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Abstract

The aim of this paper is to initiate and investigate new (soft) hy-
perstructures, particularly (soft) join spaces, using important classes of
lattices: modular and distributive. They are used in order to study
(soft) hyperstructures constructed on the set of all convex sublattices of
a lattice.

1 Introduction

There are several theories, such as probabilities, fuzzy sets, rough sets, vague
sets, interval mathematics, which can be considered as mathematical tools for
dealing with uncertainties. In [24], Molodtsov pointed out the difficulties of
these theories, that can be due to the inadequacy of the parametrization tool
of each theory and he introduced a new tool, called soft set, in order to deal
with uncertainties, which is free from the difficulties of the above mentioned
theories. Several applications of soft sets have been established for instance in
decision making problem [22, 3, 12, 9]. To address decision making problems
based on fuzzy soft sets, Feng et al. introduced the concept of level soft sets
of fuzzy soft sets and initiated an adjustable decision making scheme using
fuzzy soft sets [10]. It is also interesting to see that soft sets are closely
related to many other soft computing models such as rough sets and fuzzy
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sets. Using soft sets as the granulation structures, Feng et al. [11] defined soft
approximation spaces, soft rough approximations and soft rough sets, which
are generalizations of Pawlak’s rough set model based on soft sets and in some
cases might provide better approximations than classical rough sets.

On the other hand, hypergroups were introduced in 1934 at the VIII-th
Congress of Scandinavian Mathematicians by a French mathematician Marty
[21]. Nowadays, hypergroup theory is a widely applied theory [5, 6].

A hypergroupoid is a nonempty set H endowed with a map · : H ×H −→
P∗(H) called hyperoperation, where P∗(H) denotes the set of all non-empty
subsets of H. A hypergroup is an associative hypergroupoid (H, ·) in which
x · H = H · x = H for all x ∈ H, where for all A,B ⊆ H and x ∈ H,

A ·B =
⋃

a∈A,b∈B

a · b, A · x = A · {x} and x ·B = {x} ·B. Many interesting

examples of hypergroups are given in [5, 6].
A nonempty subset S of a hypergroup (H, ·) is called a subhypergroup if

∀x ∈ S, x · S = S · x = S. For any x, y of H, we denote x/y = {u | x ∈ u · y}.
Prenowitz introduced a particular type of hypergroups, called join spaces,

and then founded, together with Jantosciak [28], geometries on join spaces,
which became a useful instrument in the study of several matters: graphs,
hypergraphs, binary relations, fuzzy sets and rough sets (see [6] for details).
If (H1, ·) and (H2, ·) are hypergroups, then a map f : H1 → H2 is called a
homomorphism if for all x, y of H1, f(x · y) ⊆ f(x) · f(y).

A commutative hypergroup (H, ·) is called a join space if for all x, y, z, v
of H, the following implication holds: x/y ∩ z/v 6= ∅ ⇒ x · v ∩ z · y 6= ∅.

On the other hand, in order to introduce the soft set notion, we consider
a universe set denoted by U and a set of parameters denoted by E. Let P(U)
be the power set of U and A ⊆ E.

A pair (f,A) is called a soft set over U, where f : A→ P(U) is a map.
Hence, a soft set over U is a parameterized family of subsets of U. For all
a ∈ A, the subset f(a) can be considered as the set of a-approximate elements
of (f,A).

Thus, for a certain element a ∈ A, the subset f(a) of U is composed by all
the elements of U, which correspond to the parameter a.

We consider now that the universe set U is a hypergroup (H, ·) and, as
above, A is a nonempty set and f : A→ P(H) be a map.

1.1. Definition [17] A pair (f,A) is called a soft hypergroup over H if:

∀a ∈ A, f(a) 6= ∅ ⇒ f(a) is a subhypergroup of H.

