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On the torsion group of elliptic curves induced
by D(4)-triples
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Abstract

A D(4)-m-tuple is a set of m integers such that the product of any
two of them increased by 4 is a perfect square. A problem of extendibil-
ity of D(4)-m-tuples is closely connected with the properties of elliptic
curves associated with them. In this paper we prove that the torsion
group of an elliptic curve associated with a D(4)-triple can be either
Z)2Z X LJ2Z or Z/2Z X Z/6Z, except for the D(4)-triple {—1, 3,4} when
the torsion group is Z/27Z x Z/4Z.

1 Introduction

Let n be a given nonzero integer. A set of m nonzero integers {a1,as,...,am}
is called a D(n)-m-tuple (or a Diophantine m-tuple with the property D(n))
if a;a; + n is a perfect square for all 1 < i < j < m. Diophantus found
the D(256)-quadruple {1,33,68,105}, while the first D(1)-quadruple, the set
{1, 3,8,120}, was found by Fermat (see [1], [2]).

One of the most interesting questions in the study of D(n)-m-tuples is
how large these sets can be. In this paper we will examine sets with the prop-
erty D(4). Mohanty and Ramasamy [17] were first to achieve a significant
result on the nonextendibility of D(4)-m-tuples. They proved that a D(4)-
quadruple {1,5,12,96} cannot be extended to a D(4)-quintuple. Kedlaya [14]
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later proved that if {1,5,12,d} is a D(4)-quadruple, then d has to be 96.
Dujella and Ramasamy [9] generalized this result to the parametric family of
D(4)-quadruples {Fsy, 5F5y, 4Fok o, 4Lok Fyr12} involving Fibonacci and Lu-
cas numbers. Other generalization to a two-parametric family of D(4)-triples
can be found in [13]. Dujella [6] proved that there does not exist a D(1)-
sextuple and that there are only finitely many D(1)-quintuples. By observing
congruences modulo 8, it is not hard to conclude that a D(4)-m-tuple can
contain at most two odd numbers (see [9, Lemma 1]). Thus, the results from
[6] imply that there does not exist a D(4)-8-tuple and that there are only
finitely many D(4)-7-tuples. Filipin [10, 11] significantly improved these re-
sults by proving that there does not exist a D(4)-sextuple and that there are
only finitely many D(4)-quintuples.

Let {a,b,c} be a D(4)-triple. Then there exist nonnegative integers r, s, ¢
such that
ab+4=1% ac+4=s5% bc+4=1 (1)

In order to extend this triple to a quadruple, we have to solve the system
ar+4=0, ba+4=0, cx+4=0. (2)
We assign to the system (2) the elliptic curve
E:y? = (ax +4)(bx + 4)(cx +4). (3)

The purpose of this paper is to examine possible forms of torsion groups of
elliptic curves obtained in this manner. Additional motivation for this paper is
a gap found in the proof of [4, Lemma 1] concerning torsion groups of elliptic
curves induced by D(1)-triples. Namely, if {a’,b’,c'} is a D(1)-triple, then
{2d’,2V",2¢'} is a D(4)-triple. Thus, the proof of Lemma 2 in present paper
also provides a valid proof of [4, Lemma 1].

2 Torsion group of E

The coordinate transformation

NN |
I = v
abe’? " abe

applied on the curve E leads to the elliptic curve
E':y? = (x + 4bc)(x + 4ac)(z + 4ab).
There are three rational points on E’ of order 2:

A/ = (_4bc7 0)7 B/ = (_4ac7 0)7 C/ = (_4a’b’ 0)’
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and also other obvious rational points
P" = (0,8abc), S’ = (16,8rst).

It is not so obvious, but it is easy to verify that S’ € 2E’(Q). Namely,
S’ = 2R’, where

R' = (4rs + 4rt + 4st +16,8(r + s)(r + t)(s + t)).

