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ON THE NUMBER OF POLYNOMIALS
WITH COEFFICIENTS IN [n]

Dorin Andrica and Eugen J. Ionascu

Abstract

In this paper we introduce several natural sequences related to poly-
nomials of degree s having coefficients in {1, 2, ..., n} (n ∈ N) which
factor completely over the integers. These sequences can be seen as
generalizations of A006218. We provide precise methods for calculating
the terms and investigate the asymptotic behavior of these sequences
for s ∈ {1, 2, 3} .

1 Introduction

For any two positive integers s and n, we denote by A(s)
n the set of polynomials

of degree s,

P (x) = csx
s + cs−1x

s−1 + · · ·+ c1x+ c0, (1)

having s integer roots, where the coefficients ci belong to the set [n] :=

{1, 2, · · · , n}. Let us denote by A
(s)
n the cardinality of A

(s)
n . We are mainly

interested in these sequences A
(s)
n and their asymptotic behavior.

It turns out that if s = 1, one ends up with a classical problem known as
the Dirichlet divisor problem. Dirichlet (1849) showed that

A(1)
n = n lnn+ (2γ − 1)n+O(

√
n),
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where γ is the Euler-Mascheroni number.

For s = 2, the sequence A
(2)
n appeared in the following problem (see [5])

proposed by L. Panaitopol in the Romanian Mathematical Olympiad-Final
Round 2004 : For every n ≥ 4, we have

n < A(2)
n < n2. (2)

The original solution of the author was the following. Since the polynomials

x2 + (k + 1)x+ k, k = 1, . . . , n− 1, and 2x2 + 4x+ 2, x2 + 4x+ 4 are in A
(2)
n

with n ≥ 4, we obviously get that n+ 1 ≤ A(2)
n . Therefore, the first inequality

in ([5]) must be true.

In order to show the second inequality in ([5]), we observe that if P ∈ A
(2)
n ,

then P (x) = a(x+x1)(x+x2), where x1, x2 ∈ N, and a, a(x1 +x2), and ax1x2
are in {1, 2, . . . , n}. We conclude that x2 ≤ n

ax1
, and so

A(2)
n ≤

∑
1≤x1≤n
1≤a≤n

n

ax1
= n

(
1 +

1

2
+

1

3
+ . . .+

1

n

)2

.

It is easy to show (by induction for instance) that for every n ≥ 5, we have

1 +
1

2
+

1

3
+ . . .+

1

n
<
√
n.

It is not difficult to check that A
(2)
4 = 5. Combining the two inequalities above

shows that A
(2)
n < n2 for every n ≥ 4.

These inequalities can be obtained from the exact formula (7) of A
(2)
n which

we derive in Section 3. In fact, this formula allows us to be a little more precise

about the growth of the sequence A
(2)
n in Section 5:

A(2)
n =

1

4
n(lnn)2 + Cn(lnn) +O(n),

with some constants C ∈ [γ − 1, γ + 1
2 ].

In Section 4, we provide an exact formula for A
(3)
n . All monic polynomials

in A
(3)
10 are included next:

p1(x) = x3 + 3x2 + 3x+ 1, p2(x) = x3 + 4x2 + 5x+ 2,
p3(x) = x3 + 5x2 + 7x+ 3, p4(x) = x3 + 5x2 + 8x+ 4,

p5(x) = x3 + 6x2 + 9x+ 4.

Similarly, in A
(4)
20 we have
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q1(x) = x4 + 4x3 + 6x2 + 4x+ 1, q2(x) = x4 + 5x3 + 9x2 + 7x+ 2,
q3(x) = x4 + 6x3 + 12x2 + 10x+ 3, q4(x) = x4 + 6x3 + 13x2 + 12x+ 4,
q5(x) = x4 + 7x3 + 15x2 + 13x+ 4, q6(x) = x4 + 7x3 + 17x2 + 17x+ 6

q7(x) = x4 + 8x3 + 18x2 + 16x+ 5, and q8(x) = x4 + 7x3 + 18x2 + 20x+ 8.