Every fuzzy subhypergroup can be interpreted as a soft hypergroup. In-
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deed, suppose that µ is a fuzzy subhypergroup of a hypergroup (H, ◦) (see [6],
page 212), which means that µ satisfies the following axioms:

i) min{µ(x), µ(y)} ≤ inf{µ(z) : z ∈ x ◦ y} for all x, y ∈ H;

ii) for all x, a ∈ H, there exists y ∈ H such that x ∈ a ◦ y and

min{µ(a), µ(x)} ≤ µ(y);

iii) for all x, a ∈ H, there exists z ∈ H such that x ∈ z ◦ a and

min{µ(a), µ(x)} ≤ µ(z).

If we consider the family of α-level sets for µ, given by

f(α) = {x ∈ H : µ(x) ≥ α},

where α ∈ [0, 1], then for all α ∈ [0, 1], f(α) is a subhypergroup of H. Hence
(f, [0, 1]) is a soft hypergroup over H.

Indeed, if µ is a fuzzy subhypergroup of a hypergroup (H, ·) (see [6], page
212) and for all α ∈ [0, 1], f(α) is the α-level set for µ, then (f, [0, 1]) is a soft
hypergroup over H.

1.2. Example If (L,∨,∧) is a modular lattice and we define

∀a, b ∈ L, a ◦ b = {x ∈ L : a ∨ x = b ∨ x = a ∨ b},

then (L, ◦) is a join space (see [6], page 128). For all a ∈ L, I(a) = {x ∈ L :
x ≤ a} is a subhypergroup of (L, ◦). We define a map f : L→ P(L) as follows
f(a) = I(a) and (f, L) is a soft hypergroup over L.

In what follows we need the following two notions:

1.3. Definition (H, ·) be a hypergroup. A pair (f,A) is called a soft join
space over H if:

∀a ∈ A, f(a) 6= ∅ ⇒ f(a) is a join space of H.

The soft hypergroup of Example 1.2 is a soft join space.

1.4. Definition Let (f,A) be a soft hypergroup over a hypergroup (H, ·).
A soft set (g,B) over H is called a soft subhypergroup of (f,A) if B ⊆ A and
for all b ∈ B, if g(b) is nonempty, then it is a subhypergroup of f(b).
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2 Join spaces and soft join spaces associated with lattices

Now, we consider the following two hyperoperations on a lattice (L,∨,∧) :

x ◦ y = {z ∈ L : x ∨ z = y ∨ z = x ∨ y}, x � y = {z ∈ L : x ∧ y ≤ z ≤ x ∨ y}.

The hyperoperation ” ◦ ” was introduced by T. Nakano [26] and analysed by
St. Comer [5], J. Mittas, M. Konstantinidou [23], I. G. Rosenberg [19, 20],
B. Davvaz [18] and others. The hyperoperation ” � ” was introduced by J.C.
Varlet [31] and analysed by M. Konstantinidou, S. Serafimidis , Ath. Kehagias
ciiteKS, KSK, SK, V. Leoreanu-Fotea, I. G. Rosenberg [19, 20], B. Davvaz [18]
and others. It is frequently used in machine learning applications. St. Comer
and respectively J.C. Varlet characterized modular, respectively distributive
lattices, using the above hyperoperations. These characterizations are pre-
sented in [6], Chapter 4, paragraph 3, respectively paragraph 1.

2.1. Theorem

i) A lattice (L,∨,∧) is modular if and only if (L, ◦) is a join space.

ii) A lattice (L,∨,∧) is distributive if and only if (L, �) is a join space.

In order to characterize some soft join spaces, we need the following notions:

2.2. Definition [27] Let (L,≤) be a lattice. A pair (f,A) is called a soft
lattice over L if:

∀a ∈ A, f(a) 6= ∅ ⇒ f(a) is a sublattice of L.

A soft lattice (f,A) is called soft modular (distributive) over a lattice L if:

∀a ∈ A, f(a) 6= ∅ ⇒ f(a) is a modular (distributive) sublattice of L.