In this section we will first examine one special case and after that we may
assume without the loss of generality that a, b, ¢ are positive integers such that
a < b < c. Since {—a,—b,—c} induces the same curve as {a,b,c}, a problem
may arise only when there are mixed signs. It is easily seen that the only
such possible D(4)-triple is {—1,3,4} (and the equivalent one {—4,—3,1}).
The elliptic curve associated with this D(4)-triple has rank 0 and the torsion
group isomorphic to Z/2Z x Z/47Z. In this special case B’ € 2E’(Q), more
precisely B’ = 2P’ so the point P’ is of order 4. Note that in this case the
point R’ is also of order 4 since R’ = P’ + A’ and thus 2R’ = 2P’.

Thus, we assume from now on that a,b, ¢ are positive integers such that
a<b<e

Lemma 1. If {a,b,c} is D(4)-triple, then ¢ = a+b+2r orc> ab+a+b+1 >
ab.

Proof. By [5, Lemma 3], there exists an integer
e=4(a+ b+ c)+ 2(abc — rst) (4)

and nonnegative integers z,y, z such that

ae+16 = .’L‘2, (5)
be+16 = o7, (6)
ce+16 = 22 (7)

and ¢ = a + b+ $ + §(abe + ray). From (7), it follows that e > 0 (the case
e = —1 implies ¢ < 16, but the only such D(4)-triple {1, 5,12} does not satisfy
(5) and (6)). For e = 0 we get ¢ = a + b + 2r, while for e > 1 we have
c> iabe +a+0b+ . By observing congruences modulo 8, we can easily prove
that at most two of the integers a, b, ¢ are odd, which implies that abc — rst is
even. Hence, from (4) we conclude that e = 0 (mod 4). It follows e > 4 and
thus ¢ >ab+a+b+ 1. O
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Remark 1. Filipin (see [12, Lemma 4]) proved that ¢ = a+b+2r or ¢ > iabe.
Lemma 1 may be considered as a slight improvement of that result.

Remark 2. Lemma 1 implies ¢ > a+b+2r. Indeed, the inequality ab+a+b+1 >
a+ b+ 2r is equivalent to (r — 3)(r + 1) > 0, and this is satisfied for all D(4)-
triples with positive elements.

Remark 3. The statement of Lemma 1 is sharp the in sense that the inequality
¢ > ab cannot be replaced by ¢ > (1 + ¢)ab for any fixed € > 0. Indeed, for an
integer k > 3, if we put a = k% — 4, b = k? + 2k — 3, c = k* + 2k3 — 3k% — 4k,
then {a,b,c} is a D(4)-triple and limy_o 5 = 1.

In the next lemma we show that E’ cannot have a point of order 4. We
follow the strategy of the proof of an analogous result for D(1)-triples [4,
Lemma 1]. However, we have noted a serious gap in the proof of [4, Lemma
1]. Namely, [4, formula (7)] should be (3% —1)? = b(4¢f? — a?b — 2a(1 + 5?)),
instead of (82 — 1)2 = b(4c — a®b — 2a(1 + (?)), so later arguments are not
accurate in the case § # 1. Here we will prove more general result, but by
taking a,b,c to be even, in the same time we fill the mentioned gap in the
proof of [4, Lemma 1].

Lemma 2. A',B',C" ¢ 2E'(Q)

Proof. It A’ € 2E'(Q), then the 2-descent Proposition [15, 4.2, p.85] implies
that ¢(a — b) is a square. But ¢(a — b) < 0, a contradiction. Similarly, B’ ¢
2F'(Q). If C' € 2E/(Q), then

alc—b) = X2 (8)
bc—a) = Y? (9)
for integers X and Y.
If {a,b,c} is a D(4)-triple where @ < b < ¢, then ¢ = a + b+ 2r or
c>ab+a+b+1by Lemma 1.
Assume first that ¢ = a + b+ 2r . From (8) and (9), we get that a = ka?,

c—b=ky? b=12% c—a=Ilu?, where k, 1, x,y, z,u are positive integers. We
have ¢ = ka? + lu® = ky? + 122, and from ¢ = a + b + 2r we get

