SOMETHING ABOUT h - MEASURES OF SETS IN PLANE

ALINA BĂRBULESCU

Abstract

In this article we estimate the Hausdorff h-measures of the graphs of some functions, for different measure functions.

1 Preliminaries

The fractal properties of some sets are characterised by different types of dimensions, as ruler, Box, information etc., that are difficult to be calculated. The Hausdorff h-measure that generalises the Hausdorff measure, from which the Hausdorff dimension arises is of big importance in problems in which the equality between the p-module and p-capacity of a set must be proved.

In this article, which continues the works [1]-[4], we present some results concerning the Hausdorff h - measure of some sets in plane.

Definition 1.1. Consider the the Euclidean n-dimensional space \mathbf{R}^{n}, $E \subset \mathbf{R}^{n}$ and denote by $d(E)$ the diameter of E.

If $r_{0}>0$ is a fixed number, a continuous function $h(r)$, defined on $\left[0, r_{0}\right)$, nondecreasing and such that $\lim _{r \rightarrow 0} h(r)=0$ is called a measure function.

If $0<\beta<\infty$ and h is a measure function, then, the Hausdorff h-measure of E is defined by:

$$
H_{h}(E)=\lim _{\beta \rightarrow 0} \inf \left\{\sum_{i} h\left(d\left(U_{i}\right)\right): E \subseteq \bigcup_{i} U_{i}: 0<d\left(U_{i}\right)<\beta\right\}
$$

[^0]where U_{i} is open.
Remark. If in the previous definition the covering of the set E is made with balls, a new spherical measure, denoted by H_{h}^{\prime} is obtained.

The relation between the two measures is: $H_{h}(E) \leq H_{h}^{\prime}(E)$.
Definition 1.2. Let $\delta>0$ and $f: D(\subset \mathbf{R}) \rightarrow \overline{\mathbf{R}} . f$ is said to be a δ class Lipschitz function if there is $M>0$ such as:

$$
|f(x+\alpha)-f(x)| \leq M|\alpha|^{\delta}, \forall x \in D, \forall \alpha \in \mathbf{R}, x+\alpha \in D
$$

f is said to be a Lipschitz function if $\delta=1$.
Definition 1.3. $\varphi_{1}, \varphi_{2}: D(\subset \mathbf{R}) \rightarrow(0,+\infty)$ are similar and we denote by: $\varphi_{1} \sim \varphi_{2}$, if there exists $Q>0$, such as: $\frac{1}{Q} \varphi_{1}(x) \leq \varphi_{2}(x) \leq Q \varphi_{1}(x), \forall x \in D$.

If $f: I \rightarrow \mathbf{R}$ is a function defined on the interval I and $\left[t_{1}, t_{2}\right] \subset I$, denote by $\Gamma(f)$, the graph of function f and $R_{f}\left(t_{1}, t_{2}\right)=\sup _{t_{1} \leq u, v \leq t_{2}}|f(t)-f(u)|$.

Proposition 1.5. [5] Let f be a continuous function on $[0,1], 0<\beta<1$ and m be the least integer number greater than or equal to $1 / \beta$. If N_{β} is the least number of squares of the β - mesh that intersect $\Gamma(f)$, then:

$$
\beta^{-1} \sum_{j=0}^{m-1} R_{f}[j \beta,(j+1) \beta] \leq N_{\beta} \leq 2 m+\beta^{-1} \sum_{j=0}^{m-1} R_{f}[j \beta,(j+1) \beta]
$$

2 Results

Theorem 2.1. Let $\delta>0$ and $f:[0,1] \rightarrow \overline{\mathbf{R}}$ be a δ-class Lipschitz function. If h is a measure function such that $h(t) \sim e^{-t} t^{p}, p \geq 2$, then $H_{h}(\Gamma(f))<\infty$. The assertion remains true if $p \geq 1$ and $\delta \geq 1$.