A soft set (g,B) over a lattice is called a soft sublattice of (f,A) if B ⊆ A
and for all b ∈ B, if g(b) is nonempty, then it is a sublattice of f(b).

There are many interesting examples of soft lattices, soft distributive
(modular) lattices in [27]. We give here other examples.

2.3. Examples

i) Let S be a semigroup and H any sublattice of the lattice L of all fuzzy
congruences on S such that fg = gf for all f, g ∈ H. Then H is a
modular lattice, see [1]. Hence, if T is a cardinally equivalent set to the
set of all sublattices of L, then (ϕ, T ) is a soft modular lattice over L,
where ϕ is a bijective map from T to the set of all sublattices of L.
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ii) According to [2], if C0, C1 are chains of a modular lattice L, then the
sublattice L′ of L, generated by C0∪C1 is distributive. Hence if T = {t}
is a singleton set and ϕ : T → {L′}, we obtain a distributive soft lattice
(ϕ, T ) over L.

2.4. Corollary A soft lattice (f,A) over a lattice L is modular if and only
if (f,A) is a soft join space over the hypergroupoid (L, ◦).

Proof. A soft lattice (f,A) over a lattice L is modular if and only if for all
a ∈ A for which f(a) 6= ∅, f(a) is a modular sublattice of L. According to
Theorem 2.1 i), this happens if and only if (f(a), ◦) is a join space, which
means that (f,A) is a soft join space over the hypergroupoid (L, ◦).

The following notion helps us to characterize soft subhypergroup of the
associated soft join space (f,A) over the hypergroupoid (L, ◦).

2.5. Definition [27] Let (f,A) be a soft lattice over a lattice L. A soft
set (g,B) over L is called a soft ideal of (f,A) if B ⊆ A and for all b ∈ B, if
g(b) is nonempty, then it is an ideal of f(b).

2.6. Theorem Let (f,A) be a soft modular lattice over a lattice L. A
soft set (g,B) over L is a soft ideal of (f,A) if and only if (g,B) is a soft
subhypergroup of (f,A), with respect to the hyperoperation ” ◦ ”.

Proof. Suppose that (g,B) is a soft ideal of (f,A). Then for all b ∈ B, if g(b) is
nonempty, then it is an ideal of f(b). According to the above corollary, (f(b), ◦)
is a join space. Set x, y be elements of g(b). If u ∈ x ◦ y, then u ≤ x ∨ y, and
so u ∈ g(b). Hence g(b) ◦ g(b) ⊆ g(b). On the other hand, for all x, y elements
of g(b), there exists z = x ∨ y, such that x ∈ y ◦ z ∩ z ◦ y. Therefore, (g(b), ◦)
is a subhypergroup of the hypergroup (f(b), ◦), which means that (g,B) is a
soft subhypergroup of (f,A).

Conversely, suppose that (g,B) is a soft subhypergroup of (f,A). We check
that for all b ∈ B, if g(b) is nonempty, then it is an ideal of the modular lattice
f(b). Set x, y be elements of g(b). We have x ∨ y ∈ x ◦ y ⊆ g(b). Moreover, if
x ∈ g(b) and u ≤ z, where u ∈ f(b), then u ∈ z ◦ z ⊆ g(b). Hence g(b) is an
ideal of f(b) and so (g,B) is a soft ideal of (f,A).

2.7. Corollary A soft lattice (f,A) over a lattice L is distributive if and
only if (f,A) is a soft join space over the hypergroupoid (L, �).

Proof. It follows from Theorem 2.1. ii).
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2.8. Theorem Let (f,A) be a soft distributive lattice over a lattice L. If
a soft set (g,B) over L is a soft ideal of (f,A), then it is a soft subhypergroup
of (f,A), with respect to the hyperoperation ” � .”

