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Construction of the smallest common coarser
of two and three set partitions

Radovan Pot̊uček

Abstract

This paper is inspired by a text of the book [7] (”Úvod do algebry”
in Czech, ”Introduction to Algebra” in English) of the authors Ladislav
Kosmák and Radovan Pot̊uček. They followed the great work of Profes-
sor Otakar Bor̊uvka in the field of the partition theory, groupoids and
groups and gave them in the context to contemporary modern algebra.
Academian Bor̊uvka have deduced and proved many results concerning
the partition theory in his publications.

His first works [1] and [2] were published during World War II and
his monographs [3] and [4] were released in the post-war years.

In this paper we deal with a construction of the smallest common
coarser of two set partitions associated with equivalence relations, we
give a special relation used in the construction and an illustration of
blocks of this coarser.

Remark 1. Algebra of binary relations was worked up by Jacques Riguet in
1948 (see [8], the translation into Russian has its origin from 1963). Professor
Bor̊uvka was rightfully proud himself on his theory of partitions and an appli-
ance of the algebra of relations has never used. From twenty-seven chapters
of the book [4] is six devoted to the general theory of partitions and in the
chapter 14 and 21 – 24 are paragraphs dealing with partitions in the theory of
grupoids and groups.
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In recent decades there has been a rapid development of the theory and
applications of algebraic structures but also the algebraic hyperstructures. In
this context, we may refer to interesting articles [5] of Cristine Flaut and [6]
of Jan Chvalina, Šárka Hošková-Mayerová, and Dehghan Nezhad.

First, let us briefly recall some basic and well-known terms, notions and
facts, without proofs, concerning partitions and equivalence relations.

Definition 1. A partition of a set M is a collection S of nonempty subsets
of M , called blocks, parts or cells of the partition, such that:

1. All sets in S are pairwise disjoint, i.e. ∀S1, S2 ∈ S : S1 ∩ S2 = ∅ when
S1 6= S2.

2. The union of all the sets forms the whole set M , i.e.
⋃

Si∈S
Si = M .

Definition 2. Let R,S be partitions of a set M and let for every X ∈ R
there exists such Y ∈ S that X ⊂ Y . Then the partition S is said to be a
coarser partition than R, the partition R is said to be a finer partition than
S, and we write R @ S.
If it holds R @ S, we also say that the partition R is a refinement of the
partition S.

Definition 3. A meet of two partitions R,S of a set M , denoted by R u S,
is a set of all intersections X ∩ Y where X ∈ R, Y ∈ S.

Definition 4. A power set of a set M , denoted P(M), is the set of all subsets
of M , i.e. for any sets M and X it holds: X ∈ P(M) if and only if X ⊆M .

Theorem 1. For any parts A,B, C of a set P(M) it holds:

1. A u B @ A, A u B @ B.

2. If C @ A and C @ B, then C @ A u B.

Theorem 2. If R,S are partitions of a set M such that R @ S and S @ R,
then R = S.

Definition 5. An equivalence relation on a set M is a relation R on M such
that:

1. (x, x) ∈ R for all x ∈M , i.e the relation R is reflexive.

2. If (x, y) ∈ R, then (y, x) ∈ R, i.e. the relation R is symmetric.

3. If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R, i.e. the relation R is transitive.

An equivalence class of an element x ∈M is defined as the set {y ∈M ; (x, y) ∈
R}.
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Remark 2. Denote an identity relation {(x, y) ∈ M ×M ; x = y} by E, an
inverse relation {(y, x) ∈ M ×M ; (x, y) ∈ R} by R−, and a composition of
relations R ◦ R = {(x, z) ∈ M ×M ; ∃ y ∈ M : (x, y) ∈ R ∧ (y, z) ∈ S} by
R2, we can write reflexivity in the form E ⊂ R, symmetry by the equality
R = R−, and transitivity as R2 ⊂ R.

Theorem 3. Each partition R of a set M induces an associated equivalence
relation R on M , and conversely each equivalence relation R on M induces
an associated partition R of M , denoted by M/R, into equivalences classes.
Thus there is a bijection from the set of all possible equivalence relations on
M to the set of all partitions of M .

Now, let us come to our main topic:

Theorem 4. For equivalence relations R,S on a set M it holds R ⊂ S if and
only if M/R @ M/S.

Proof. Let R ⊂ S and let a ∈ M . Then for each x ∈ M , such that xRa, we
have xSa, thus Ra ⊂ Sa, i.e. M/R @ M/S.

