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On temporal behaviour of solutions in
Thermoelasticity of porous micropolar bodies

Marin Marin and Olivia Florea

Abstract

We consider a porous thermoelastic body, including voidage time
derivative among the independent constitutive variables. For the initial
boundary value problem of such materials, we analyze the temporal
behaviour of the solutions. To this aim we use the Cesaro means for the
components of energy and prove the asymptotic equipartition in mean
of the kinetic and strain energies.

1 Introduction

The high temperatures that act on the materials involve on these, during the
normal usage, at one moment, a heat flow. The thermal stress is determined
by the temperature distribution induced by the heat flow.

The magnitude of the thermal stress can be affected by the pertinent mate-
rial properties, as well as by the others variables which appear in the changes
of the material properties. In this analysis must be taken into account all the
failure possibilities.

These notions have an applicative character in different domains of activity,
which treat the porous materials like the geological materials, especially the
rocks and the soil, like the manufactured materials, especially the solid packed
granular, the ceramics and the pressed powder. The first researchers who
made investigations on the porous materials were Goodman and Cowin, [1],
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who presented the granular theory. The same study was researched by Cowin
and Nunziato, [2], whose aim was to discover the mechanical behaviour of
the porous solids when the matrix material is elastic and the interstices are
voids of materials. To respect this idea they introduced an additional degree
of freedom.

The theory of Cowin and Nunziato ([3]) can be applied to the non con-
ductibility thermal materials. This study is based on the material achieve
which the bulk density could be written like a product of two fields: the ma-
trix material density field and the volume fraction field (see also, [4], [5], [6]).
Iesan studied the theory of the thermoelastic materials with voids, [4], making
a direct generalization of the linear elastic body, neglecting the changes in the
volume fraction due to the internal dissipation in the material.

Chirita and Ciarletta used the method for the time-weighted surface power
function. In [7] it was studied the asymptotic behaviour of the solutions for
the periodic competition diffusion systems.The classical functions of Liapunov
are modified through some piecewise continuous functions, obtaining sufficient
conditions for the asymptotic stability of the solutions, [8].

An elegant study of the solutions temporal behaviour for the theromelastic
bodies with microstretch was made in our paper, [10], and in the paper [9] is
proved the uniform dissipation of the energy for the thermoelastic bodies with
microstretch.

In the present study we extend the Cowin and Nunziato theory to cover
the micropolar themoelastic material by adding into the set of constitutive
variables the time derivative of the voidage to include the inelastic effects.

2 Basic equations

At time t = 0 a body occupies a properly regular region, denoted by B, of the
Euclidian three-dimensional space R3. In order to admit the application of
the divergence theorem, we consider that the boundary of the properly region,
denoted by ∂B, is a sufficiently smooth surface. The closure of B is denoted
by B̄. In this paper we will study the motion of the continuum to a fixed
system of rectangular Cartesian axes Oxi, (i = 1, 2, 3) and adopt Cartesian
tensor notation. The italic indices will always assume the values 1, 2, 3,
whereas the Greek indices will range over the value 1,2. The material time
derivative is expressed with a superposed dot, and the partial derivatives with
respect to the spatial coordinates are expressed with a comma. In this paper
is used the Einstein summation on the repeated indices and is omitted the
spatial argument and the time argument of a function, when is no likelihood
of confusion.

The bulk density % could be written like a product of two fields: the matrix
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material density field γ and the volume fraction field ν:

%0 = γ0ν0,

where γ0 and ν0 are spatially constants. The motion of the micropolar ther-
moelastic body with voids is described by the independent variables:

- ui(x, t), ϕi(x, t) - the displacement and microrotation fields from refer-
ence configuration;

- θ - the change in temperature from T0, the absolute temperature of the
reference configuration, i.e. θ(x, t) = T (x, t)− T0;

- σ - the change in volume fraction measured from the reference configu-
ration volume fraction ν0, i.e. σ(x, t) = ν(x, t)− ν0.

The free energy function, in the case that the initial body is stress free,
with a null intrinsic equilibrated body force and a null flux rate, within the
linear theory, is:

Ψ =
1

2
Aijmnεijεmn +Bijmnεijγmn +

1

2
Cijmnγijγmn +

+Bijσεij + Cijσγij +Dijkφkεij + Eijkφkγij −
−αijθεij − βijθγij −mθσ + diσφi + γiθφi − (1)

−1

2
aθ2 +

1

2
ξσ2 +

1

2
Aijφiφj −

1

2
ωσ̇2.

As in [2], f = −ωσ̇ is the dissipation which takes into account of the inelastic
behaviour of the voids. Also, ω is a positive constant. Taking into account
the free energy function, using a common method, we can obtain the following
constitutive equations:

tij = Cijmnεmn +Bijmnγmn +Bijσ +Dijkφk − βijθ,
mij = Bmnijεmn + Cijmnγmn + Cijσ + Eijkφk − αijθ,
hi = Dmniεmn + Emniγmn + diσ +Aijφj − γiθ, (2)

g = −Bijεij − Cijγij − ξσ − diφi +mθ,

%η = αijεij + βijγij +mσ + γiφi + aθ,

qi = kijθ,j ,

where εij , γij and φi are the kinematic characteristics of the strain and we
have the following geometric relations:

εij = uj, i + εjikϕk, γij = ϕj, i, φi = σ, i, θ = T − T0, σ = ν − ν0. (3)