Proof. Let b ∈ B, such that g(b) is nonempty. According to the above corollary,
(f(b), �) is a join space. Let x, y ∈ g(b) and z ∈ x�y. Hence x∧y ≤ z ≤ x∨y.
Since g(b) is a ideal of f(b), it follows that x ∨ y ∈ g(b) and then z ∈ g(b).
Thus, x � y ⊆ g(b). Moreover, x ∈ x � y ∩ y � x, whence x ∈ g(b) � y ∩ y � g(b).
Hence g(b) = g(b) � y = y � g(b), for all y ∈ g(b). Therefore g(b) is a subhyper-
group of (f(b), �), which means that g(b) is a soft subhypergroup of the soft
hypergroup (f,A).

Notice that the converse is not true, as we can see from the following exam-
ple:

2.9. Example Let (L = P(M),⊆) be the lattice of all parts of a nonempty
set M, A = B = {a}, f(a) = L and g(a) = {U ∈ P(M) | C∩D ≤ U ≤ C∪D},
where C,D are nonempty subsets of M , which have a nonempty intersection.
Then (g(a), ◦) is a subhypergroup of (P(M), ◦), which means that (g,B) is
a soft subhypergroup of (f,A). On the other hand, g(a) is not an ideal of
f(a) = L. Indeed, ∅ ⊆ C, C ∈ g(a), but ∅ /∈ g(a). This means that (g,B) is
not a soft ideal of (f,A).

2.10. Theorem If (f,A) be a soft distributive lattice over a lattice L and
if (g,B) is a soft subhypergroup of (f,A), with respect to the hyperoperation
” � ”, then (g,B) is a soft sublattice of (f,A).

Proof. Indeed, if b ∈ B such that g(b) is nonempty. If x, y ∈ g(b), then
x � y ∈ g(b), whence for all z ∈ f(b) such that x∧ y ≤ z ≤ x∨ y, then z ∈ g(b).
We take z1 = x∨ y then z2 = x∧ y. Hence x, y ∈ g(b) implies that x∨ y ∈ g(b)
and x ∧ y ∈ g(b), which means that (g,B) is a soft subsemilattice of (f,A).

We present now some results concerning soft lattice homomorphisms.

2.11. Definition [27] Let (f,A) and (h,B) be two soft lattices over L1

and L2 respectively. Let ϕ : L1 → L2 and ψ : A→ B be two maps. The pair
(ϕ,ψ) is called a soft lattice homomorphism if ϕ is a lattice homomorphism
and for all a ∈ A, ϕ(f(a)) = h(ψ(a)).

If ϕ is a lattice isomorphism and ψ is a bijection, then (ϕ,ψ) is called a
soft lattice isomorphism.
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2.12. Definition [27] Let (f,A) and (h,B) be two soft hypergroups
over the hypergroups (H1, ·) and (H2, ·) respectively. Let ϕ : H1 → H2

and ψ : A → B be two maps. The pair (ϕ,ψ) is called a soft hyper-
group homomorphism if ϕ is a hypergroup homomorphism and for all a ∈ A,
ϕ(f(a)) = h(ψ(a)).

Notice that if x, y ∈ f(a), then ϕ(x), ϕ(y) ∈ h(ψ(a)) according to the above
definition. In other words, if x, y belong to a certain subhypergroup of (H1, ·),
then their images under ϕ belong both to the same subhypergroup of (H2, ·).

We need to introduce the dual hyperoperation ” ∗ ” of ” ◦ ” on a lattice L,
defined as follows:

x ∗ y = {z ∈ L : x ∧ z = y ∨ z = x ∧ y}

2.13. Theorem Using the above notations, (ϕ,ψ) is a homomorphism of
soft modular lattices if and only if ϕ is a soft hypergroup homomorphism from
(f,A) to (h,B), with respect to both hyperoperations ” ◦ ” and ” ∗ ”.