Proof. The first part of the proof follows a ideea from [6] and [2].
First, we suppose that $M+1$ in Definition 1.3, so that to any x corresponds an interval $(x-k, x+k)$ such that, for any $x+\alpha$ in this interval:

$$
|f(x+\alpha)-f(x)| \leq|\alpha|^{\delta} .
$$

Since $[0,1]$ is a compact set, there exists a finite set of overlapping intervals covering $(0,1)$:

$$
\left(0, k_{0}\right),\left(x_{1}-k_{1}, x_{1}+k_{1}\right), \ldots,\left(x_{n-1}-k_{n-1}, x_{n-1}+k_{n-1}\right),\left(1-k_{n}, 1\right)
$$

If c_{i} are arbitrary points, satisfying:

$$
\begin{gathered}
c_{1} \in\left(0, x_{1}\right), c_{i} \in\left(x_{i-1}, x_{i}\right), i=2, \ldots, n-1, c_{n} \in\left(x_{n-1}, 1\right) \\
c_{i} \in\left(x_{i-1}-k_{i-1}, x_{i-1}+k_{i-1}\right) \bigcap\left(x_{i}-k_{i}, x_{i}+k_{i}\right), i=2, \ldots, n-1,
\end{gathered}
$$

then

$$
0<c_{1}<x_{1}<c_{2}<x_{2}<\ldots<x_{n-1}<c_{n}<1
$$

The oscillation of f in the interval $\left(c_{i-1}, c_{i}\right)$ is less than $2\left(c_{i}-c_{i-1}\right)^{\delta}$ and thus the part of the curve corresponding to the interval $\left(c_{i-1}, c_{i}\right)$ can be enclosed in a rectangle of height $2\left(c_{i}-c_{i-1}\right)^{\delta}$ and of base $c_{i}-c_{i-1}$, and consequently in $\left[2\left(c_{i}-c_{i-1}\right)^{\delta-1}\right]+1$ squares of side $c_{i}-c_{i-1}$ or in the same number of circles of radius $\frac{c_{i}-c_{i-1}}{\sqrt{2}}$ circumscribed about each of these squares.

The integer part of the number x was denoted by $[x]$.
Given an arbitrary $r \in\left(0, \frac{1}{2}\right)$, we can always assume: $c_{i}-c_{i-1}<r$, $i=2,3, \ldots, n$.

Let us denote by C_{r} the set of all the above circles and let us consider

$$
\begin{gather*}
\sum_{C_{r}} h(2 r)=\sum_{C_{r}}\left\{\frac{h(2 r)}{(2 r)^{p} e^{-2 r}} \cdot(2 r)^{p} e^{-2 r}\right\} \tag{1}\\
r \in\left(0, \frac{1}{2}\right) \Rightarrow e^{-2 r} \in\left(\frac{1}{e}, 1\right) \tag{2}
\end{gather*}
$$

We have to estimate $\sum_{C_{r}}(2 r)^{p}$. The sum of the terms corresponding to the interval $\left(c_{i-1}, c_{i}\right)$ is:

$$
\begin{gather*}
S=\left\{\left[2\left(c_{i}-c_{i-1}\right)^{\delta-1}\right]+1\right\}\left\{\left(c_{i}-c_{i-1}\right) \sqrt{2}\right\}^{p} \Leftrightarrow \\
S=2^{\frac{p}{2}}\left(c_{i}-c_{i-1}\right)^{p}\left\{\left[2\left(c_{i}-c_{i-1}\right)^{\delta-1}\right]+1\right\} \\
S \leq 2^{\frac{p}{2}}\left(c_{i}-c_{i-1}\right)^{p}\left\{2\left(c_{i}-c_{i-1}\right)^{\delta-1}+1\right\} \Rightarrow \\
S \leq 2^{\frac{p}{2}+1}\left(c_{i}-c_{i-1}\right)^{p+\delta-1}+2^{\frac{p}{2}}\left(c_{i}-c_{i-1}\right)^{p} \tag{3}\\
p \geq 2, \delta \geq 0 \Rightarrow p+\delta-1 \geq 1 \Rightarrow \\
c_{i}-c_{i-1}<1 \Rightarrow\left(c_{i}-c_{i-1}\right)^{p+\delta-1},\left(c_{i}-c_{i-1}\right)^{p}<c_{i}-c_{i-1} . \tag{4}
\end{gather*}
$$