2r = k(y* — 2?) = l(u? — 7). (10)
By squaring (10), we obtain

4r% =16 + 4ab = 16 + 4klx?2* = k*(y* — 2%)? = > (u® — 2*)?,
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which implies that k& € {1,2,4} and [ € {1,2,4}. Since kl is not a perfect
square (otherwise (2r)2 = 16 4 (2z2v/kl)? which implies 2r = 5), we may
take without loss of generality Kk = 1, l = 2 or k = 2, [ = 4. For k = 1,
I = 2, we have 4r2 = 16 + 82222, which implies r? = 4 + 22222, which leads
to the conclusion that r is even and zz is even. Therefore, r*> = 4 (mod 8)
and r = 2 (mod 4). But from 2r = 2(u? — 22) we conclude u? — 2% = 2
(mod 4), and that is impossible. If k = 2, [ = 4, then 4r? = 16 + 321222,
which implies r? = 4 + 82222, thus 72 = 4 (mod 8) and r = 2 (mod 4). But
from 2r = 2(y? — 2?) we conclude y? — 2% = 2 (mod 4), and that is impossible.

Assume now that ¢ > ab+a+b+ 1> abd.
Let us write the conditions (8) and (9) in the form
ac—ab = s> —1?=(s—a)? (11)
be—ab = t* —r? = (t - B)?, (12)
where 0 < a < s, 0 < 8 < t. Then we have
r? = 2sa —a® = 2t3 — B2 (13)
From (13) we get
4(bc+4)B% = (ab+ 4+ 2)?
and
(B2 —4)% = b(4cB? — a®b — 2a(4 + 2)). (14)
From (14) we conclude that either § =1 or 8 =2 or 82 > Vb + 4.

It 8= 1, then

b(4c — a*b —10a) = 9 (15)
which implies b | 9, but that is possible only for b = 9 (there are no D(4)-triples
with b < 4). This implies a = 5, but (15) then gives ¢ = 69 and {5,9,69} is
not a D(4)-triple.

If 8 =2, then from (14) we find that

a’b + 16a
= 1
¢ 16 (16)

Now we have

1 1
s?=ac+4= E(a?’b + 16a* + 64) = 1—6(a2r2 + 12a® + 64).

N2 ) .
Hence s? > (%) and 2 < (‘“TH;) . Therefore we have to consider several
cases:
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1. s2 = (%)2, where n is odd. That is equivalent to

2a(rn — 6a) = 64 — n?. (17)

The left hand side of (17) is even and the right hand side is odd, a

contradiction.

2. 52 = (%*2)2, or equivalently a(r — 3a) = 15. The cases a < 3 and (16)
imply that ¢ < b. The case a = 5 gives the triple {5,64, 105} that does
not satisfy ¢ > ab (c equals a+b+2r), and a = 15 leads to 15b+4 = 46>
which has no integer solutions.

3. 82 = (%)2, or equivalently a(2r — 3a) = 12. We conclude that a must
be even and we get triples: {2,16,6} (with ¢ < b) and {6, 16,42} (with
¢=a+ b+ 2r), so we can eliminate this case.

4. % = (%IG)Z is equivalent to 3a(r — a) = 7, which is clearly impossible.