Proof. First, notice that since (f,A) and (h,B) are soft modular lattices, it
follows that (f,A) is a soft join space over both (L1, ◦) and (L1, ∗), while (h,B)
is a soft join space over both (L2, ◦) and (L2, ∗). We have to check that ϕ is
a lattice homomorphism from L1 to L2 if and only if ϕ is both a hypergroup
homomorphism from (L1, ◦) to (L2, ◦) and a hypergroup homomorphism from
(L1, ∗) to (L2, ∗). Suppose that ϕ is a lattice homomorphism. Since

ϕ(x ◦ y) = {ϕ(z) | z ∈ L1, z ∨ x = x ∨ y = y ∨ z},

it follows that ϕ(z) ∈ ϕ(x) ◦ ϕ(y), whence ϕ(x ◦ y) ⊆ ϕ(x) ◦ ϕ(y). Similarly,
ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y), for all x, y ∈ L1 implies that ϕ(x ∗ y) ⊆ ϕ(x) ∗ ϕ(y).
Hence ϕ is both a hypergroup homomorphism from (L1, ◦) to (L2, ◦) and a
hypergroup homomorphism from (L1, ∗) to (L2, ∗).

Conversely, if u ∈ x ◦ y, then ϕ(u) ∈ ϕ(x) ◦ ϕ(y), that is ϕ(u) ∨ ϕ(x) =
ϕ(u) ∨ ϕ(y) = ϕ(x) ∨ ϕ(y) ≥ ϕ(u). In particular, we take u = x ∨ y and so we
obtain ϕ(x) ∨ ϕ(y) ≥ ϕ(x ∨ y). On the othar hand, notice that for all u ≤ x,
that is u ∈ x ◦ x we have ϕ(u) ∈ ϕ(x) ◦ ϕ(x), whence ϕ(u) ≤ ϕ(x). Thus,
ϕ(x) ≤ ϕ(x ∨ y), ϕ(y) ≤ ϕ(x ∨ y), whence ϕ(x) ∨ ϕ(y) ≤ ϕ(x ∨ y). Therefore,
for all x, y ∈ L1, ϕ(x)∨ϕ(y) = ϕ(x∨y). Similarly, from ϕ(x∗x) ⊆ ϕ(x)∗ϕ(y),
for all x, y ∈ L1, it follows that ϕ(x) ∧ ϕ(y) = ϕ(x ∧ y) and so, ϕ is a lattice
homomorphism.

A similar result can be obtained with respect to the hyperoperation ” � ” :
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2.14. Theorem (ϕ,ψ) is a homomorphism of soft distributive lattices if
and only if ϕ is monotone and it is a soft hypergroup homomorphism from
(f,A) to (h,B), with respect to the hyperoperation ” � ”.

Proof. Notice that since (f,A) and (h,B) are soft distributive lattices, it fol-
lows that (f,A), (h,B) are soft join spaces over (L1, �) and (L2, �) respectively.
We have to check that ϕ is a lattice homomorphism from L1 to L2 if and only
if ϕ is monotone and it is a hypergroup homomorphism from (L1, �) to (L2, �).
Suppose that ϕ is a lattice homomorphism, so it is monotone. Since

ϕ(x � y) = {ϕ(z) | z ∈ L1, x ∧ y ≤ z ≤ x ∨ y},

it follows that ϕ(z) ∈ ϕ(x) � ϕ(y), whence ϕ(x � y) ⊆ ϕ(x) � ϕ(y).
Conversely, if u ∈ x � y, then ϕ(u) ∈ ϕ(x) � ϕ(y), that is ϕ(x) ∧ ϕ(y) ≤

ϕ(u) ≤ ϕ(x) ∨ ϕ(y). In particular, we take u = x ∧ y and u = x ∨ y and so we
obtain ϕ(x) ∧ ϕ(y) ≤ ϕ(x ∧ y), ϕ(x ∨ y) ≤ ϕ(x) ∨ ϕ(y). On the other hand, ϕ
is monotone and so ϕ(x∧ y) ≤ ϕ(x)∧ϕ(y) and ϕ(x)∨ϕ(y) ≤ ϕ(x∨ y). Hence
ϕ is a lattice homomorphism from L1 to L2.