Taking into account the method use by Nunziato and Cowin in [3], the fol-
lowing fundamental equations are derived (se also, [9]): - the equations of
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motion:

tij,j + %Fi = %üi,

mij,j + εijktjk + %Mi = Iijϕ̈j ; (4)

- the balance of the equilibrated forces:

hi,i + g + %L = %κσ̈; (5)

- the energy equation:

%T0η̇ = qi,i + %S. (6)

In the above equations we have used the following notations: %-the constant
mass density;

η-the specific entropy;
T0-the constant absolute temperature of the body in its reference state;
Iij-coefficients of microinertia;
κ-the equilibrated inertia;
ui-the components of displacement vector;
ϕi-the components of microrotation vector;
ϕ-the volume distribution function which in the reference state is ϕ0;
σ-the change in volume fraction measured from the reference state;
θ-the temperature variation measured from the reference temperature T0;
εij , γij , φi- the kinematic characteristics of the strain;
tij-the components of the stress tensor;
mij-the components of the couple stress tensor;
hi-the components of the equilibrated stress vector;
qi-the components of the heat flux vector;
Fi-the components of the body forces;
Mi-the components of the body couple;
S-the heat supply per unit time;
g-the intrinsic equilibrated force;
L-the extrinsic equilibrated body force;
Aijmn, Bijmn, ..., kij-the characteristic functions of the material, and they

are prescribed functions of the spatial variable and obey the symmetry rela-
tions

Aijmn = Amnij , Cijmn = Cmnij , Aij = Aji, kij = kji. (7)

The entropy inequality implies

kijθ, iθ, j ≥ 0. (8)
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The equations (4) and (6) are analogous to the classical equations of motion
and, respectively, to the balance equation, whereas the new balance of equi-
librated force (5) can be motivated by a variational argument as in [2]. We
assume that the functions coefficients %, κ and a and the above constitutive
coefficients are continuous differentiable functions on closure B̄ of B. More-
over, we assume that %, κ and a are strictly positive functions on B̄, that
is

%(x) ≥ %0 > 0, %0 = const

κ(x) ≥ κ0 > 0, κ0 = const (9)

a(x) ≥ a0 > 0, a0 = const

The conductivity tensor kij is assumed that it is symmetric, positive definite
and satisfies the inequalities:

kmθ, iθ, j ≤ kijθ, iθ, j ≤ kMθ, iθ, j . (10)

Here we note whit km and kM the minimum, respectively, maximum of the
conductivity tensor.

Taking into account the constitutive equation (2)6 and the Schwarz’s
inequality, from (10) we obtain:

qiqi = (kijθ, j) qi ≤ (kijθ, iθ, j)
1/2

(kmnqmqn)
1/2 ≤ (11)

≤ (kijθ, iθ, j)
1/2

(kMqnqn)
1/2

such that we can conclude that

qiqi ≤ kMkijθ, iθ, j . (12)

Suppose that the free energy function Ψ defined in (1) is a positive definite
quadratic form, that is, there exist positive constants µm and µM such that

µm

(
εijεij + γijγij + ΦiΦi + σ2) ≤ 2Ψ ≤ µM

(
εijεij + γijγij + ΦiΦi + σ2) (13)

Along with the system of equations (4) - (6) we consider the following initial
conditions:

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x), x ∈ B̄,
ϕi(x, 0) = ϕ0

i (x), ϕ̇i(x, 0) = ϕ1
i (x), x ∈ B̄, (14)

θ(x, 0) = θ0(x), σ(x, 0) = σ0(x), σ̇(x, 0) = σ1(x), x ∈ B̄,

and the following prescribed boundary conditions

ui = ūi on ∂B1 × [0,∞), ti ≡ tijnj = t̄i on ∂B
c
1 × [0,∞),

ϕi = ϕ̄i on ∂B2 × [0,∞), mi ≡ mijnj = m̄i on ∂B
c
2 × [0,∞), (15)

σ = σ̄ on ∂B3 × [0,∞), h ≡ hini = h̄ on ∂Bc3 × [0,∞),

θ = θ̄ on ∂B4 × [0,∞), q ≡ qini = q̄ on ∂Bc4 × [0,∞),
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where ∂B1, ∂B2, ∂B3 and ∂B4 with respective complements ∂Bc1, ∂B
c
2, ∂B

c
3

and ∂Bc4 are subsets of ∂B, ni are the components of the unit outward normal
to ∂B.
Also u0

i , u
1
i , ϕ

0
i , ϕ

1
i , θ

0, σ0, σ1, ūi, t̄i, ϕ̄i, m̄i, σ̄, θ̄, q̄ and h̄ are prescribed
continous functions in their domains.
By a solution of the mixed initial-boundary value problem for the thermoe-
lasticity of micropolar bodies with voids, in the cylinder Ω0 = B × [0,∞) we
mean an ordered array (ui, ϕi, σ, θ) which satisfies the equations (4)-(6) for
all (x, t) ∈ Ω0, the boundary conditions (15) and the initial conditions (14).
We denote by P the initial boundary value problem consisting of system of
equations (4)-(6), the initial conditions (14) and the boundary conditions (15).