When contrariwise M/R @ M/S, we get Ra ⊂ Sa for each a ∈ M , and
thus from xRa it follows xSa.

Theorem 5. Let R1,R2 be two partitions of a set M and let

R = (R1 uR2) r {∅}.

Then R is a partition of M and it holds:

1. R @ R1, R @ R2.

2. If S is a partition of M such that S @ R1 and S @ R2, then S @ R.

Proof. If A,B ∈ R, then there exist sets A1, B1 ∈ R1, A2, B2 ∈ R2, such that
A = A1 ∩ A2, B = B1 ∩ B2. If A 6= B, then there exists k ∈ {1, 2}, such
that Ak 6= Bk, so Ak ∩ Bk = ∅, and thus A ∩ B = ∅. By Definition 1, for
any x ∈M there exists a block X1 of the partition R1 and a block X2 of the
partition R2, both the blocks containing the element x, so x ∈ X1 ∩X2 ∈ R.
The statements 1. and 2. follow from Theorem 1.

Definition 6. The partition R from Theorem 5 is called the greatest common
refinement of the partitions R1,R2 and is denoted by R1 ∧R2.

Theorem 6. Let R1,R2 be two partitions of a set M and let S0 is a meet of
a system Υ of all partitions of M , that all are coarser than partitions R1 and
R2. Then

S = S0 r {∅}
is a partition of M and it holds:
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1. R1 @ S, R2 @ S.

2. If T is any partition of M that is coarser than both the partitions R1,R2,
then S @ T .

Proof. As R1 @ R, R2 @ R for each R ∈ Υ, it holds, by generalized Theorem
5, R1 @ S, R2 @ S.

If T ∈ Υ, then T is coarser then the meet S0 by its definition, so we get
S @ T .

Remark 3. The partition S from Theorem 6 is thus the smallest common
coarser of the partitions R1,R2. A construction of an equivalence relation,
which determine this partition, is much more difficult than in a case of the
greatest common refinement. We give the construction of the smallest common
coarser in the following theorems.

Theorem 7. Let R,S be equivalence relations on a set M and let a relation
TR on M is defined this way: (x, y) ∈ TR if and only if there exists such a
natural number k that

(x, y) ∈ (RSR)k.

Then TR is the equivalence relation.

Proof. Since the relation R,S are reflexive, it holds

E ⊂ (RSR)n

for all natural number n, thus E ⊂ TR.
As the relation R,S are symmetric, we have

(RSR)− = R−S−R− = RSR,

and hence [(RSR)n]− = (RSR)n for all natural numbers n, so T−R = TR.
A transitivity of the relations R,S implies that for any natural numbers

k, l it holds

(RSR)k(RSR)l = (RSR)k+l,

so the relation TR is transitive.

Remark 4. From a definition of the relation TR it follows that

TR =

∞⋃
k=0

(RSR)k, where (RSR)0 = E.
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Theorem 8. The partition T determined by the equivalence relation TR from
Theorem 7 is a common coarser of the partitions R,S associated with the
equivalence relations R,S.

Proof. The reflexivity of the relations R,S implies

R = RE ⊂ RS = RSE ⊂ RSR ⊂ (RSR)n ⊂ TR,

S = ESE ⊂ RSR ⊂ (RSR)n ⊂ TR

for all natural numbers n. Hence R ⊂ TR a S ⊂ TR, and by Theorem 2 we
have

R @ T , S @ T .

Theorem 9. At a notation used in Theorem 8, let V is an arbitrary common
coarser of the partitions R,S. Then

T @ V,

hence T is the smallest common coarser of the partitions R,S.

Remark 5. For the partition T from Theorem 9 we shall use a notationR∨S.

Proof. If V is an equivalence relation associated with the partition V, then it
holds R ⊂ V , S ⊂ V , thus for all natural numbers k we have

(RSR)k ⊂ V 3k.

A transitivity of the relation relace V implies that

V ⊃ V 2 ⊃ V 3 ⊃ · · · ,

so

TR =

∞⋃
k=0

(RSR)k ⊂
∞⋃
k=0

V k = V.

Hence TR ⊂ V , and by Theorem 2 we get T @ V. This proves that

T = R∨ S.

Theorem 10. Let R,S be equivalence relations on a set M and let a relation
TS on M is defined this way: (x, y) ∈ TS if and only if there exists such a
natural number k that

(x, y) ∈ (SRS)k.

