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On the function π(x)

Magdalena Bănescu

Abstract

Let π(x) be the number of primes not exceeding x. We prove that

π(x) < x
log x−1.006789

for x ≥ e10
12

, and that for sufficiently large x:
x

log x−1+(log x)−1.5+2(log x)−0.5 < π(x) < 1
log x−1−2(log x)−0.5−(log x)−1.5 .

We finally prove that for x ≥ e10
12

and k = 2, 3, . . . , 147297098200000,
the closed interval [(k−1)x, kx] contains at least one prime number, i.e.
the Bertrand’s postulate holds for x and k as above.

1 Introduction

In 1962, (see [10], page 69, Th.2), B. Rosser and L. Schoenfeld proved the
following inequalities, that rely on the computation of the first 25 000 zeros of
Riemann’s zeta function obtained by D.H. Lehmer, (see [6]):

x

log x− 1
2

< π(x), for x ≥ 67

π(x) <
x

log x− 3
2

, for x > e
3
2 ,

where π(x) is the number of prime numbers not exceeding x.
In 1986, J. Van de Lune, H. J. J. Te Riele and D.T. Winter computed a

number of 1500000001 of the zeros of zeta function (see [14]). Using this and
Rosser-Schoenfeld method, Dusart improved the inequalities above. In this
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respect, the best inequalities involving the function π(x) established so far,
obtained by P. Dusart (see [4] Theorem 1, p.1-3, and Theorem 10, p.16-20),
are:

x

log x− 1
< π(x) for x ≥ 5393, (1)

x

log x− 1.1
≥ π(x) for x ≥ 60184, (2)

while for Chebyshev theta function θ(x) =
∑
p≤x log p one has

|θ(x)− x| < 0.006788
x

log x
for x ≥ 10544111, (3)

|θ(x)− x| ≤ 515
x

log3 x
for x > 1, (4)

|θ(x)− x| ≤ 1717433
x

log4 x
for x > 1. (5)

In 2000, L. Panaitopol improved the estimates on π(x), relying on the in-
equalities of Rosser-Schoenfeld (see [9], p. 374, Theorem 1). More precisely,
he obtained the following inequalities:

π(x) <
x

log x− 1− (log x)−0.5
for x ≥ 6, (6)

π(x) >
x

log x− 1 + (log x)−0.5
for x ≥ 59. (7)

In 2003, G. Mincu improved the inequalities above, by using the inequalities
of Dusart, and proved that (see [8], pag.57-58, Lemma 1 and Lemma 2):

π(x) <
x

log x− 1− 1.51
log x

for x ≥ 6.22, (8)

π(x) >
x

log x− 1− 0.7
log x

for x ≥ 70111. (9)

For several results on π(x), and on other related functions, we refer the reader
to the monograph [11]. For other connections with inequalities of type (1) and
(2), the reader is referred to [3] and [12]. For a solution of a conjecture on a
multiplicative property of π(x), the reader is referred to [13].

The aim of this paper is to improve the inequality (2) and the inequalities
(8) and (9), by using the method described in [9]. As a consequence, several
particular cases of the generalized Bertrand’s postulate are proven. Recall that
the generalized Bertrand’s postulate asserts that: for any positive integers n
and k with k = 2, . . . , n, the interval [(k − 1)n, kn] contains a prime number.
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For k = 2 the Bertrand’s postulate was proved by Chebyshev in 1850. For
k = 3 the Bertrand’s postulate was proved by Bachraoui in 2006, (see [2],
Corollary 1.4.), and for k = 4 it was proved by Loo in 2011, (see [7] ,Theorem
2.4). In this paper we will improve the inequalities obtained by Panaitopol
and Mincu. Throughout this paper all the functions are defined on the interval
[2,∞).

2 Main results

Theorem 2.1. For x ≥ 10544111 and c = 0.006788 the following inequal-
ity holds:

π(x) <
x

log x
+ (c+ 1)

x

log2 x
+

x

log5/2 x
. (10)

Proof. Recall the well-known identity π(x) = θ(x)
log x +

∫ x
2

θ(x)
t log2 t

dt (see, for

example, [1], Theorem 4.3, pages 78-79), and observe that the lower bound for
x in the statement of our theorem verifies e16 < 10544111 < e17. Then, using
(3) and integrating it by parts, we obtain:

π(x) <
x

log x
+ c

x

log2 x
+

∫ x

2

1

log2 t
dt+ c

∫ x

2

1

log3 t
dt

=
x

log x
+ c

x

log2 x
+

x

log2 x
− 2

log2 2
+ (c+ 2)

∫ x

2

1

log3 t
dt

=
x

log x
+ (c+ 1)

x

log2 x
− 2

log2 2
+ (c+ 2)

∫ x

2

1

log3 t
dt

=
x

log x
+

(c+ 1)x

log2 x
− 2

log2 2
+ (c+ 2)

∫ e16

2

1

log3 t
dt

+ (c+ 2)

∫ x

e16

1

log3 t
dt.