3 Preliminary results

We will prove some integral identities that are important in proving the results
on the temporal behaviour of the solutions of the problem P.
Theorem 1. For every solution (ui, ϕi, σ, θ) of the problem P takes place
the following conservation law of total energy

∫
B

e−λt
{

1

2

[
%u̇i(t)u̇i(t)+Iijϕ̇i(t)ϕ̇j(t)+%κσ̇2(t)

]
+Ψ(E(t))+

1

2
aθ2(t)

}
dV +

+

∫ t

0

∫
B

e−λs
λ

2

[
%u̇i(s)u̇i(s)+Iijϕ̇i(s)ϕ̇j(s)+%κσ̇2(s)

]
dV ds+

+

∫ t

0

∫
B

e−λs
[
λΨ(E(s))+

λ

2
aθ2(s)+

1

T0
kijθ, i(s)θ, j(s)

]
dV ds= (16)

=

∫
B

{
1

2

[
%u̇i(0)u̇i(0)+Iijϕ̇i(0)ϕ̇j(0)+%κσ̇2(0)

]
+Ψ(E(0)) +

1

2
aθ2(0)

}
dV +

+

∫ t

0

∫
B

e−λs%

[
u̇i(s)Fi(s)+ϕ̇i(s)Mi(s)+σ̇(s)L(s)+

1

T0
θ(s)S(s)

]
dV ds+

+

∫ t

0

∫
∂B

e−λs
[
ti(s)u̇i(s)+mi(s)ϕ̇i(s)+h(s)σ̇(s)+

1

T0
q(s)θ(s)

]
dAds,

for t ∈ [0, ∞).

Here λ is a given positive parameter and quantities ti, mi, h and q are defined
in (35).

Proof. Using the system of equations (4)-(6), the constitutive equations (2),
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the geometric relations (3) and the symmetry relations (7), one obtains

d

ds

{
1

2

[
%u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + %κσ̇2(s)

]
+ Ψ(E(s)) +

1

2
aθ2(s)

}
+

+
1

T0
kijθ, i(s)θ, j(s) = (17)

= %

[
u̇i(s)Fi(s) + ϕ̇i(s)Mi(s) + σ̇(s)L(s) +

1

T0
θ(s)S(s)

]
+

+

[
tij(s)u̇i(s) +mik(s)ϕ̇i(s) + hj(s)σ̇(s) +

1

T0
qj(s)θ(s)

]
, j

We multiply now in (17) by e−λs and then integrate the obtained rezult over
the cylinder B × [0, t]. Because the surface ∂B was assumed be smooth, we
can apply the divergence theorem such that we are led to the desired result
(16) and Theorem 1 is concluded. �

Theorem 2. Let (ui, ϕi, σ, θ) be a solution of the mixed initial-boundary
value problem consists of the equations (4)-(6), the boundary conditions (15)
and the initial conditions (14). Then we have the following identity:

2

∫
B

[
%ui(t)u̇i(t)+Iijϕi(t)ϕ̇j(t)+%κσ(t)σ̇(t)+

1

T0
kij

(∫ t

0

θ, i(s)ds

)(∫ t

0

θ, j(s)ds

)]
dV =

= 2

∫ t

0

∫
B

[
%u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + %κσ̇2(s) − 2Ψ(E(s)) − aθ2(s)

]
dV ds+

+2

∫ t

0

∫
B

%η(0)θ(s)dV ds+ 2

∫
B

[%ui(0)u̇i(0)+Iijϕi(0)ϕ̇j(0)+%κσ(0)σ̇(0)] dV + (18)

+2

∫ t

0

∫
B

%

[
Fi(s)ui(s) +Mi(s)ϕi(s) + L(s)σ(s) +

1

T0
θ(s)

∫ s

0

S(z)dz

]
dV ds+

2

∫ t

0

∫
B

%η(0)θ(s)dV ds+ 2

∫
B

[%ui(0)u̇i(0)+Iijϕi(0)ϕ̇j(0)+%κσ(0)σ̇(0)] dV +

+2

∫ t

0

∫
∂B

[
ti(s)ui(s) +mi(s)ϕi(s) + h(s)σ(s) +

1

T0
θ(s)

∫ s

0

q(z)dz

]
dAds

Proof. Using the motion equations (4)1 and the geometric relations (3)
one obtains,

d

ds
[%ui(s)u̇i(s)] = %u̇i(s)u̇i(s) + [tji(s)ui(s)], j − tji(s)ui, j(s) + %ui(s)Fi(s) (19)

Also, in view of equations (4)2 and the geometric relations (3) we are led to

d

ds
[Iijϕi(s)ϕ̇i(s)] = Iijϕ̇i(s)ϕ̇i(s) + [mji(s)ϕi(s)], j −

−mji(s)ϕi, j(s) + εijktjk(s)ϕi(s) + %ϕi(s)Mi(s) (20)
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By adding the relations (19) and (20) we arrive at equality

d

ds
[%ui(s)u̇i(s) + Iijϕi(s)ϕ̇j(s)] = %u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇i(s) +

+ [tji(s)ui(s) +mji(s)ϕi(s)], j − tij(s)εij(s)−mij(s)γij(s) (21)

With the aid of the constitutive equation (2)1 we can write:

tij(s)εij(s) = Aijmnεij(s)εmn(s) +Bijmnεij(s)γmn(s) + 2Bijσ(s)εij(s) +

+2Dijkφk(s)εij(s) − [Bijσ(s)εij(s) +Dijkφk(s)εij(s) + αijθ(s)εij(s)] (22)

Analogous, with the aid of the constitutive equation (2)2 we can write:

mij(s)γij(s) = Bmnijεij(s)γmn(s) + Cijmnγij(s)γmn(s) + 2Cijσ(s)γij(s) +

+2Eijkφk(s)γij(s) − [Cijσ(s)γij(s) + Eijkφk(s)γij(s) + βijθ(s)γij(s)] (23)