Then TS = TR.
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Proof. The inclusions

RSR ⊂ S(RSR)S = (SRS)(SRS) ⊂ SRS,

SRS ⊂ R(SRS)R = (RSR)(RSR) ⊂ RSR

imply the equality
RSR = SRS,

and hence

TS =

∞⋃
k=0

(SRS)k =

∞⋃
k=0

(RSR)k = TR.

Corollary 1. Both equivalence relations TR, TS determine the same partition
R∨ S.

Remark 6. Now, we show a representation of the relation RSR, where
A1, A2, A3 are blocks of the partition R and B1, B2 are blocks of the par-
tition S, and a construction of the smallest common coarser of two partitions.
In the picture 1.1 below is schematically presented a relation

a1Rc1Sc2Ra2Rc3Sc4Ra3, i.e. a1RSRa2RSRa3, i.e. a1(RSR)2a3.

In the picture 1.2 a set M is the rectangle P1P2P3P4, A1, . . . , A4 are blocks of
the partition R, B1, . . . , B6 are blocks of the partition S, and A1∪A2, A3∪A4

are blocks of the smallest common coarser R∨ S. Two blocks of the smallest
common coarser are also presented:
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Theorem 11. Let R,S, T be equivalence relations on a set M and let a rela-
tion V1 on M is defined this way: (x, y) ∈ V1 if and only if there exists such a
natural number k that

(x, y) ∈ (RSTSR)k.

Then V1 is the equivalence relation.

Proof. Since the relations R,S, T are reflexive, it holds

E ⊂ (RSTSR)n

for all natural number n, thus E ⊂ V1.
As the relations R,S, T are symmetric, we have

(RSTSR)− = R−S−T−S−R− = RSTSR,

and hence

[(RSTSR)n]− = (RSTSR)n.

If there exist such natural numbers k, l, that

(x, y) ∈ (RSTSR)k,

(y, z) ∈ (RSTSR)l,

then

(x, y) ∈ (RSTSR)k(RSTSR)l = (RSTSR)k+l,

so the relation V1 is transitive.
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Theorem 12. Let R,S, T be equivalence relations on a set M and let a rela-
tion V2 on M is defined this way: (x, y) ∈ V2 if and only if there exists such a
natural number k that

(x, y) ∈ (TSRST )k.

Then V2 is the equivalence relation.

Proof. Is similar to the proof of Theorem 11, where the relations R and T are
mutually replaced.

Theorem 13. At a notation used in Theorems 11 and 12 it holds

V1 = V2.

Proof. The inclusions

TSRST ⊂ RS(TSRST )SR ⊂ (RSTSR)(RSTSR) ⊂ RSTSR,

RSTSR ⊂ TS(RSTSR)ST ⊂ (TSRST )(TSRST ) ⊂ TSRST,

imply the equality
RSTSR = TSRST,

and hence

V1 =

∞⋃
k=0

(RSTSR)k =

∞⋃
k=0

(TSRST )k = V2.

Theorem 14. The partition V determined by the equivalence relations V1, V2

is the smallest common coarser of the partitions R,S, T associated with the
equivalence relations R,S, T .

Proof. We have

R ⊂ RS ⊂ RST ⊂ RSTS ⊂ RSTSR ⊂ V1

and similarly S ⊂ V1, T ⊂ V1, so the partition V is the common coarser of the
partitions R,S, T .

If W is an arbitrary common coarser of the partitions R,S, T and if W
is an equivalence relation which determines this partition, then they hold the
inclusions

R ⊂W, S ⊂W, T ⊂W,

and hence for every natural number n we get

(RSTSR)n ⊂W 5n.
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Since the relation W is transitive, we have

W ⊃W 2 ⊃W 3 ⊃ · · · ,

and so

V =

∞⋃
k=1

(RSTSR)k ⊂W ∪W 2 ∪W 3 ∪ · · · = W.

By Theorem 4, we have proved that V is the smallest common coarser of the
partitions R,S, T .

Remark 7. Denote by R ∨ S the smallest common coarser of the partitions
R,S, we obtain the formulas

1. R∨ S = S ∨R,

2. R∨ (S ∨ T ) = (R∨ S) ∨ T .

as the results of Theorems 10 and 13.

At the proof of the proposition 2., it was useful to apply the equality

(R∨ S) ∨ T = T ∨ (R∨ S).

Theorem 15. For arbitrary partitions R,S of a set M they hold the equalities

R∨ (R∧ S) = R,
R∧ (R∨ S) = R.

Proof. Both propositions of the theorem follow from the relations

R∧ S @ R,
R @ R∨ S.
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Binarnyje otnošenija, zamykanija, sootvetstvija Galua, Kibernetičeskij
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