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On an Arithmetic Inequality

József Sándor

Abstract

We obtain an arithmetic proof and a refinement of the inequality
ϕ(nk) + σk(n) < 2nk, where n ≥ 2 and k ≥ 2. An application to
another inequality is also provided.

1 Introduction

If n ≥ 1 is an integer, then let ϕ(n) denote the classical Euler totient function,
and σa(n) be the sum of ath powers of divisors of n (with a a real number).

Recently [2] H. Alzer and the author have shown that the divisibility

nk|(ϕ(nk) + σk(n)) (1)

is not solvable for any integers n ≥ 2 and k ≥ 2. For k = 2 this settled a
conjecture of Adiga and Ramaswamy [1].

The proof of our result is based, besides arithmetical properties of ϕ and
σk, also on a Weierstrass product-type inequality, whose proof used methods
of Mathematical analysis (as differentiability, and convex functions). In fact,
the impossibility of (1) for n ≥ 2 and k ≥ 2, follows from the inequality

ϕ(nk) + σk(n) < 2nk, n ≥ 2, k ≥ 2. (2)

The aim of this note is to provide a completely arithmetic proof of inequal-
ity (2), and in fact to offer an improvement of this inequality.
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We shall use also Dedekind’s arithmetical function, defined by

ψ(n) = n
∏
p|n

(1 + 1/p) for n ≥ 2, ψ(1) = 1.

It is clear that ψ, like ϕ and σk, is a multiplicative function, i.e. satisfies
ψ(ab) = ψ(a)ψ(b) for (a, b) = 1.

2 Lemmas and Main Result

In order to prove inequality (2) we need two auxiliary results.
The first lemma is stated in another form also in [2]; we present here its

short proof for the sake of completeness.

Lemma 2.1. For all integers n ≥ 2 and k ≥ 2 we have

σk(n)

nk
≤ σ2(n)

n2
<

n2

ϕ(n)ψ(n)
. (3)

Proof. One has

σk(n) =
∑
d|n

dk =
∑
d|n

(n
d

)k
= nk

∑
d|n

1

dk
,

which shows that σk(n)
nk is decreasing with respect to k. This leads to the first

inequality of (3). Let now

n =

r∏
j=1

p
aj
j ≥ 2

be the prime factorization of n. Then

σ2(n)

n2
=

r∏
j=1

p
2aj+2
j − 1

p
2aj
j (p2j − 1)

=

r∏
j=1

(
p2j ·

1− 1/p
2aj+2
j

p2j − 1

)

<
∏
p|n

p2

p2 − 1
=
∏
p|n

1(
1− 1

p

)(
1 + 1

p

) =
n2

ϕ(n)ψ(n)
.

This settles the second inequality in (3). �

Lemma 2.2. For all n ≥ 1 one has the inequality

2
ψ(n)

n
≥ 1 +

n

ϕ(n)
. (4)
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Proof. Inequality (4) is stated without proof in [5]. Here we shall provide a
complete proof.

It is easy to see that for n = 1 and n = p - prime, inequality (4) holds true;
i.e. 2p+1

p ≥ 1 + p
p+1 is valid, with equality only for p = 2. Since

ψ(pa)

pa
=
ψ(p)

p
and

ϕ(pa)

pa
=
ϕ(p)

p

for any primes p and integers a ≥ 1, clearly it is sufficient to prove (4) when n
is squarefree number, i.e. a product of distinct primes. Let us assume that n
is the least squarefree integer, for which (4) is false, and let p be the greatest
prime factor of n. Then n can be written as n = p · m, where (p,m) = 1.
Let q denote the greatest prime factor of m. Then q < p. On the other hand,
remark that

m

ϕ(m)
=

∏
s|m, s prime

s

s− 1
≤ 2

1
· 3

2
· 4

3
. . .

s

s− 1
. . .

q

q − 1
= q,

so
m

ϕ(m)
≤ q. (5)

Now, by the definition of n one has

2
ψ(n)

n
< 1 +

n

ϕ(n)
,

i.e.

2
p+ 1

p
· ψ(m)

m
< 1 +

p

p− 1
· m

ϕ(m)
. (6)

Since m < n and m squarefree, by definition of n one has

2
ψ(m)

m
≥ 1 +

m

ϕ(m)
. (7)

Now multiplying both sides of (7) with p+1
p , and by taking into account of

(6) we can write

1 +
p

p− 1
· m

ϕ(m)
>
p+ 1

p
+
p+ 1

p
· m

ϕ(m)
,

i.e.
1

p(p− 1)
· m

ϕ(m)
>

1

p
. (8)
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From (8) we get

p− 1 <
m

ϕ(m)
≤ q

by relation (5). Since q < p, we get the contradiction p − 1 < q < p. This
proves Lemma 2.2. �

Theorem 2.1. For all n ≥ 2 and k ≥ 2 one has the inequality

ϕ(nk)

nk
+
σk(n)

nk
<
ϕ(n)

n
+

n2

ϕ(n)ψ(n)
≤ φ+

2

1 + φ
< 2, (9)

where φ = ϕ(n)
n < 1.

Proof. The first inequality of (8) follows by the remark that

ϕ(nk)/nk = ϕ(n)/n,

and by Lemma 2.1. For the second inequality use Lemma 2.2 in the form

n

ψ(n)
≤ 2

1 + n/ϕ(n)
. (10)

Finally, the last inequality is equivalent to(
ϕ(n)

n

)2

<
ϕ(n)

n
,

i.e. ϕ(n) < n, which is well-known. This concludes the proof of the theorem.
�

Remark 1. By the methods applied here, we have obtained a completely
arithmetic study of problem (1) (see [2]).

An application. Let d(n) denote the number of distinct divisors of n. The
following theorem gives an improvement of a result from [3]:

Theorem 2.2. For all n ≥ 2 not a prime number and k ≥ 2 one has the
inequalities

σk(n)

nk
<

2n

n+ ϕ(n)
<
d(n)

2
. (11)

Proof. The first inequality follows by a combination of relations (3) and (10).
As the second inequality may be written as nd(n) + d(n)ϕ(n) > 4n, remark
that this is true for d(n) ≥ 3, since by a well known inequality of R. Sivara-
makrishnan [4] one has d(n)ϕ(n) > n for all n > 1. Clearly, d(n) = 2 only if
n is a prime, so the result follows. �



On an Arithmetic Inequality 261

Remark 2. The weaker inequality of (11) , in case when n has at least
two distinct prime factors, appears in paper [3], as a corollary to more general
results.
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262 József Sándor