3 Join spaces associated with convex sublattices of a lat-
tice

We denote by CS(L) the set of all convex sublattices of a lattice L. In [16]
Lavanya and Parameswara Bhatta defined a partial order ≤ on CS(L) as
follows: for all X,Y ∈ CS(L), X ≤ Y if and only if

(∀x ∈ X, ∃y ∈ Y : x ≤ y) and (∀y′ ∈ Y, ∃x′ ∈ X : x′ ≤ y′).
Then (CS(L),≤) is a lattice, in which

inf{X,Y } =< {x ∧ y | x ∈ X, y ∈ Y } >

= {u ∈ L | x ∧ y ≤ u ≤ x1 ∧ y1 for some x, x1 ∈ X and y, y1 ∈ Y },

sup{X,Y } =< {x ∨ y | x ∈ X, y ∈ Y } >

= {u ∈ L | x ∨ y ≤ u ≤ x1 ∨ y1 for some x, x1 ∈ X and y, y1 ∈ Y },

where for all nonempty subset H of L, < H > denotes the convex sublattice
of L generated by H. For all X,Y ∈ CS(L), denote

X �̄Y = {Z ∈ CS(L) : inf{X,Y } ≤ Z ≤ sup{X,Y }}.

3.1. Theorem (L, �) is a join space if and only if (CS(L), �̄) is a join
space.
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Proof. According to Theorem 2.1., (ii), (L, �) is a join space if and only if the
lattice (L,∨,∧) is distributive. First, we check that if (L,∨,∧) is distributive,
then the lattice (CS(L), sup, inf) is distributive, too.

Set X,Y, Z ∈ CS(L). We obtain

(X inf Y ) sup Z = {u ∈ L | ∃xi ∈ X, ∃yi ∈ Y, ∃zi ∈ Z, i = 1, 2, :

t1 ∨ z1 ≤ u ≤ t2 ∨ z2, where x1 ∧ y1 ≤ ti ≤ x2 ∧ y2}

= {u ∈ L | ∃xi ∈ X, ∃yi ∈ Y, ∃zi ∈ Z, i ∈ {1, 2} :

(x1 ∧ y1) ∨ z1 ≤ u ≤ (x2 ∧ y2) ∨ z2} and

(X sup Z) inf (Y sup Z) = {v ∈ L | ∃xi ∈ X, ∃yi ∈ Y, ∃zi ∈ Z, i ∈ {1, 2} :

s1∧p1 ≤ v ≤ s2∧p2, where x1∨z1 ≤ si ≤ x2∨z2, y1∨z1 ≤ pi ≤ y2∨z2, i = 1, 2}

= {v ∈ L | ∃xi ∈ X, ∃yi ∈ Y, ∃zi ∈ Z, i ∈ {1, 2} :

(x1 ∨ z1) ∧ (y1 ∨ z1) ≤ v ≤ (x2 ∨ z2) ∧ (y2 ∨ z2)}.

Since (L,∨,∧) is distributive, it follows that (CS(L), �̄) is a join space. Con-
versely, for all x, y, z ∈ L it is sufficient to set X = {x}, Y = {y}, Z = {z}.

Now, let (f,A) be a soft join space over (L.�). We define f̄ : A → CS(L)
by f̄(a) = CS(f(a)). By the above theorem and Corollary 2.7., we obtain

3.2. Corollary (f,A) is a soft join space over (L, �) if and only if (f̄ , A)
is a soft join space over (CS(L), �̄).

Now, for all X,Y ∈ CS(L), denote

X ◦̄Y = {Z ∈ CS(L) : sup{X,Y } = sup{Y,Z} = sup{X,Z}}.

3.3. Theorem (L, ◦) is a join space if and only if (CS(L), ◦̄) is a join
space.

Proof. According to Theorem 2.1., (i), (L, ◦) is a join space if and only if the
lattice (L,∨,∧) is modular. First, we check that if (L,∨,∧) is modular, then
the lattice (CS(L), sup, inf) is modular.