By adding relations (22) and (23) together, we obtain

tij(s)εij(s) +mij(s)γij(s) = Aijmnεij(s)εmn(s) +

+2Bmnijεij(s)γmn(s) + Cijmnγij(s)γmn(s) + 2Bijσ(s)εij(s) +

+2Dijkφk(s)εij(s) + 2Cijσ(s)γij(s) + 2Eijkφk(s)γij(s)− (24)

− [Bijσ(s)εij(s) +Dijkφk(s)εij(s) + αijθ(s)εij(s)]−
− [Cijσ(s)γij(s) + Eijkφk(s)γij(s) + βijθ(s)γij(s)]

For the last two parentheses in (24) we find equivalent expressions if we
use formulas (2)3-(2)5 and (3)

[Bijεij(s) + Cijγij(s)]σ(s) + [Dijkεij(s) + Eijkγij(s)]φk(s) +

+ [αijεij(s) + βijγij(s)] θ(s) = g(s)σ(s)− ξσ2(s)− 2diφi(s)σ(s) +(25)

[hi(s)σ(s)], i − hi, i(s)σ(s)−Aijφi(s)φj(s)− aθ2(s) + %η(s)θ(s)

Now let’s integrate the energy equation (6)

%η(s) =
1

T0

∫ s

0

qi, i(z)dz +
%

T0

∫ s

0

S(z)dz + %η(0) (26)

In view of equation (5) and relation (26) we are led to

[g(s) + hi, i(s)]σ(s)− %η(s)θ(s) = [%κσ̈(s)− %L(s)]σ(s)− %η(0)θ(s)−

− %

T0

∫ s

0

S(z)dz −
[

1

T0
θ(s)

∫ s

0

qi(z)dz

]
, i

+
1

T0
θ, i(s)

∫ s

0

qi, i(z)dz (27)
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With the aid of constitutive equation (2)6, the equality (27) can be restated
in the form

[g(s) + hi, i(s)]σ(s)− %η(s)θ(s) = −%κσ̇2(s)− %η(0)θ(s) +

+
d

ds

[
%κσ(s)σ̇(s) +

1

2T0
kij

(∫ s

0

θ, i(z)dz

)(∫ s

0

θ, j(z)dz

)]
− (28)

−%
[
L(s)σ(s) +

1

T0
θ(s)

∫ s

0

S(z)dz

]
−
[

1

T0
θ(s)

∫ s

0

qi(z)dz

]
, i

Now, we replace the relations (24), (25) and (28) into equality (21) so that we
can obtain

d

ds

[
2%ui(s)u̇i(s)+2Iijϕi(s)ϕ̇j(s)+2%κσ(s)σ̇(s)+

1

T0
kij(∫ s

0

θ, i(z)dz

)(∫ s

0

θ, j(z)dz

)]
=

= 2%u̇i(s)u̇i(s) + 2Iijϕ̇i(s)ϕ̇j(s) + 2%κσ̇2(s)− 2
[
2Ψ(E(s)) + aθ2(s)

]
+

+2%

[
Fi(s)ui(s) +Mi(s)ϕi(s) + L(s)σ(s) +

1

T0
θ(s)

∫ s

0

S(z)dz

]
+ (29)

+2

[
tji(s)ui(s) +mji(s)ϕi(s) + hj(s)σ(s) +

1

T0
θ(s)

∫ s

0

qj(z)dz

]
, j

+

+2%η(0)θ(s).

Finally, we integrate the equality (29) onto the cylinder B × [0, t] then
apply the divergence theorem so that we get to the desired identity (18) such
as the proof of Theorem 2 is finished. �

Theorem 3. Let (ui, ϕi, σ, θ) be a solution of the mixed initial-boundary
value problem P. Then take place the following identity:

2

∫
B

[
%ui(t)u̇i(t)+Iijϕi(t)ϕ̇j(t)+%κσ(t)σ̇(t)+

1

T0
kij(∫ t

0

θ, i(s)ds

)(∫ t

0

θ, j(s)ds

)]
dV =

=

∫
B

{
% [ui(0)u̇i(2t) + u̇i(0)ui(2t)] + Iij [ϕi(0)ϕ̇j(2t) + ϕ̇j(0)ϕi(2t)]

}
dV +

+

∫
B

%κ [σ(0)σ̇(2t) + σ̇(0)σ(2t)] dV +

∫ t

0

∫
B

%η(0) [θ(t− s)− θ(t+ s)] dV ds+

+

∫ t

0

∫
B

% [ui(t+ s)Fi(t− s)− ui(t− s)Fi(t+ s)] dV ds+
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+

∫ t

0

∫
B

Iij [ϕi(t+ s)Mi(t− s)− ϕi(t− s)Mi(t+ s)] dV ds+

+

∫ t

0

∫
B

[σ(t+ s)L(t− s)− σ(t− s)L(t+ s)] dV ds+ (30)

+

∫ t

0

∫
B

1

T0

[
θ(t− s)

∫ t+s

0

S(z)dz − θ(t+ s)

∫ t−s

0

S(z)dz

]
dV ds+

+

∫ t

0

∫
∂B

[ui(t+ s)ti(t− s)− ui(t− s)ti(t+ s)] dAds+

+

∫ t

0

∫
∂B

[ϕi(t+ s)mi(t− s)− ϕi(t− s)mi(t+ s)] dAds+

+

∫ t

0

∫
∂B

[σ(t+ s)h(t− s)− σ(t− s)h(t+ s)] dAds+

+

∫ t

0

∫
∂B

1

T0

[
θ(t− s)