We have therefore proved that

π(x) <
x

log x
+

(c+ 1)x

log2 x
− 2

log2 2
+ (c+ 2)

(∫ e16

2

1

log3 t
dt+

∫ x

e16

1

log3 t
dt

)
.

(11)
We search for an upper bound for:

(c+ 2)

∫ e16

2

1

log3 t
dt = (c+ 2)

∫ e

2

1

log3 t
dt+ (c+ 2)

15∑
k=1

∫ ek+1

ek

1

log3 t
dt.
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In this respect, we observe that the function t 7→ 1
log3 t

is strictly convex

on [2,∞). If we apply on each interval [ek, ek+1], k = 1, 2, . . . , 15 and [2, e] the
Hermite–Hadamard inequality (see [5]),∫ b

a

f(x)dx ≤ b− a
2

(f(a) + f(b)),

we obtain:

(c+ 2)

∫ e16

2

1

log3 t
dt < 5622. (12)

Up to this point, from (11) and (12) we proved that:

π(x) <
x

log x
+

(c+ 1)x

log2 x
− 2

log2 2
+ 5622 + (c+ 2)

∫ x

e16

1

log3 t
dt.

To conclude, we will show that for

A :=
x

log x
+

(c+ 1)x

log2 x
− 2

log2 2
+ 5622 + (c+ 2)

∫ x

e16

1

log3 t
dt

and
B :=

x

log x
+ (c+ 1)

x

log2 x
+

x

log5/2 x

we have A < B i.e., that

(c+ 2)

∫ x

e16

1

log3 t
dt− 2

log2 2
− x

log5/2 x
+ 5622 < 0.

The derivative of the function

g(x) = (c+ 2)

∫ x

e16

1

log3 t
dt− 2

log2 2
− x

log5/2 x
+ 5622

is

g′(x) =
− log x+ (c+ 2)log1/2 x+ 2, 5

log7/2 x
,

and for log1/2 x > 2.87 i.e. for x > e8.3 we have g′(x) < 0, hence for these
values of x, g is a decreasing function. Moreover,

g(e16) = 5622− 2

log2 2
− e16

1024
≈ −3052 < 0,

and consequently, for x > e16 we have g(x) < g(e16) < 0, which finishes the
proof of our theorem.
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We are now in a position to prove our main result.

Theorem 2.2. Let d = 1.006789. Then for all x > e10
12

the following
inequality holds:

π(x) <
x

log x− d
. (13)

Proof. Note that d = c + 1 + 10−6 with c = 0.006788. According to
Theorem 2.1, it suffices to prove that:

x

log x
+ (c+ 1)

x

log2 x
+

x

log5/2 x
<

x

log x− d
. (14)

This is successively equivalent to

(log3/2 x+ (c+ 1) log1/2 x+ 1)(log x− d) < log5/2 x⇔
log5/2 x− d log3/2 x+ (c+ 1) log3/2 x− d(c+ 1) log1/2 x

+ log x− d < log5/2 x⇔
(c+ 1− d) log3/2 x+ log x− d(c+ 1) log1/2 x− d < 0⇔
−10−6 log3/2 x+ log x− d(c+ 1) log1/2 x− d < 0.

Let z = log1/2 x and let us consider the function:

h(z) = −10−6z3 + z2 − d(c+ 1)z − d = z(−10−6z2 + z − d(c+ 1))− d

Since the greatest root of the equation−10−6z2+z−d(c+1) = 0 is 999998.98...,
we have −10−6z2 +z−d(c+1) < 0 for z ≥ 106, hence h(z) < 0 for all z ≥ 106,

which shows that inequality (13) holds for all x ≥ e1012 .

Lemma 2.3. For sufficiently large x we have the following inequalities:

θ(x) < x

(
1 +

1

3(log x)2.5

)
, (15)

θ(x) > x

(
1− 2

3(log x)2.5

)
. (16)

Proof. From inequality (4) we deduce that:

x− 515
x

log3 x
≤ θ(x) ≤ x+ 515

x

log3 x
.

Next, from inequality (5) we see that for x > e29831 we have

θ(x) ≤ x
(

1 + 1717433
1

log4(x)

)
< x

(
1 +

1

3(log2.5(x))

)
.
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Using the same inequality for x > e18793, we deduce that

θ(x) ≥ x
(

1− 1717433
1

log4(x)

)
> x

(
1− 2

3(log2.5(x))

)
.

which completes the proof.

Theorem 2.4. For sufficiently large x the following inequalities hold:

π(x) <
1

log x− 1− 2(log x)−0.5 − (log x)−1.5
, (17)

π(x) >
x

log x− 1 + (log x)−1.5 + 2(log x)−0.5
. (18)

Proof. We use the identity (see [1], Th. 4.3, p.78):

π(x) =
θ(x)

log x
+

∫ x

2

θ(t)

t log2 t
dt.