Set X,Y, Z ∈ CS(L), X ≤ Z. It is sufficient to check that

(∗) (X sup Y ) inf Z ≤ X sup (Y inf Z),

which means that ∀u ∈ (X sup Y ) inf Z, ∃v ∈ X sup (Y inf Z) such that
u ≤ v and ∀v̄ ∈ X sup (Y inf Z), ∃ū ∈ (X sup Y ) inf Z, such that ū ≤ v̄.
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Set u ∈ (X sup Y ) inf Z. Hence, there exist xi ∈ X, yi ∈ Y, zi ∈ Z, i ∈
{1, 2}, such that t1∧z1 ≤ u ≤ t2∧z2, where ti ∈ X sup Y. Hence for i ∈ {1, 2},
x1∨y1 ≤ ti ≤ x2∨y2. It follows that (x1∨y1)∧z1 ≤ u ≤ t2∧z2 ≤ (x2∨y2)∧z2.
Since X ≤ Z, it follows that ∀x ∈ X,∃z̄ ∈ Z : x ≤ z̄ and ∀z ∈ Z,∃x̄ : x̄ ≤ z.
So, for x1 ∈ X,∃z̄1 ∈ Z : x1 ≤ z̄1 and for z1 ∈ Z1,∃x̄1 : x̄1 ≤ z1. Hence
x1 ∧ x̄1 ≤ z1 ∧ z̄1.

By the modularity of L, it follows that

(x1 ∨ y1) ∧ z1 ≥ [(x1 ∧ x̄1) ∨ y1] ∧ (z1 ∧ z̄1) = (x1 ∧ x̄1) ∨ (y1 ∧ z1 ∧ z̄1).

Denote x1 ∧ x̄1 = x3 ∈ X, z1 ∧ z̄1 = z3 ∈ Z. Hence u ≥ x3 ∨ (y1 ∧ z3).

On the other hand, for x2, ∃z̄2 : x2 ≤ z̄2 and for z2, ∃x̄2 : x̄2 ≤ z2. Hence
x2 ∨ x̄2 ≤ z2 ∨ z̄2. By the modularity of L it follows that

(x2 ∨ y2) ∧ z2 ≤ [(x2 ∨ x̄2) ∨ y2] ∧ (z2 ∨ z̄2) = (x2 ∨ x̄2) ∨ (y2 ∧ (z2 ∨ z̄2)).

Denote x2 ∨ x̄2 = x4 ∈ X, z2 ∨ z̄2 = z4 ∈ Z. We obtain u ≤ x4 ∨ (y2 ∧ z4).
Therefore, ∃x3, x4 ∈ X, ∃y1, y2 ∈ Y, ∃z3, z4 ∈ Z such that x3 ∨ (y1 ∧ z3) ≤
u ≤ x4 ∨ (y2 ∧ z4), whence

X sup (Y inf Z) = {v ∈ L | ∃xi ∈ X,∃ti ∈ Y inf Z :

x1 ∨ t1 ≤ v ≤ x2 ∨ t2,∃yi ∈ Y,∃zi ∈ Z : y1 ∧ z1 ≤ t1, t2 ≤ y2 ∧ z2}.

Hence x1∨(y1∧z1) ≤ x1∨t1 ≤ v ≤ x2∨t2 ≤ x2∨(y2∧z2), whence it follows (∗).
Conversely, for all x, y, z ∈ L it is sufficient to set X = {x}, Y = {y}, Z = {z}.

3.4.Corollary (f,A) is a soft join space over (L, ◦) if and only if (f̄ , A)
is a soft join space over (CS(L), ◦̄).

Proof. It follows from Theorem 3.3 and Corollary 2.4.

4 Conclusion

This paper continues the study of soft hyperstructures initiated in [17], by
proposing and analysing new soft hyperstructures in connection with modular
and distributive lattices. The results obtained in this context are used in the
study of (soft) hyperstructures obtained on the set of all convex sublattices of
a lattice.
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