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About k-perfect numbers

Mihály Bencze

Abstract

ABSTRACT. In this paper we present some results about k-perfect
numbers, and generalize two inequalities due to M. Perisastri (see [6]).

1 Introduction

Definition. A positive integer n is k-perfect if σ (n) = kn, when k > 1,
k ∈ Q. The special case k = 2 corresponds to perfect numbers, which are
intimately connected with Mersenne primes. We have the following
smallest k-perfect numbers. For k = 2 (6, 28, 496, 8128, ...) , for k = 3
(120, 672, 523776, 459818240, ...) , for k = 4 (30240, 32760, 2178540, ...) , for k =
5 (14182439040, 31998395520, ...) , for k = 6 (154345556085770649600, ...) .

For a given prime number p, if n is p-perfect and p does not divide n, then
pn id (p+ 1)− perfect. This imples that an integer n is a 3− perfect number
divisible by 2 but not by 4, if and only if n

2 is an odd perfect number, of
which none are known. If 3n is 4k− perfect and 3 does not divide n, then n
is 3k−perfect.

A k−perfect number is a positive integer n such that its harmonic sum of
divisors is k.

For the perfect numbers we have the followings: 28 = 13 + 33, 496 =
13 + 33 + 53 + 73, 8128 = 13 + 33 + 53 + 73 + 93 + 113 + 133 + 153 etc. We
posted the following conjecture:

Conjecture. (Bencze, M., 1978) If n is k-perfect, then exist odd positive
integers ui (i = 1, 2, ..., r) such that

Key Words: perfect numbers
2010 Mathematics Subject Classification: 11A25
Received: May, 2013.
Revised: September, 2013.
Accepted: November, 2013.

45
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n =

r∑
i=1

uk+1
i

MAIN RESULTS

Theorem 1. If f : R → R is convex and increasing, N = pα1
1 pα2

2 ...pαnn
written in cannonical form is k-perfect, then:
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nf
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)
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Proof. If N is even then it follows
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For x ≥ 3 holds x+1
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√(
x
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)2
(see [9]), therefore if N is odd then yields
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Using the AM-GM inequality we obtain:
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Finally
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if N is even

n
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)
if N is odd

Because f is convex and increasing from Jensen’s inequality we get
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Theorem 2. If g : R → R is convex and increasing, N = pα1
1 pα2

2 ...pαnn
written in cannonical form is k-perfect, then:
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Proof. We have the following:
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From AM-GM inequality yields
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According to Jensen’s inequality yields
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Corolloary 1. If N = pα1
1 pα2

2 ...pαnn written in cannonical form is k-perfect
then:
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Theorem 3. If x, t > 0 then

(x+ 1) t
1
x+1 − xt 1

x ≤ 1

Proof. For t = 1 we have the equality. Let 0 < t < 1. Since the function
u (x) = xt

1
x is continuous and differentiable we can apply the Lagrange’s

theorem and we obtain

(x+ 1) t
1
x+1 − xt 1

x

(x+ 1)− x
=
u (x+ 1)− u (x)

(x+ 1)− x
= u′ (z)

when x < z < x+ 1 hence we have the inequality
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Developing t−
1
z into McLauren’s series it results
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that is obvious because ln 1
t > 0 due to 1

t > 1. Let be t > 1. Then is

enough to show that the function V (x) = x
(
t

1
x − 1

)
is decreasing.

Differentiable V we get

V ′ (x) = t
1
x − t 1

x · 1

x
ln t− 1 = −
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Since V is decreasing and we may say that V (x+ 1) < V (x) hence and
from it follows the inequality of the ennunciation.

Corollary 2. If N = pα1
1 pα2

2 ...pαnn is a k-perfect number written in can-
nonical form, then:
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Proof. Using the Theorem 3 it is proved that the series(
n
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are decreasing, and the series(
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are increasing. It means that the minimum and maximum are reached only
then n→∞.

Since n → ∞ we have 0 · ∞. That is why L’Hospital rule and so we find
the results of the enunciation.

Remark 1. For k = 2 we reobtain the M.Perisastri’s inequality

n∑
i=1

1

pi
< 2 ln

π

2

(see [6]).
Corollary 3. Let N = pα1

1 pα2
2 ...pαnn be a k−perfect number written in

cannonical form and Pmax = {p1, p2, ..., pn} and Pmin = min {p1, p2, ..., pn} ,
then
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from the theorem if follows the affirmation.
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Remark 2. Let N = pα1
1 pα2

2 ...pαnn be a k-perfect number written in can-
nonical form, then

Pmin <
2n

k2 − 1
+ 2

(see the method of M. Perisastri’s)

Acknowledgements. The author wishes to express his gratitude to the Or-
ganizing Committee of the workshop ”Workshop on Algebraic and Analytic
Number Theory and their Applications” (PN-II-ID-WE - 2012 - 4 -161). The
publication of this paper is supported by the grant of CNCS-UEFISCDI (Ro-
manian National Authority for Scientific Research): PN-II-ID-WE - 2012 - 4
-161.

References

[1] B. Apostol, Extremal orders of some functions connected to regular in-
tegers modulo n, An. St. Univ. Ovidius Constanta, Vol. 21(2),2013, 5-19.

[2] M. Bencze, On perfect numbers, Studia Mathematica, Univ. Babes-
Bolyai, Nr. 4, 1981, 14-18.

[3] G. Hardy, D.E. Littlewood, G. Polya, Inequalities, Cambridge, University
Press, 1964.

[4] H.J. Kanold, Über mehrfach volkommene Zahlen, II. J. Reine Angew.
Math., 1957, 197, 82-96.

[5] Octogon Mathematical Magazine (1993-2013).

[6] M. Perisastri, A note on odd perfect numbers, The Mathematics Student
26(1958), 179-181.

[7] J. Sándor, B. Cristici, eds.: Handbook of number theory II, Dordrecht,
Kluwer Academic, 2004.

[8] W. Sierpinski, Elementary theory of numbers, Warsawa, 1964.

[9] The American Mathematical Monthly, E.2308(1971), E.2162(1969)
(Simeon Reich’s note).
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