From (3) and (4) it results:

$$
\begin{gather*}
S \leq 2^{\frac{p}{2}+1}\left(c_{i}-c_{i-1}\right)+2^{\frac{p}{2}}\left(c_{i}-c_{i-1}\right)=3 \cdot 2^{\frac{p}{2}}\left(c_{i}-c_{i-1}\right) \Rightarrow \\
\sum_{C_{r}}(2 r)^{p} \leq \sum_{i=2}^{n} 3 \cdot 2^{\frac{p}{2}}\left(c_{i}-c_{i-1}\right) \leq 3 \cdot 2^{\frac{p}{2}} \Leftrightarrow \\
\left.\sum_{C_{r}} 2 r\right)^{p} \leq 3 \cdot 2^{\frac{p}{2}} \tag{5}
\end{gather*}
$$

Using Definition 1.3 and the relations (1), (2) and (5), we obtain:

$$
\sum C_{r} h(2 r)=\sum_{C_{r}}\left\{\frac{h(2 r)}{(2 r)^{p}} \cdot(2 r)^{p}\right\}<Q \sum_{C_{r}}(2 r)^{p} \leq 3 \cdot 2^{\frac{p}{2}} \cdot Q
$$

where $Q>0$ and $r \in\left(0, \frac{1}{2}\right)$, small enough.
Then $H_{h}^{\prime}(\Gamma(f))<+\infty$ and by $(1), H_{h}(\Gamma(f))<+\infty$.
If $M \neq 1$, then

$$
\sum_{C_{r}} h(2 r) \leq 3 \cdot 2^{\frac{p}{2}} \cdot Q \cdot M \Rightarrow H_{h}^{\prime}(\Gamma(f))<+\infty \Rightarrow H_{h}(\Gamma(f))<+\infty
$$

If $p \geq 1$ and $\delta>1$, then $\left(c_{i}-c_{i-1}\right)^{p+\delta-1}<c_{i}-c_{i-1}$ and the proof is analogous.

Remark. In the hypotheses of the previous theorem, if $P(t)=t^{p}, T(t)=$ $-t$, then $P^{\prime}(t)+P(t) T^{\prime}(t)=t^{p-1}(p-t)$, which is not always positive, so the case treated differs from that studied in [3].

Theorem 2.2 If $f:[0,1] \rightarrow \mathbf{R}$ is a δ-class Lipschitz function, $\delta>0$ and h is a measure function such as $h(t) \sim e^{t} t^{p}, p \geq 2$, then $H_{h}(\Gamma(f))=0$.

The assertion remains true if $\delta \geq 1$ and $p>1$.
Proof. Denoting by $N_{\beta}^{\prime}(\Gamma(f))$ the number of β - mesh squares that cover $\Gamma(f)$ and by $N_{\beta}(\Gamma(f))$ the smallest number of discs of diameters at most β that cover $\Gamma(f)$, it results that [1]:

$$
\begin{equation*}
N_{\beta}(\Gamma(f)) \leq N_{\frac{\beta}{\sqrt{2}}}^{\prime}(\Gamma(f))<\frac{3}{\beta}+M^{\prime} \beta^{\delta-2} \tag{6}
\end{equation*}
$$

with $M^{\prime}=M / \sqrt{2}^{\delta-2}$.
By hypotheses, $\Gamma(f)$ is a compact set. Therefore, if $\beta>0$, for every cover of $\Gamma(f)$ with open discs $U_{i}, i \in \mathbf{N}^{*}$, with diameters $d\left(U_{i}\right) \leq \beta$, there is a finite number of discs, n_{β}, that covers $\Gamma(f)$.