∫ t+s

0

q(z)dz − θ(t+ s)

∫ t−s

0

q(z)dz

]
dAds

Proof. It is no difficult to observe that

− d

ds

{
% [ui(t+ s)u̇i(t− s) + u̇i(t+ s)ui(t− s)]

}
=

= % [ui(t+ s)üi(t− s)− ui(t− s)üi(t+ s)] , s ∈ [0, t], t ∈ [0,∞)(31)

Taking into account the equations of motion (4)1, the right side term from
(31) can be rewrite in the form

% [ui(t+ s)üi(t− s)− ui(t− s)üi(t+ s)] =

= % [ui(t+ s)Fi(t− s)− ui(t− s)Fi(t+ s)] + (32)

+ [ui(t+ s)tji(t− s)− ui(t− s)tji(t+ s)], j +

+ [ui, j(t− s)tji(t+ s)− ui, j(t+ s)tji(t− s)]

Hence, taking into account the relation (32), the identity (31) received the
form

− d

ds

{
% [ui(t+ s)u̇i(t− s) + u̇i(t+ s)ui(t− s)]

}
=

= % [ui(t+ s)Fi(t− s)− ui(t− s)Fi(t+ s)] + (33)

+ [ui(t+ s)tji(t− s)− ui(t− s)tji(t+ s)], j +

+ [ui, j(t− s)tji(t+ s)− ui, j(t+ s)tji(t− s)]
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Clarly, we have

− d
ds

{
Iij [ϕi(t+ s)ϕ̇j(t− s) + ϕ̇i(t+ s)ϕi(t− s)]

}
=

= Iij [ϕi(t+ s)ϕ̈i(t− s)− ϕi(t− s)ϕ̈i(t+ s)] , s ∈ [0, t], t ∈ [0,∞)(34)

Taking into account the equations of motion (4)2, the right side term from
(34) can be rewrite in the form

Iij

[
ϕi(t+ s)ϕ̈i(t− s)− ϕi(t− s)ϕ̈i(t+ s)

]
=

= % [ϕi(t+ s)Mi(t− s)− ϕi(t− s)Mi(t+ s)] +

+ [ϕi(t+ s)mji(t− s)− ϕi(t− s)mji(t+ s)], j + (35)

+ [ϕi, j(t− s)mji(t+ s)− ϕi, j(t+ s)mji(t− s)] +

+εijk [ϕi(t+ s)tjk(t− s)− ϕi(t− s)tjk(t+ s)]

Hence, taking into account the relation (35), the identity (34) received the form

− d

ds

{
Iij [ϕi(t+ s)ϕ̇j(t− s) + ϕ̇i(t+ s)ϕi(t− s)]

}
=

= % [ϕi(t+ s)Mi(t− s)− ϕi(t− s)Mi(t+ s)] +

+ [ϕi(t+ s)mji(t− s)− ϕi(t− s)mji(t+ s)], j + (36)

+ [ϕi, j(t− s)mji(t+ s)− ϕi, j(t+ s)mji(t− s)] +

+εijk [ϕi(t+ s)tjk(t− s)− ϕi(t− s)tjk(t+ s)]

Now, we add relations (36) and (33) term by term and by using the geometric
relations (3) we are led to

− d

ds

{
% [ui(t+ s)u̇i(t− s) + u̇i(t+ s)ui(t− s)]

}
+

− d

ds

{
Iij [ϕi(t+ s)ϕ̇j(t− s) + ϕ̇i(t+ s)ϕi(t− s)]

}
=

= % [ui(t+ s)Fi(t− s)− ui(t− s)Fi(t+ s)] +

+% [ϕi(t+ s)Mi(t− s)− ϕi(t− s)Mi(t+ s)] + (37)

+ [ui(t+ s)tji(t− s)− ui(t− s)tji(t+ s)], j +

+ [ϕi(t+ s)mji(t− s)− ϕi(t− s)mji(t+ s)], j +

+ [tij(t+ s)εij(t− s)− tij(t− s)εij(t+ s)] +

+ [mij(t+ s)γij(t− s)−mij(t− s)γij(t+ s)]
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Let us find another form for the last two parenthesis from equality (37). By
using the constitutive equations (2)1-(2)5 we deduce

[tij(t+ s)εij(t− s)− tij(t− s)εij(t+ s)] +

+ [mij(t+ s)γij(t− s)−mij(t− s)γij(t+ s)] =

= [σ(t− s)g(t+ s)− σ(t+ s)g(t− s)] + (38)

+ [hi(t− s)φ(t+ s)− hi(t+ s)φ(t− s)] +

+% [θ(t− s)η(t+ s)− θ(t+ s)η(t− s)]

Taking into account the balance of the equilibrated forces (5) and the geometric
equations (3) we obtain

hi(t− s)φ(t+ s)− hi(t+ s)φ(t− s) =

= [hi(t− s)σ(t+ s)− hi(t+ s)σ(t− s)], i +

+ [σ(t+ s)g(t− s)− σ(t− s)g(t+ s)] + (39)

+% [σ(t+ s)L(t− s)− σ(t− s)L(t+ s)] +

+%κ [σ(t− s)σ̈(t+ s)− σ(t+ s)σ̈(t− s)]

Also, by using the equation of energy (6) we deduce

% [θ(t− s)η(t+ s)− θ(t+ s)η(t− s)] = %η(0) [θ(t− s)− θ(t+ s)] +

+
%

T0

[
θ(t− s)

∫ t+s

0

S(z)dz − θ(t+ s)