2 General observations and case s = 1

Let us observe that for a polynomial P ∈ A
(s)
n we can write P (x) = csQ(x)

where Q(x) = (x + α1)(x + α2) · · · (x + αs) for some integers αi. It is clear
that all the coefficients of Q must be positive integers. Hence cs divides all

ci for all i = 0, 1, ..., s. This implies that Q ∈ A
(s)
k with k = m

cs
, where

m = max{c0, c1, ..., cs}.
It is natural then to introduce the following related sequence and the sub-

set of A
(s)
n , say B

(s)
n , of polynomials as in (1), where cs = 1 and we have

max{c0, c1, ..., cs−1} = n. We let then B
(s)
n the cardinality of B

(s)
n . Clearly,

for fixed s, the sequence {A(s)
n }n is non-decreasing, but one can easily check

that {B(s)
n }n is not a monotone sequence.

In what follows we are going to use bxc for the integer part of a real number

x. Let us first show the following relation between A
(s)
n and B

(s)
k .

Theorem 2.1. For any two positive integers s and n, we have

A(s)
n =

n∑
k=1

⌊n
k

⌋
B

(s)
k . (3)

Proof. First, we have the simple inclusion of sets

∪nk=1

⌊n
k

⌋
B

(s)
k ⊂ A(s)

n , (4)

where `B
(s)
k means all polynomials `P with P ∈ B

(s)
k and ` ∈ N. The sets

{`B(s)
k }`,k are disjoint since if `P and `′P ′ are identical polynomials, with

P ∈ B
(s)
k and P ′ ∈ B

(s)
k′ , we must have ` = `′ and then P = P ′ implies k = k′.

We have seen earlier that every polynomial in P ∈ A
(s)
n is the result of the

product of some number cs ∈ [n] and a polynomial Q ∈ B
(s)
k with k = m

cs
, and

m = max{c0, c1, ..., cs} ≤ n. In other words, every polynomial in A
(s)
n is in

one of the sets `B
(s)
k with `k ≤ n. This shows that (4) is an equality and then

(3) follows.
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Another simple observation is that if Q ∈ B
(s)
n ,

Q(x) = (x+ α1)(x+ α2) · · · (x+ αs)

and αi are integers, then all αi must be positive. This can be seen by observing
that Q(x) > 0 for every x ≥ 0 so there is no positive root of Q.

As a result, we have as a simple consequence of Theorem 2.1 the following
corollary.

Corollary 2.1. For n ∈ N we have

A(1)
n =

n∑
k=1

⌊n
k

⌋
. (5)

Proof. For s = 1, there is clearly only one polynomial satisfying the definition

of B
(1)
n , namely P (x) = x+ n. Hence, the equation (3) gives (5).

Actually, the sequence A
(1)
n , or A006218, is well known and one can read

more about it in The On-Line Encyclopedia of Integer Sequences. It is impor-
tant [1, pp.112-113], to observe that

A(1)
n =

n∑
k=1

τ(k), (6)

where τ(m) counts the number of positive integer divisors of m.

3 Exact formula for A
(2)
n

We recall that, in particular, A
(2)
n is the number of quadratic polynomials

P (x) = c2x
2 + c1x + c0, where c0, c1, c2 ∈ [n], having only integer roots. For

the calculation of A
(2)
n we employ the divisor function again.

Theorem 3.1. The sequence A
(2)
n is given by

A(2)
n =

n∑
k=2

⌊n
k

⌋ ⌊τ(k) + 1

2

⌋
. (7)

Proof. From (3), it suffices to show that B
(2)
k =

⌊
τ(k)+1

2

⌋
if k ≥ 2 and B

(2)
1 =

0. It is clear that B
(2)
1 = 0. If k ≥ 2 and P ∈ B

(2)
k with P (x) = (x+α)(x+β)
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where α, β are positive integers, we may assume without loss of generality
that α ≤ β. If α = 1 then we must have β = k − 1. If β ≥ α ≥ 2, we observe
that (α − 1)(β − 1) ≥ 1, which in turn implies k ≥ αβ ≥ α + β. Hence, we
also get αβ = k. Let us write the set of divisors of k as

1 = d1 < d2 < · · · < dτ(k) = k.

Summarizing, B
(2)
k is the cardinality of the set

P := {(1, k − 1)} ∪ {(di, dτ(M)−i+1)|i ≥ 1 with 2 ≤ di ≤ dτ(M)−i+1}.

