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Non-commutative finite monoids
of a given order n ≥ 4

B. Ahmadi, C.M. Campbell and H. Doostie

Abstract

For a given integer n = pα1
1 pα2

2 . . . p
αk
k , (k ≥ 2), we give here a

class of finitely presented finite monoids of order n. Indeed the monoids
Mon(π), where

π = 〈a1, a2, . . . , ak|a
p
αi
i
i = ai, (i = 1, 2, . . . , k), aiai+1 = ai, (i =

1, 2, . . . , k − 1)〉.
As a result of this study we are able to classify a wide family of the k-
generated p-monoids (finite monoids of order a power of a prime p). An
interesting difference between the center of finite p-groups and the center
of finite p-monoids has been achieved as well. All of these monoids are
regular and non-commutative.

1. Introduction

The study of finite monoids is of interest because of its applications in several
branches of science, for instance, its uses and advantages in mathematics,
computer science and finite machines are well-known. So identifying a finite
monoid of a given positive integer n could be significant. In this paper we
present a class of finite monoids for every integer n.

First of all we give a short history on the finitely presented semigroups and
monoids. Let A be an alphabet. We denote by A+ the free semigroup on A
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consisting of all non-empty words over A, and by A∗ the free monoid A+∪{1},
where 1 denotes the empty word. A semigroup (or monoid) presentation is
an ordered pair 〈A|R〉, where R ⊆ A+ × A+ (or R ⊆ A∗ × A∗). A semigroup
(or monoid) presentation S is said to be defined by the semigroup (or monoid)
presentation 〈A|R〉 if S ∼= A+/ρ (or S ∼= A∗/ρ), where ρ is the congruence
on A+ (or A∗) generated by R. Note that the semigroup presentations for a
semigroup S are precisely monoid presentations (without the trivial relation
1=1) for the monoid S1 obtained from S by adjoining an identity, whether or
not S already has one.

Here, our notation is standard and we follow [5, 11, 12]. one may con-
sult [10] for more information on the presentation of groups. To distinguish
between the semigroup, the monoid and the group defined by a presentation
π = 〈A|R〉, we shall denote them by Sg(π), Mon(π) and Gp(π), respectively.

On comparing the semigroup, monoids and groups defined by a presenta-
tion the articles [1, 2, 3, 9] studied certain interesting classes of such algebraic
structure. The references [6, 7] study two special and outstanding classes of
semigroups. For the recently obtained results on the study of subsemigroups
and the efficiency of semigroups one may see the interesting results [4, 8].

Considering the presentation

π = 〈a1, a2, . . . , ak|a
p
αi
i
i = ai, (i = 1, . . . , k), aiai+1 = ai, (i = 1, . . . , k − 1)〉,

it is clear that Gp(π) is a cyclic group of order pα1
1 − 1. Our results on the

Sg(π) and Mon(π) are the following:

Theorem A. For every integer n ≥ 4, the monoid Mon(π) is of order n and
the semigroup Sg(π) is order n − 1. Moreover, Mon(π) is non-commutative
and regular monoid but is not an inverse monoid, for every n.

Corollary B. For p1 = p2 = · · · = pk = p, if m = α1 + α2 + · · · + αk is a
partition of the integer m ≥ 2, Mon(π) is a p-monoid (monoids of order pm).
Moreover, all the different monoids are non-isomorphic for all partitions of
m.

2. The proofs

In this section, we prove Theorem A and Corollary B.

Proof of Theorem A. First we show that the relation alia
m
j = ali holds for

every positive integers l and m, where 1 ≤ i < j ≤ k. Since aiai+1 = ai then
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we get alia
m
i+1 = ali. Therefore,

alia
m
j = aliai+1a

m
j = aliai+1ai+2a

m
j = · · · = aliai+1ai+2 · · · aj−2aj−1amj

= aliai+1ai+2 · · · aj−2aj−1
= aliai+1ai+2 · · · aj−2
= · · ·
= aliai+1ai+2

= aliai+1

= ali.

This implies that every elements of Mon(π) may be uniquely presented in

the form atkk a
tk−1

k−1 · · · a
t1
1 , where 0 ≤ ti ≤ pαii − 1. Thus Mon(π) is of order

pα1
1 pα2

2 · · · p
αk
k = n.

To prove the regularity of the monoid Mon(π), let w = atkk a
tk−1

k−1 · · · a
ti
i be

an arbitrary element of Mon(π), where i is the least positive integer such that
ti 6= 0. Two cases occur:

Case 1. If ti + 1 < pαii then we set w′ = a
p
αi
i −ti−1
i . So,

ww′w = (atkk a
tk−1

k−1 · · · a
ti
i )a

p
αi
i −ti−1
i (atkk a

tk−1

k−1 · · · a
ti
i )

= atkk a
tk−1

k−1 · · · a
p
αi
i −1
i atkk a

tk−1

k−1 · · · a
ti
i

= atkk a
tk−1

k−1 · · · a
p
αi
i −1
i atii

= atkk a
tk−1

k−1 · · · a
p
αi
i +ti−1
i

= atkk a
tk−1

k−1 · · · a
ti
i

= w.