Thus, we may assume that 52 > Vb + 4, which implies
B > max{Vb,2} (18)
The function f(3) = t? — (t — 3)? is increasing for 0 < 8 < t. Thus we have
ab=1>—(t—B)? —4>2tVb— Vb —4 > 2VbcVb — Vb — 4,

which implies ab > vbev/b, because vb(y/cvb—1) > 4 (since b > 4 and ¢ > 12,
which follows from the fact that {3,4, 15} and {1,5, 12} are D(4)-triples with
smallest b and c¢ respectively). This further gives

¢ < a®Vb. (19)

We will use (4) to define the integer d_ as

bc — rst
d_ =Z=a+b+c+%
Then d_ # 0 (since ¢ # a + b+ 2r) and {a,b,c,d_} is a D(4)-quadruple. In
particular,
2
—at
ad+4=<rsza> . (20)
Moreover,

c=a+b+d_+ %(abd_ +/(ab+4)(ad_ +4)(bd_ +4)) > abd_  (21)



TORSION GROUP OF ELLIPTIC CURVES INDUCED BY D(4)-TRIPLES 85

(see the proof of Lemma 1). By comparing this with (19), we get

d (22)

<%
-<
Therefore, we have d_ < a < b which implies that b is the largest element in

the D(4)-triple {a,b,d_}. Thus, by Remark 2, b > a+d_ 4+ 2 /ad_ +4 or
equivalently d_ < a 4+ b — 2r. Let us define also

d=a+b+d_+ %(abd, —V/(ab + 4)(ad_ + 4)(bd_ + 4)).

We have

_ %(ab +4)(ad_ +4)(bd_ +4)

= (a+b+d_)?—4ab—4ad_ —4bd_ — 16
= (a+b—d_)*—4*=(a+b+2r—d_)(a+b—2r—d_)>0.

1
cd = (a+b+d_+§abd_)2

This implies
1
c<2a+b+d_+ §abd_) < 4b+ abd_ < 2abd_. (23)

(we use here ad_ > 4 which is true because {a,d_} is a D(4)-pair). Let us
denote p = ™52, Then p > 0 and, by (20), we have ad_ + 4 = p?. In order
to estimate the size of p, we also define p’ = %‘” Then

1
pp’ = Z(a2bc + 4ac + 4ab + 16 — a’bc — 4a?) = a(b+ ¢ — a) + 4,

and
p<2a(c—|—b)<c—|—b:£+@7
2at Voe Vb Ve
2
- (ac+4):§.
2rs T

Furthermore, we have

Ve S_T\/E—S\/B_ 4c —4b 4c 2./c

N rVb(ry/c + sV/b) BT

and thus

Vb o abvb

Ve 2e (24)
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The inequality (19) implies that ¢ < asz, and this is equivalent to

Y
Ve abvhb
which gives
b
P> ve £ (25)
Vb Ve
By comparing both estimates for p, we get
b
‘p _ e < £ (26)
vb| Ve

Let us now define an integer o by
2d_B=p+a.

Assume that « = 0. Then (20) implies that d_(48%d_ — a) = 4, thus
d_ € {1,2,4}. We have three cases:

1. d_ =1, which implies 2 = p. With this assumption, (12) gives

r? 4+ =tp, (27)

v
4
while c satisfies the inequalities
ab<ab+a+b+1<c<ab+2a+2b+2<ab+4b < 2ab
(see Lemma 1 and (23) with d_ = 1). The left hand side of (27) is

® + 2bc + b2 a 1 1 a
b+44+ —m——— b+4+-+14+ -+ — b+ — .
<ab+4+ Tbe < ab+ +4+ +2+4a<a+4+6

On the other hand, by (24), the right hand side of (27) is

Ve 2\/?:) 2¢
> Vbe | ~—= — =c——>ab+a+b+1—4=ab+a+b-3.
(\/E abVvb ab

By comparing these two estimates for (27), we get

3
b+1a<9,

but this is in contradiction with b > 12 (b is the largest element in the
D(4)-triple {d_,a,b}).

We treat similarly the other two cases.
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2. d_ = 2, which implies 45 = p, and this leads to

b 3
5 + g(l < 8,
which is in contradiction with b > 16 (D(4)-triple of the form {2, a, b}

with the smallest b is {2,6,16}).
3. d_ =4 is equivalent to 84 = p, which leads to

bilacs

T TR
but the only D(4)-triple of the form {4,a,b} with b < 35 is {4, 8,24},
which does not satisfy (22), so we have a contradiction here as well.