In general, there is an even number of divisors of k, unless k is a perfect square.

So, if k is not a perfect square, the cardinality of P is τ(k)
2 and if k is a perfect

square, the cardinality of P is τ(k)+1
2 . An unified formula for the number of

elements of P is then
⌊
1
2 (τ(k) + 1)

⌋
. This shows that B

(2)
k =

⌊
τ(k)+1

2

⌋
and the

theorem follows from (3).
In order to derive the second inequality in ([5]), mentioned in the intro-

duction, let us observe that from (7) we obtain

A(2)
n ≤ n

n∑
k=2

τ(k) + 1

2k
≤ n

n∑
k=2

2
√
k + 1

2k
= n

n∑
k=2

1√
k

+
n

2

n∑
k=2

1

k

≤ n(2
√
n+ 1− 1) +

n

2
(ln(n+ 1) + γ − 1) < n2, n ≥ 4.

We have used the classical inequality τ(k) ≤ 2
√
k, which can be established by

observing that if 1 = d1 < d2 < · · · < ds are the divisors of k not exceeding
√
k,

we must have s ≤
√
k and the other divisors are simply n = n/d1, n/d2,· · · ,

in number of s− 1 or s depending upon k is a perfect square or not.

It does not appear that the sequence A
(2)
n is a known sequence. Its first

twenty terms are: 0, 1, 2, 5, 6, 10, 11, 16, 19, 23, 24, 33, 34, 38, 42, 50, 51, 60,
61, and 70.

4 Exact description for A
(3)
n

As before we need to calculate B
(3)
k for all k ≥ 1, and so we let P ∈ B

(3)
k and

write

P (x) = (x+ u)(x+ v)(x+ w),

where u, v and w are in [k] with max(u, v, w) = k. So, B
(3)
k is the number of

ordered triples (u, v, w) of integers, 1 ≤ u ≤ v ≤ w such that
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u+ v + w ≤ k (8.1)

uv + vw + wu ≤ k (8.2)

uvw ≤ k (8.3)

(8)

with at least one equality sign in (8). Let us assume that (u, v, w) is such a
triple. Since uv+vw+wu ≥ u+v+w we may assume that the equality takes
place either in the second or in the last inequality of (8).

However, for u ≥ 3, because u(uv + vw + wu) ≤ 3uvw, we get

uvw ≥ u

3
(uv + vw + wu) ≥ (uv + vw + wu)

which shows that we must have equality in (8.3) in this case. Hence, we need
to study separately what happens if equality happens in (8.2) and not in (8.3)
(Cases (I) and (II) in what follows).

(I) If u = 1, the system (8) reduces to only one equation, namely, vw +
u+ v = k or (v + 1)(w + 1) = k + 1. As we have seen in Section 3, there are⌊
τ(k+1)−1

2

⌋
polynomials of this form in B

(3)
k (we needed to exclude the pair

for which v + 1 = 1). We observe that for k + 1 prime, the contribution for
this type of polynomials is equal to zero.

(II) If u = 2 and equality is attained only in (8.2), we have equivalently
2v+2w+vw = k and 2vw < k, or (v+2)(w+2) = k+4 and (v−2)(w−2) < 4.
Hence, (v − 2)2 < 4 or v < 4.

If v = 2 then w + 2 = (k + 4)/4 which attracts k ≥ 12 with k a multiple

of 4 (k = 4`, ` ≥ 3). We will simply write (2, 2, `− 1) ∈ B
(3)
4` and observe that

equality is taking place only in (8.2).
If v = 3 then w < 6 which forces k = (v + 2)(w + 2) − 4 to be in the set

{21, 26, 31}.
Let us define the following step (counting) function that is going to be the

contribution in B
(3)
k for all the above situations in case (II):

f(k) =


1, if k = 4` with ` ≥ 3;

1, if k ∈ {21, 26, 31};
0, otherwise.

(9)

(III) This case is characterized by (8) and the fact that equality is attained
in (8.3), i.e. uvw = k. In terms of u, this is equivalent to

u ≥ 3 or (u = 2, 2vw = k, and 2v + 2w + vw ≤ k). (10)

If u = 2, this means that k = 2` and the system above becomes vw = ` and
(v− 2)(w− 2) ≥ 4. It is convenient to take the negation of the last inequality:
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if v = 2 we have basically no restriction on w so k = 4` with ` ≥ 1, and if
v = 3 then k ∈ {18, 24, 30}.

