai2 ||x2 − y2||B2

)
,

for each x, y ∈ X.

These inequalities can be written in the matrix form

HB (F (x) , F (y)) ≤M ||x− y||B ,
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where

M =

(
|λi1| aij

τ

)
i,j=1,2

.

Taking τ large enough it follows that the matrix M is convergent to zero and
thus, F is a multivalued M -contraction. By Theorem 1.6, we have that there
exists a fixed point x0 =

(
x01, x

0
2

)
∈ X for F , i.e. x0 ∈ F

(
x0
)
. That is

x01 ∈ F1

(
x0
)

and x02 ∈ F2

(
x0
)
.

Let us consider Y = B̄
(
x01, R1

)
× B̄

(
x02, R2

)
⊂ C (I,X1)× C (I,X2). We

show that F (Y ) ⊂ B̄
(
x01,

R1

2

)
× B̄

(
x02,

R2

2

)
. Let x ∈ Y , then (x1, x2) ∈

B̄
(
x01, R1

)
× B̄

(
x02, R2

)
. Thus,∣∣∣∣x1 − x01∣∣∣∣C1

≤ R1 and
∣∣∣∣x2 − x02∣∣∣∣C2

≤ R2.

Let u = (u1, u2) ∈ F (x) be arbitrarily chosen. That is u1 ∈ F1 (x), u2 ∈
F2 (x). Then u1 (t) ∈ λ11

∫ t
0
K1 (t, s, x1 (s) , x2 (s)) ds, respectively u2 (t) ∈

λ21
∫ t
0
K2 (t, s, x1 (s) , x2 (s)) ds a.e. on I. It follows that

ui (t) = λi1
∫ t
0
kix (t, s) ds, where kix (t, s) ∈ Ki (t, s, x1 (s) , x2 (s)) a.e. on I2,

for i ∈ {1, 2}. We have∣∣ui (t)− x0i (t)
∣∣
Xi

≤ |λi1|
∫ t

0

∣∣kix (t, s)− kix0 (t, s)
∣∣
Xi
ds

≤ |λi1|
(
ai1

∫ t

0

∣∣x1 (s)− x01 (s)
∣∣
X1
ds+ ai2

∫ t

0

∣∣x2 (s)− x02 (s)
∣∣
X2
ds

)
≤ |λi1|

∫ t

0

(
ai1
∣∣∣∣x1 − x01∣∣∣∣C1

+ ai2
∣∣∣∣x2 − x02∣∣∣∣C2

)
≤ |λi1| a (ai1R1 + ai2R2) , for i ∈ {1, 2}.

Taking max
t∈[0,a]

|ui (t)|Xi
, we get that

∣∣∣∣ui − x0i ∣∣∣∣Ci
≤ |λi1| a (ai1R1 + ai2R2) ≤ Ri

2
, for i ∈ {1, 2}.

The multivalued operator G is l.s.c. and compact.
We show that G (Y ) is relatively compact.
Let x := (x1, x2) ∈ Y and we prove that G (Y ) ⊂ B̄

(
0, R1

2

)
× B̄

(
0, R2

2

)
.

Let v = (v1, v2) ∈ G (x) be arbitrarily chosen. That is v1 ∈ G1 (x), re-
spectively v2 ∈ G2 (x). Then v1 (t) ∈ λ12

∫ a
0
L1 (t, s, x1 (s) , x2 (s)) ds, re-

spectively v2 (t) ∈ λ22
∫ a
0
L2 (t, s, x1 (s) , x2 (s)) ds a.e. on I. It follows that
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vi (t) = λi2
∫ a
0
lix (t, s) ds, where lix (t, s) ∈ Li (t, s, x1 (s) , x2 (s)) a.e. on I2, for

i ∈ {1, 2}. Clearly,

|vi (t)|Xi
≤ |λi2|

∫ a

0

∣∣lix (t, s)
∣∣
Xi
ds ≤ |λi2| aMLi

≤ Ri
2

, for i ∈ {1, 2}.

Thus, v1 ∈ B̄
(
0, R1

2

)
, v2 ∈ B̄

(
0, R2

2

)
. Then, the multivalued operator U =

F + G has the property U : Y → Pcp,cv (Y ), i.e. F (x) + G (x) ⊂ Y , for each
x ∈ Y . Hence, the conclusion follows by Theorem 2.1.

Remark 2.3. The above Theorem can be improved by supposing instead
of the existence of a real positive number square matrix A, another square
matrix A = (aij)i,j=1,2, where aij ∈ Lp ([0, a] ,R+) , i, j ∈ {1, 2} and using the
Hölder’s inequality, we can obtain too, another similar result.
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[31] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University
Press, Cluj-Napoca, 2008.

[32] I.A. Rus, Generalized Contractions and Applications, Cluj University
Press, Cluj-Napoca, 2001.

[33] I.A. Rus, Principles and Applications of the Fixed Point Theory, Dacia,
Cluj-Napoca, 1979 (in Romanian).

[34] I.A. Rus, Technique of the fixed point structures for multivalued mappings,
Math. Japonica, 38(1993), 289-296.

[35] R.S. Varga, Matrix Iterative Analysis, Vol. 27 of Springer Series in Com-
putational Mathematics, Springer-Verlag, Berlin, 2000.



A MULTIVALUED VERSION OF KRASNOSELSKII’S THEOREM IN
GENERALIZED BANACH SPACES 192

[36] A. Viorel, Contributions to the study of nonlinear evolution equations,
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