∫ t−s

0

S(z)dz

]
+

+
1

T0

[
θ(t− s)

∫ t+s

0

qi(z)dz − θ(t+ s)

∫ t−s

0

qi(z)dz

]
, i

+ (40)

+
1

T0
kij

[
θ, i(t+ s)

∫ t−s

0

θ, j(z)dz − θ, i(t− s)
∫ t+s

0

θ, i(z)dz

]
We substitute equalities (40) and (39) into (38) and then the resulting equality
is introduced in (37). Hence, we obtain

− d

ds

{
% [ui(t+ s)u̇i(t− s) + u̇i(t+ s)ui(t− s)]

}
−

− d

ds

{
Iij [ϕi(t+ s)ϕ̇j(t− s) + ϕ̇i(t+ s)ϕi(t− s)]

}
−

− d

ds

{
%κ [σ(t− s)σ̇(t+ s) + σ(t+ s)σ̇(t− s)]

}
−

− d

ds

[
1

T0
kij

(∫ t+s

0

θ, i(z)dz

)(∫ t−s

0

θ, j(z)dz

)]
=
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= % [ui(t+ s)Fi(t− s)− ui(t− s)Fi(t+ s)] +

+% [ϕi(t+ s)Mi(t− s)− ϕi(t− s)Mi(t+ s)] + (41)

+% [σ(t+ s)L(t− s)− σ(t− s)L(t+ s)] +

+
%

T0

[
θ(t− s)

∫ t+s

0

S(z)dz − θ(t+ s)

∫ t−s

0

S(z)dz

]
+

+%η(0) [θ(t− s)− θ(t+ s)] +

+ [ui(t+ s)tji(t− s)− ui(t− s)tji(t+ s)], j +

+ [ϕi(t+ s)mji(t− s)− ϕi(t− s)mji(t+ s)], j +

+ [hj(t− s)σ(t+ s)− hj(t+ s)σ(t− s)], j +

+
1

T0

[
θ(t− s)

∫ t+s

0

qj(z)dz − θ(t+ s)

∫ t−s

0

qj(z)dz

]
, j

Finally, we integrate the equality (41) over cylinder B× [0, t] and, after we
use the divergence theorem, the desired identity (30) is obtained such that the
proof of Theorem 3 is complete. �

4 Temporal behaviour of solutions

In order to prove the main results of this study, that is, the temporal behaviour
of solutions of the problem P, defined at the end of Section 2, we need other
preliminary results.

Assume that the boundary of B, denoted by ∂B, is a sufficiently smooth
surface to admit the aplication of divergence theorem. Also, we denote the
closure of B by B̄.
We study the temporal behaviour of solutions of problem P, in the case of null
boundary data and null body supplies.

Consider the problem P0 defined by the constitutive equations (2), the
geometric equations (3), the equations of motion

tij,j = %üi,

mij,j + εijktjk = Iijϕ̈j ;

hi,i + g = %κσ̈; (42)

%T0η̇ = qi,i
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the boundary conditions

ui = 0 on ∂B1 × [0,∞), ti ≡ tijnj = 0 on ∂Bc1 × [0,∞),

ϕi = 0 on ∂B2 × [0,∞), mi ≡ mijnj = 0 on ∂Bc2 × [0,∞), (43)

σ = 0 on ∂B3 × [0,∞), h ≡ hini = 0 on ∂Bc3 × [0,∞),

θ = 0 on ∂B4 × [0,∞), q ≡ qini = 0 on ∂Bc4 × [0,∞),

and the initial conditions in the form (14).
Consider (ui, ϕi, σ, θ) a solution of problem P0 and introduce the Cesaro

means for all energy components:
1. Cesaro mean of kinetic energy:

K =
1

2t

∫ t

0

∫
B

[
%u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇i(s) + %κσ̇2(s)

]
dV ds (44)

2. Cesaro mean of strain energy:

S =
1

2t

∫ t

0

∫
B

[Aijmnεij(s)εmn(s) + 2Bijmnεij(s)γmn(s)+

+Cijmnγij(s)γmn(s) + 2Bijσ(s)εij(s) + 2Cijσ(s)γij(s) + (45)

+2Dijkφk(s)εij(s) + +2Eijkφk(s)γij(s) + 2diσ(s)φi(s) +

+ 2ξσ2(s) +Aijφi(s)φj(s)− ωσ̇2(s)
]
dV ds

3. Cesaro mean of thermal energy:

T =
1

2t

∫ t

0

∫
B

aθ2(s)dV ds (46)

4. Cesaro mean of energy of diffusion:

T =
1

t

∫ t

0

∫ s

0

∫
B

1

T0
kijθ, i(z)θ, j(z)dV dzds (47)

In the case meas(∂B1) = 0 there exists a family of rigid displacements,
rigid microrotations and null temperature and null change in volume fraction
that satisfy the equations (2), (3)and (42) and the boundary conditions (43).
Thus, we can decompose the initial data as follows

u0
i = u∗i + U0

i , u
1
i = u̇∗i + U̇0

i

ϕ0
i = ϕ∗i + Φ0

i , ϕ
1
i = ϕ̇∗i + Φ̇0

i (48)

where the rigid displacements u∗i and u̇∗i and the rigid microrotations ϕ∗i and
ϕ̇∗i are determined such that∫