We need the following lemma which is a simple combinatorial result that
may be known but we do not have a good reference to it and so we include it
for completion.

Lemma 4.1. Given a natural number k whose prime (powers) factorization
is k = pα1

1 pα2
2 · · · pαn

n , then the number of positive integers u, v, and w such
that uvw = k with u ≤ v ≤ w is given by

od3(k) :=
1

6

2δ3(k) +
1

2n

n∏
j=1

(αj + 1)(αj + 2) + 3

n∏
j=1

(
⌊αj

2

⌋
+ 1)

 , (11)

where δ3(k) is 1 if k is a perfect cube and 0 otherwise.

Proof. Clearly every divisor dβ of k is of the form dβ := pβ1

1 p
β2

2 · · · pβn
n with

βi ∈ {0, 1, 2, · · · , αi}. So, for every index i we can take β
(1)
i , β

(2)
i and β

(3)
i such

that β
(1)
i + β

(2)
i + β

(3)
i = αi and form the divisors dβ(1) , dβ(2) and dβ(3) which

satisfy dβ(1)dβ(2)dβ(3) = k. It is known (see [4], page 25), that the number of
solutions (x1, x2, ..., x`) to x1 + x2 + · · · + x` = m in nonnegative integers is
equal to

(
m+`−1
`−1

)
. Hence, we get

(
αi+2

2

)
= (αi + 1)(αi + 2)/2 possible ways to

choose (β
(1)
i , β

(2)
i , β

(3)
i ). Thus we have N1 := 1

2n

∏n
j=1(αj +1)(αj +2) possible

ways to get ordered triples (d1, d2, d3) which satisfy d1d2d3 = k. Every single
such triple can be ordered and we will denote the non-decreasing triple by
[u, v, w]. If all of the divisors d1, d2 and d3 are distinct, then all six possible
permutations (which are counted in N1) give the same [u, v, w]. If two of
the divisors are equal, then only three possible permutations appear in the
counting N1: (u, u, w), (u,w, u) and (w, u, u).

Let us determine the number of all triples with two equal divisors, say

dβ(1) = dβ(2) . Then the equation 2β
(1)
i + β

(3)
i = αi is uniquely determined by

β
(1)
i , and we have a solution as long as β

(1)
i ∈ {0, 1, ...,

⌊
αi

2

⌋
}. So, the number

of such solutions is
⌊
αi

2

⌋
+ 1. Hence the number of lists [d1, d1, d3] such that

d21d2 = k is N2 :=
∏n
j=1(

⌊αj

2

⌋
+ 1). Assuming that d1 6= d3, in N1 we count

such a triple three times.
Let us first assume that k is not a perfect cube. Then d1 6= d3 is automatic

and the formula (11) follows. If k is a perfect cube, then k = d3. The triple
(d, d, d) is counted only one time in N1 and 3 times in the term 3N2. This
explains the term of 2δ3(k) in (11).

The sequence od3(k) is known as A034836 or the number of boxes with
integer edge lengths and volume k.

Now we can give an expression for the last case.
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Lemma 4.2. Given a natural number k then the number of non-decreasing
integer triples (u, v, w) such that (10) are satisfied, is given by

od3(k)−
⌊
τ(k) + 1

2

⌋
− g(k), (12)

where od3(k) is defined by (11) and g by

g(k) =


1, if k = 4`, ` ≥ 1;

1, if k ∈ {18, 24, 30};
0, otherwise.

Proof. Obviously, by Lemma 4.1, we have to exclude from the counting in
od3(k) all the solutions with u = 1 and those for which u = 2 and {v, w}
do not satisfy (10). If u = 1, then vw = k implies as before

⌊
τ(k)+1

2

⌋
such

solutions with v ≤ w. If u = 2 and (v− 2)(w− 2) < 4, then we have seen that
means exactly the definition of g.

We can put all these cases together at this point.