From inequality (15), after integrating by parts, we deduce that:

π(x) <
x

log x

(
1 +

1

log x
+

1

3 log2.5 x
+

2

log2 x

)
− 2e29831

298313
− e29831

298313

+

∫ e29831

2

θ(t)

t log2 t
dt+ 6

∫ x

e29831

dt

log4 t
+

1

3

∫ x

e29831

dt

log4.5 t
.

Since

−2e29831

298313
− e29831

298313
+

1

3

∫ x

e29831

dt

log4.5 t
<

1

3

∫ x

e29831

dt

log4 t

we deduce that

π(x) <
x

log x
(1+

1

log x
+

1

3 log2.5 x
+

2

log2 x
)+

∫ e29831

2

θ(t)

t log2 t
dt+

19

3

∫ x

e29831

dt

log4 t
.

We define now the function f : [e29831,∞)→ by

f(x) =
2

3
· x

(log x)3.5
− 19

3

∫ x

e29831

dt

log4 t
−
∫ e29831

2

θ(t)

t log2 t
dt.

We observe that the derivative of f is

f ′(x) =
2 log1.5 x− 7 log0.5 x− 19

(log x)3.5
> 0,
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so f is an increasing function and, for sufficiently large x we have f(x) > 0.
Therefore we have

π(x) <
x

log x

(
1 +

1

log x
+

2

log2 x
+

1

log2.5 x

)
<

1

log x− 1− 2(log x)−0.5 − (log x)−1.5
.

If we apply the same method to prove inequality (18), we successively obtain:

π(x) >
x

log x

(
1 +

1

log x
+

2

log2 x
− 2

3 log3.5 x

)
+

∫ e18793

2

θ(t)

t log2 t
dt

− e18793

187932
− 2e18793

187933
+ 6

∫ x

e18793

dt

log4 t
− 2

3

∫ x

e19873

dt

log4.5 t

>
x

log x

(
1 +

1

log x
+

2

log2 x
− 2

3 log3.5 x

)
>

x

log x− 1 + (log x)−1.5 + 2(log x)−0.5
.

3 Applications

Theorem 3.1. For x ≥ e10
12

and k = 2, 3, . . . , 147297098200000, the
closed interval [(k − 1)x, kx] contains at least one prime number, i.e. the
Bertrand’s postulate holds for these x and k.

Proof. The inequality (1) and Theorem 2.2 show that:

π(kx)− π((k − 1)x) >
kx

log kx− 1
− (k − 1)x

log(k − 1)x− 1.006789
. (19)

We need to prove that

kx

log kx− 1
− (k − 1)x

log(k − 1)x− 1.006789
> 0,

which is equivalent to:

k log(k − 1) + k log x− k · 1.006789− (k − 1)(log k + log x− 1) > 0

⇔ log

(
k − 1

k

)k
− 0.006789k + log k − 1 + log x > 0

⇔ x >

(
k
k−1

)k
e1+0.006789k

k
.
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Since we have
(

k
k−1

)k
=
(

1 + 1
k−1

)k−1
(1 + 1

k−1 ) < 2e, in order to prove

our last inequality, it is sufficient to prove that the following inequality is true:

x ≥ 2e · e1+0.006789k

k
=

2e2+(d−1)k

k
. (20)

Since x ≥ e1012 , if 2 ≤ k ≤ 1012−2
d−1 , we have:

x ≥ e10
12

≥ e2+(d−1)k ≥ 2

k
e2+(d−1)k

so (20) holds . We conclude that Theorem 3.1, i.e. the Bertrand’s postulate is

true for any x ≥ e1012 and for any k with 2 ≤ k ≤ 1012−2
d−1 = 147297098200000.
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cureşti, Matematică, Anul LII, Nr.1 (2003), 55–64.

[9] L. Panaitopol, Inequalities concerning the function π(x): Applications,
Acta Arithmetica, XCIV (2000), no.4, 317–324.

[10] J.B.Rosser and L.Schoenfeld, Approximate formulas for some func-
tions of prime numbers, Illinois J. Math. 6 (1962), 64–94.

[11] J. Sándor, D.S. Mitrinovic and B. Crstici, Handbook of number
theory I, first ed. 1996, by Kluwer Acad. Publ., 2nd printing 2006 by
Springer Verlag.

[12] J. Sándor, On some inequalities of Dusart and Panaitopol on the func-
tion pi(x), Octogon Math.Mag. vol.14 (2006), no.2, 592–594.

[13] J. Sándor, On a conjecture of Miliakos, Octogon Math.Mag., vol.14,
(2006), no.1, 450–451.

[14] J. van de Lune, H. J. J. Te Riele and D.T. Winter, On the Zeros
of the Riemann Zeta Function in the Critical Strip.IV, Math. Of Compu-
tation 46 (1986), no 174, 667–681.

Magdalena BĂNESCU,
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