$$
\begin{aligned}
H_{h}^{\prime}(\Gamma(f)) & \left.=\lim _{\beta \rightarrow 0} \inf \left\{\sum_{i} h\left(d\left(U_{i}\right)\right): E \subseteq \bigcup_{i} U_{i}: 0<d\left(U_{i}\right)\right) \leq \beta\right\}= \\
& =\lim _{\beta \rightarrow 0} \inf \left\{\sum_{i=1}^{n_{\beta}} h\left(d\left(U_{i}\right)\right)\right\} \leq \lim _{\beta \rightarrow 0} \inf \left\{h(\beta) n_{\beta}\right\} \Rightarrow \\
H_{h}^{\prime}(\Gamma(f)) & \leq \lim _{\beta \rightarrow 0}\left\{N_{\beta}(\Gamma(f)) h(\beta)\right\}=\lim _{\beta \rightarrow 0}\left\{\frac{h(\beta)}{\beta^{p} e^{\beta}} \cdot N_{\beta}(\Gamma(f)) \beta^{p} e^{\beta}\right\} \Rightarrow
\end{aligned}
$$

$$
H_{h}^{\prime}(\Gamma(f)) \leq \lim _{\beta \rightarrow 0}\left\{N_{\beta}(\Gamma(f)) h(\beta)\right\}=\lim _{\beta \rightarrow 0}\left\{\frac{h(\beta)}{\beta^{p} e^{\beta}} \cdot N_{\frac{\beta}{\sqrt{2}}}^{\prime}(\Gamma(f)) \beta^{p} e^{\beta}\right\} .
$$

Since $h(t) \sim e^{t} t^{p}$, there is $Q>0$ such as $h(t)<Q e^{t} t^{p}$. By (1) and the hypothesis concerning p and δ, it result that:

$$
H_{h}^{\prime}(\Gamma(f)) \leq Q \lim _{\beta \rightarrow 0} e^{\beta} \cdot \lim _{\beta \rightarrow 0}\left\{M^{\prime} \beta^{p+\delta-2}+3 \beta^{p-1}\right\}=0
$$

Using the remark from Introduction, we obtain:

$$
H_{h}^{\prime}(\Gamma(f))=0 \Rightarrow H_{h}(\Gamma(f))=0
$$

Theorem 2.3 Let $\delta \geq 1$ and $f:[0,1] \rightarrow \overline{\mathbf{R}}$ be a $\delta-$ class Lipschitz function. Suppose that h is a measure function such that: $h(t) \sim P(t) e^{T(t)}, t \geq$ 0 , where P and T are the polynomials:

$$
P(t)=\sum_{j=1}^{p} a_{j} t^{j}, p \geq 1, a_{1} \neq 0, T(t)=\sum_{j=0}^{m} b_{j} t^{j}
$$

with positive coefficients. Then $0<H_{h}(\Gamma(f))<\infty$.
Proof. In [2] it was proved that in the hypotheses of the theorem, $H_{h}^{\prime}(\Gamma(f))<\infty$. Using the theorem 1 [6], we obtain that $H_{h}^{\prime}(\Gamma(f))>0$.

Acknowledgement: The publication of this article was partially supported by the grant PN-II-ID-WE-2012-4-169 of the Workshop "A new approach in theoretical and applied methods in algebra and analysis".

References

[1] A. Bărbulescu, Results on fractal measure of some sets, Theory of Stochastic Processes, 13 (1-2) (2007), 13-22.
[2] A. Bărbulescu, New results about the h-measure of a set, Analysis and Optimization of Differential Systems, Kluwer Academic Publishers, 2003, 43-48.
[3] A. Bărbulescu, About some properties of the Hausdorff measure, Proceedings of the 10th Symposium of Mathematics and Its Applications, Nov. $6-9,2003$, Timisoara, Romania, $17-22$.
[4] A. Bărbulescu, On the h-measure of a set, Revue Roumaine de Mathématique pures and appliquées, tome XLVII (5-6) (2002), 547-552.
[5] K. J. Falconer, Fractal geometry: Mathematical foundations and applications, J.Wiley and Sons, 1990
[6] P.A.P. Moran, Additive functions of intervals and hausdorff measure, Proceedings of Cambridge Phil. Soc., 42 (1946), 15-23.

ALINA BĂRBULESCU,
Ovidius University of Constanta,
Romania
Email: alinadumitriu@yahoo.com

[^0]: Key Words: Hausdorff h-measure, measure function, graph
 2010 Mathematics Subject Classification: Primary 28A78, 28A80
 Received: April, 2013.
 Accepted: August, 2013.