Theorem 4.1. We have for every k ≥ 1 and n ≥ 1

B
(3)
k =

⌊
τ(k + 1)− 1

2

⌋
+ od3(k)−

⌊
τ(k) + 1

2

⌋
+ E(k), and (13)

A(3)
n =

n∑
k=1

⌊n
k

⌋
B

(3)
k ,

where

E(k) =


−1, if k ∈ {8, 18, 24, 30};
1, if k ∈ {21, 26, 31};
0, otherwise.

Proof. By Lemma 4.2 and the analysis of cases above, we observe that the
contribution for k = 4` from f , cancel with the one from g if ` ≥ 3 and then
(13) follows.

Numerical calculations show that the first fifty terms of [k,B
(3)
k ] are: [1,

0], [2, 0], [3, 1], [4, 0], [5, 1], [6, 0], [7, 1], [8, 1], [9, 1], [10, 0], [11, 2], [12, 1],
[13, 1], [14, 1], [15, 2], [16, 1], [17, 2], [18, 0], [19, 2], [20, 2], [21, 2], [22, 0], [23,
3], [24, 2], [25, 1], [26, 2], [27, 3], [28, 1], [29, 3], [30, 0], [31, 3], [32, 3], [33, 1],
[34, 1], [35, 4], [36, 3], [37, 1], [38, 1], [39, 3], [40, 2], [41, 3], [42, 1], [43, 2], [44,
3], [45, 2], [46, 0], [47, 4], [48, 5], [49, 2], and [50, 2].

We assume that similar formulae exist for s ≥ 4 but certainly, one would
expect to get pretty complicated expressions because of the combinatorial
complications that appear between the case α1α2 · · ·αs = k and the other
situations.
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5 Asymptotic formulae for A
(1)
n and A

(2)
n

Using the inequalities x− 1 < bxc ≤ x, from (5) we obtain

n∑
k=1

n

k
− n < A(1)

n <

n∑
k=1

n

k
. (14)

According to well-known asymptotic results (see T. Apostol [2, pp.70])

n∑
k=1

1

k
= lnn+ γ +O(

1

n
), (15)

and
n∑
k=2

τ(k)

k
=

1

2
ln2 n+ 2γ lnn+O(1). (16)

We see that the inequalities (14) imply that A
(1)
n = n lnn + Cn + O(1) for

some constants C such that C ∈ [γ − 1, γ].

Some more recent progress has been made (see [4]) into showing the stronger
fact:

A(1)
n = n lnn+ (2γ − 1)n+O(n1/3 lnn).

It seems like estimates better than (16) can be derived such as

n∑
k=2

τ(k)

k
=

1

2
ln2 n+ 2γ lnn+ γ2 − 2γ1 +O(1/

√
n),

where γ1 ≈ −0.07281584548 is one of the Stieltjes constants defined by

γ1 := lim
n→∞

(
− (lnn)2

n+ 1
+

n∑
k=1

ln k

k

)
.

Theorem 5.1. We have the following asymptotic inequalities

A(2)
n ≤

n

4
(lnn)2 + (γ +

1

2
)n lnn+O(n), and (17)

A(2)
n ≥

n

4
(lnn)2 + (γ − 1)n lnn+O(n). (18)
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Proof. From Theorem 3.1 we have

A(2)
n ≤

n

2

n∑
k=2

τ(k)

k
+
n

2

n∑
k=2

1

k
,

which in conjunction with (15) and (16) gives (17). To show (18), we observe
that

A(2)
n >

n∑
k=2

(
n

k
− 1)(

τ(k)− 1

2
) =

n− 1

2
+
n

2

n∑
k=2

τ(k)

k
− n

2

n∑
k=2

1

k
− 1

2

n∑
k=2

τ(k).

Since we know that
∑n
k=1 τ(k) =

∑n
k=1

n
k we can arrive at

∑n
k=2 τ(k) =

(n− 1) +
∑n
k=2

n
k . This shows that

A(2)
n >

n

2

n∑
k=2

τ(k)

k
− n

n∑
k=2

1

k
,

which in turn implies (18).

From Theorem 5.1 we can easily see that

lim
n→∞

A
(2)
n

n ln2 n
=

1

4
. (19)

For the general situation we conjecture that

lim
n→∞

A
(s)
n

n lns n
=

1

(s!)2
. (20)
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