B

%U0
i dV = 0,

∫
B

%εijkxjU
0
kdV = 0,

∫
B

%U̇0
i dV = 0,∫

B

%εijkxjU̇
0
kdV = 0,

∫
B

IijΦ
0
jdV = 0,

∫
B

IijΦ̇
0
jdV = 0, (49)
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where, as usual, εijk is Ricci’s symbol.
We believe that the following are common notations

Ĉ1(B) =
{
v = (u1, u2, u3, ϕ1, ϕ2, ϕ3) , ui ∈ C1(B̄),

ϕi ∈ C1(B̄) : ui = 0 on ∂B1, ϕi = 0 on ∂B2

}
Ĉ1(B) =

{
σ ∈ C1(B̄) : σ = 0 on ∂B3

}
C̃1(B) =

{
θ ∈ C1(B̄) : θ = 0 on ∂B4

}
Ŵ1(B) = the complection of Ĉ1(B) by means of ‖.‖W1(B)

Ŵ 1(B) = the complection of Ĉ1(B) by means of ‖.‖W 1(B)

W̃ 1(B) = the complection of C̃1(B) by means of ‖.‖W 1(B)

As is well known, C1(B̄) is the notation for the set of scalar continuously
differentiable functions on B̄ and W 1(B) represents the familiar Sobolev space

[10]. Also, we used the notation W1(B) =
[
W 1(B)

]6
.

Based on hypothesis (13) we obtain the following inequality, of Korn type, [11]

1

2

∫
B

[Aijmnεijεmn + 2Bijmnεijγmn+ (50)

Cijmnγijγmn] dV ≥ m1

∫
B

[uiui + ϕiϕi] dV,

for any v ∈ Ŵ1(B). Here m1 is a positive constant.
Also, taking into account the hypothesis (10) we deduce that there exists a

positive constant m2 such that the following Poincare’s type inequality holds

1

2

∫
B

kijθ, iθ, jdV ≥ m2

∫
B

θ2dV, (51)

for any θ ∈ Ŵ 1(B).
In the case meas(∂B1) = 0 and meas(∂B2) = 0 we decompose the solution
(ui, ϕi, σ, θ) as follows

ui = u∗i + tu̇∗i + vi, ϕi = ϕ∗i + tϕ̇∗i + χi, σ = ζ, θ = γ (52)

where (vi, χi, ζ, γ) ∈ Ŵ1(B)×Ŵ 1(B)×W̃ 1(B) is the solution of the problem
P0 which corresponds to the following initial conditions

vi = U0
i , v̇i = U̇0

i , χi = Φ0
i , χ̇i = Φ̇0

i , ζ = σ0, γ = θ0, at t = 0 (53)

We will use in what follows the total energy defined by

E =
1

2

∫
B

[
%u̇i(t)u̇i(t) + Iijϕ̇i(t)ϕj(t) + %κσ̇2(t) + 2Ψ(E(t)) + aθ2(t)

]
dV +

+

∫ t

0

∫
B

1

T0
kijθ, i(z)θ, j(z)dV dz. (54)
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Now we have everything ready for the proof of the asymptotic partition of
total energy, with the help of Cesaro means. This will be done in the following
theorem.
Theorem 4. Consider a solution (ui, ϕi, σ, θ) of the initial boundary value
problem P0. If we suppose that(

u0
i , ϕ

0
i

)
∈W1(B),

(
u1
i , ϕ

1
i

)
∈W0(B),(

σ0, θ0
)
∈W1(B)×W1(B), σ1 ∈W0(B),

then take place the following relation

lim
t→∞

T(t) = 0. (55)

Also, we have

i. If meas(∂B1) 6= 0 and meas(∂B2) 6= 0, then

lim
t→∞

T(t) = lim
t→∞

S(t) (56)

lim
t→∞

D(t) = E(0)− 2 lim
t→∞

K(t) = E(0)− 2 lim
t→∞

S(t) (57)

ii. If meas(∂B1) = 0 and meas(∂B2) = 0, then

lim
t→∞

K(t) = lim
t→∞

S(t) +
1

2

∫
B

[
%u̇∗i u̇

∗
i + Iijϕ̇

∗
iϕ
∗
j

]
dV (58)

lim
t→∞

D(t) = E(0)− 2 lim
t→∞

K(t) +
1

2

∫
B

[
%u̇∗i u̇

∗
i + Iijϕ̇

∗
iϕ
∗
j

]
dV =

= E(0)− 2 lim
t→∞

S(t) +
1

2

∫
B

[
%u̇∗i u̇

∗
i + Iijϕ̇

∗
iϕ
∗
j

]
dV (59)

Proof. We use equality (16) in which we replace λ with zero. Then keep in
mind that (ui, ϕi, σ, θ) is a solution of problem P0 and the definition from
(54) of total energy E. Thus obtain that

E(t) = E(0), t ≥ 0. (60)

Now replace the total energy components defined in relations (44)-(47) into
conservation law (60) such that we obtain

K(t) + S(t) + T(t) + D(t) = E(0), for all t > 0. (61)
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If we use equalities (18) and (30) and take into account the fact that (ui, ϕi, σ, θ)
is a solution of problem P0, then we are led to the relation∫ t

0

∫
B

[
%u̇i(t)u̇i(t) + Iijϕ̇i(t)ϕj(t) + %κσ̇2(t)− 2Ψ(E(t))− aθ2(t)

]
dV ds =

= −
∫
B

[
%ui(0)u̇i(0) + Iijϕi(0)ϕ̇j(0) + %κσ(0)σ̇(0)

]
dV +

+

∫
B

{
%
[
ui(0)u̇i(2t)+u̇i(0)ui(2t)