Non-commutative finite monoids of a given order n ≥ 4 32

Case 2. If ti + 1 = pαii we may set w′ = a
p
αi
i −1
i . Then,

ww′w = (atkk a
tk−1

k−1 · · · a
ti
i )a

p
αi
i −1
i (atkk a

tk−1

k−1 · · · a
ti
i )

= atkk a
tk−1

k−1 · · · a
p
αi
i +ti−1
i atkk a

tk−1

k−1 · · · a
ti
i

= atkk a
tk−1

k−1 · · · a
ti
i a

tk
k a

tk−1

k−1 · · · a
ti
i

= atkk a
tk−1

k−1 · · · a
ti
i a

ti
i

= atkk a
tk−1

k−1 · · · a
ti+1
i ati−1i

= atkk a
tk−1

k−1 · · · a
p
αi
i
i ati−1i

= atkk a
tk−1

k−1 · · · a
ti
i

= w.

Every inverse monoid is indeed a regular monoid however, the converse is
not the case in general. Here we show that the monoid Mon(π) is not an
inverse monoid, to do this we take into consideration three cases:
Case 1. There exists i, (1 ≤ i ≤ k − 1), such that pαii > 2. Then the element

ai+1ai has the inverses ati+1a
p
αi
i −2
i , where 0 ≤ t ≤ pαi+1

i+1 − 1.
Case 2. For every i, (1 ≤ i ≤ k − 1), pαii = 2 and pαkk > 2. Then the element
ai+1ai has the inverses ati+1ai, where 0 ≤ t ≤ pαi+1

i+1 − 1.
Case 3. For every i, (1 ≤ i ≤ k), pαii = 2. Then the element a1 has the
inverses a1 and a2a1. This shows that there are different inverses for some
elements of Mon(π).

Proof of Corollary B. The first part is a straightforward result of the proof
of Theorem A. To prove the second part, let m = α1 + α2 + · · · + αk and
m = β1 +β2 + · · ·+βl be different partitions of the integer m ≥ 2, where k ≥ 2
and l ≥ 2. Also, let

π1 = 〈a1, a2, . . . , ak|ap
αi

i = ai, (1 ≤ i ≤ k), aiai+1 = ai, (1 ≤ i ≤ k − 1)〉,

and

π2 = 〈b1, b2, . . . , bl|bp
βj

j = bj , (1 ≤ j ≤ l), bjbj+1 = bj , (1 ≤ j ≤ l − 1)〉,

be the related presentations for the partitions (αi)
i=k
i=1 and (βj)

j=l
j=1, respectively.

If k 6= l, then the number of generators in Mon(π1) and Mon(π2) is not equal
and hence the monoids are non-isomorphic. Now suppose k = l. Since these
partitions are different and have the same length there exists an integer r,
(1 ≤ r ≤ k), such that αr 6= βj , for every j, (1 ≤ j ≤ k). Now if f :

Mon(π1) −→ Mon(π2) is a monoid isomorphism and f(ar) = btkk b
tk−1

k−1 · · · b
t1
1 ,
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where 0 ≤ tj ≤ pβj−1, then the period(ar) is equal to the period(f(ar)). This
implies αr = βs, for an s, (1 ≤ s ≤ k), which is a contradiction.

3. Remarks

Remark 1. Let w = a
tj
j a

tj−1

j−1 · · · a
ti+1

i+1 a
ti
i be an arbitrary non-identity element

of Mon(π), where i is the least positive integer such that ti 6= 0 and j is the
greatest positive integer such that tj 6= 0, (1 ≤ i ≤ j ≤ k). Then,

CMon(π)(w) = {atjj a
tj−1

j−1 · · · a
ti+1

i+1 a
t′i
i |1 ≤ t

′
i ≤ p

αi
i − 1} ∪ {1}.

Proof. Let w′ = a
t′s
s a

t′s−1

s−1 · · · a
t′r
r be a non-identity element of Mon(π), where

r is the least positive integer such that t′r 6= 0 and s is the greatest positive
integer such that t′s 6= 0, (1 ≤ r ≤ s ≤ k). If ww′ = w′w, then

(a
tj
j a

tj−1

j−1 · · · a
ti
i )(a

t′s
s a

t′s−1

s−1 · · · a
t′r
r ) = (a

t′s
s a

t′s−1

s−1 · · · a
t′r
r )(a

tj
j a

tj−1

j−1 · · · a
ti
i ).

Three cases occur:
Case 1. i > s. Then,

(a
tj
j a

tj−1

j−1 · · · a
ti
i )(a

t′s
s a

t′s−1

s−1 · · · a
t′r
r ) = a

t′s
s a

t′s−1

s−1 · · · a
t′r
r .

Since every elements of Mon(π) have unique presentation as atkk a
tk−1

k−1 · · · a
t1
1 ,

it is necessary that tj = tj−1 = · · · = ti = 0, which is a contradiction with
w 6= 1.
Case 2. There exists l, (r < l ≤ s) such that i = l. Then,

a
tj
j a

tj−1

j−1 · · · a
ti+t

′
i

i a
t′l−1

l−1 · · · a
t′r
r = a

t′s
s a

t′s−1

s−1 · · · a
t′i
i a

t′l−1

l−1 · · · a
t′r
r .

Therefore, ti = 0, which is a contradiction.
Case 3. i = r. Then,

a
tj
j a

tj−1

j−1 · · · a
ti+t

′
i

i = a
t′s
s a

t′s−1

s−1 · · · a
t′i+ti
i .

Hence, j = s and tl = t′l, for every l, (j ≤ l ≤ i − 1). Consequently, w′ =

a
tj
j a

tj−1

j−1 · · · a
ti+1

i+1 a
t′i
i . This completes the proof.

As an important result of Remark 1 we get:

Remark 2. Mon(π) is centerless. So, there exist finite p-monoids which have
the trivial center. (In spite of the fact that finite p-groups have non-trivial
center.)
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