Therefore, we may now assume that o # 0. We will estimate 2d_t3 and
compare it with c¢. First we will prove
2p
B2 < L2 (28)
c
Since 8 < t, and the case 8 =t — 1 gives b(c — a) = 1, which is impossible, we
conclude that ¢t > 8+ 2. This implies t8 > 8%+ 28, and ab—t3 > 25 —4 >0
because of (18). Hence, we get ¢5 < ab, and this clearly implies (28).

Therefore,
d_a?b

0<d_p%< < a.

From 2t = r? + 32 > ab+4, we get 2d_t/3 > abd_ +4d_. On the other hand,

d_a%b d_a%b

d_f?> < —— < 2d_tf3 < abd_ + 4d_ + < abd_ +4d_ +a.
&

By combining these two estimates, we get
abd_ +4d_ < 2d_tf < abd_ + 4d_ + a. (29)
By comparing (29) with (21) and (23), we conclude that
|2d_t — ¢| < 4b. (30)

By combining the estimate (26) for p with the trivial estimate for «, namely
la] > 1, we get
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Note that ad_ > 26. Namely, only D(4)-pairs such that ad_ < 26 are
{1,5},{1,12},{1,21},{2,6},{3,4} and {3,7}. From first three pairs, respect-
ing (21) and (22), we find triples

{5,12,96}, {12, 21,320}, {12, 96, 1365}, {21, 32, 780}, {21, 320, 7392}
that do not satisfy (8) nor (9). From the last three pairs we cannot obtain a

D(4)-triple because of (22).
Finally, we obtain

_ Ve e NG
[2d_t5 — | = [2d_tB — te + 12 —¢| >t ]2d,5 -

Ve _
“tﬁ C‘

:t‘zd,ﬁ—% . C)Zt(l—ﬁ)—(t%—c)

:t(l—%>—c( 1+4-1 >\/b>—b—c<m—l)
>

which contradicts (30). O
Theorem 3. E'(Q)iors ~ Z/27 X Z/27 or 7/27 x Z]6Z.

I

~
\s
I

Proof. By Mazur’s theorem [16] which characterizes all possible torsion groups
for elliptic curves over Q, since E’ has three points of order 2, the only pos-
sibilities for E'(Q)tors are Z/27 x Z/2kZ with k = 1,2,3,4. But Lemma 2
shows that the cases k = 2,4 are not possible for an elliptic curve induced by
a D(4)-triple with positive elements. O

Corolary 4. Let {a,b,c} be a D(1)-triple. Then the torsion group of the
elliptic curve y*> = (ax + 1)(bx + 1)(cx + 1) is either ~ Z/27 x 7./27 or
Z]27. x 7/6Z.

Remark 4. We note that an analogue of Theorem 3 and Corollary 4 is not
valid for general D(n?)-triples and their induced elliptic curves

y* = (ax + n?)(bx +n?)(cx +n?).

For example, for the D(9)-triple {8, 54,104} the torsion group of the induced
elliptic curve is Z/27Z x 7Z/47Z. Also, there are examples with torsion group
727 x 7./8Z, e.g. for the D(522084054044352064192019402)-triple

{3871249317729019929807383, 101862056999203416732147408,
217448139952121636379025175}

(there are much simpler examples with triples with mixed signs, see e.g. [7]).
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We should also mention that we do not know any example of D(1) or D(4)-

triples inducing elliptic curves with torsion group Z/27Z x Z/6Z. Indeed, it is
known that this torsion group cannot appear for certain families of D(1)-triples
(see [3, 4, 8, 18]). Again, there are examples of such curves for general D(n?)-
triples. For example, the D(294%)-triple {32,539,1215} induces an elliptic
curve with torsion group Z/27 x 7 /6Z.
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