]
+Iij

[
ϕi(0)ϕ̇j(2t) + ϕi(2t)ϕ̇j(0)

]
+ (62)

+ %κ
[
σ(0)σ̇(2t) + σ(2t)σ̇(0)

]}
dV − 2

∫ t

0

∫
B

%η(0)θ(s)dV ds+

+

∫ t

0

∫
B

%η(0)
[
θ(t− s)− θ(t+ s)

]
dV ds

for t ≥ 0.
Using relations (44)-(47), which define the energy components, the relation
(62) can be written as follows

K(t)− S(t)− T(t) =

= − 1

2t

∫
B

[
%ui(0)u̇i(0) + Iijϕi(0)ϕ̇j(0) + %κσ(0)σ̇(0)

]
dV+

+
1

4t

∫
B

{% [ui(0)u̇i(2t)+u̇i(0)ui(2t)]+Iij [ϕi(0)ϕ̇j(2t)+ϕi(2t)ϕ̇j(0)]+

(63)

+ %κ
[
σ(0)σ̇(2t) + σ(2t)σ̇(0)

]}
dV − 1

2t

∫ t

0

∫
B

%η(0)θ(s)dV ds+

+
1

4t

∫ t

0

∫
B

%η(0)
[
θ(t− s)− θ(t+ s)

]
dV ds

for t > 0.
If we use the relations (46), (47), (51), (54) and (60) we are led to the inequality

T(t) ≤ 1

2t

[
max
B̄

a(x)

] ∫ t

0

∫
B

θ2(s)dV ds ≤

≤ 1

2tm2

[
max
B̄

a(x)

] ∫ t

0

∫
B

kijθ, i(s)θ, j(s)dV ds ≤ (64)

≤ T0

2tm2

[
max
B̄

a(x)

]
E(t) =

T0

2tm2

[
max
B̄

a(x)

]
E(0), t > 0

and if we pass to the limit for t tends to infinity in the last inequality we obtain
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relation (55). In addition, using relations (13), (54) and (64) we deduce∫
B

[
%u̇i(t)u̇i(t) + Iijϕ̇i(t)ϕj(t)

]
dV ≤ 2E(0)∫

B

%κσ̇2(t)dV ≤ 2E(0) (65)∫
B

σ2(t)dV ≤ 2

µm

∫
B

Ψ(E(t))dV ≤ 2

µm
E(0)∫

B

θ2(t)dV ≤ 1

a0

∫
B

aθ2(t)dV ≤ 2

a0
E(0)

In equality (63) we now use Schwarz’s inequality and the relations (55) and
(65) from which we deduce that

lim
t→∞

K(t)− lim
t→∞

S(t) = lim
t→∞

1

4t

∫
B

[
%u̇i(0)ui(2t) + Iijϕ̇i(0)ϕj(2t)

]
dV

(66)

We first approach point i) of Theorem. Since meas(∂B1) 6= 0, meas(∂B2) 6= 0
and (ui, ϕi) ∈ Ŵ1(B), using relations (50), (54) and (60) we are led to∫

B

[
ui(t)ui(t) + ϕi(t)ϕj(t)

]
dV ≤ 1

m1

∫
B

2Ψ(E(t))dV ≤ 2

m1
E(0)

(67)

therefore, by means of the Schwarz’s inequality, we obtain

lim
t→∞

{
1

4t

∫
B

[
%u̇i(0)ui(2t) + Iijϕ̇i(0)ϕj(2t)

]
dV

}
= 0 (68)

If we consider the conclusion (68), then from equality (66) follows the relation
(56). Relation (57) is obtained by simply combining relations (56) and (61).

We propose now to prove point ii) of the theorem. Because meas(∂B1) = 0
and meas(∂B2) = 0, deduce that we can use the decompositions (48) and (52)
and relation (49) so that we get equality

1

4t

∫
B

[
%u̇i(0)ui(2t) + Iijϕ̇i(0)ϕj(2t)

]
dV =

1

4t

∫
B

[
%u̇∗i u

∗
i + Iijϕ̇

∗
iϕ
∗
j

]
dV +

+
1

4t

∫
B

{
%
[
u̇∗i + U̇0

i

]
vi(2t) + Iij

[
ϕ̇∗i + Φ0

i

]
χj(2t)

}
dV + (69)

+
1

2

∫
B

[
%u̇∗i u̇

∗
i + Iijϕ̇

∗
i ϕ̇
∗
j

]
dV
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The inequality of Korn’s type (50) and the inequality (13) underlying the
following double inequality∫

B

[
vi(t)vi(t) + χi(t)χi(t)

]
dV ≤ 2

m1

∫
B

Ψ(E(t))dV ≤ 2

m1
E(0). (70)

If we take into account the inequality (70) then equality (69) leads to

lim
t→∞

{
1

4t

∫
B

[
%u̇i(0)ui(2t) + Iijϕ̇i(0)ϕj(2t)

]
dV

}
= (71)

=
1

2

∫
B

[
%u̇∗i u̇

∗
i + Iijϕ̇

∗
i ϕ̇
∗
j

]
dV

Substituting the result of equation (71) in equality (66) and immediately
obtain the conclusion (58). Finally, to obtain equality (59) will have to com-
bine results from relations (55), (58) and (61). Last statement ends the proof
of Theorem 4. �

Conclusion. At last we remark that the relations (56) and (58), restricted to
the class of initial data for which u∗i = ϕ∗i = 0, prove the asymptotic equipar-
tition in mean of the kinetic and strain energies.
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