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Abstract

The aim of this paper is to obtain existence and additional qualitative
information, including location properties, for the solutions of nonlinear
Dirichlet problems, on a bounded domain Ω ⊂ R

N , that are obtained
by perturbing the equation giving the Fučik spectrum with a term f ∈
H−1(Ω).

1. Introduction and statements of results

In the present paper we develop a variational approach for studying an
eigenvalue problem with Dirichlet boundary condition obtained as a perturba-
tion of the equation describing the Fučik spectrum. Specifically, inspired from
the definition of Fučik spectrum (see, e.g., [6]), we deal with the following
boundary value problem: find u : Ω → R and (λ, µ) ∈ R

2 such that
{ −∆u(x) = λu+(x) − µu−(x) + f(x) in Ω

u = 0 on ∂Ω.

Here and later on we use the standard notation u+ = max{u, 0} and u− =
max{−u, 0}.

We are interested not only in the existence of solutions, but in obtaining
additional qualitative properties too. For instance, such a basic property is the
location of solutions. To this end we set up a variational approach suitable for
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the eigenvalue problems of the type presented above whose idea originates
in [3]. As general references for variational methods applied to nonlinear
boundary value problems we indicate [1], [2], [5], [6].

In fact, our results establish alternatives in solving different eigenvalues
problems with Dirichlet boundary conditions. We emphasize that in addition
to the existence they supply significant information on the location of eigen-
solutions. Moreover, under the formulated assumptions, they provide explicit
representations of the eigenvalues (regarded as pairs of real numbers following
the pattern of Fučik spectrum). Results of this type have been obtained in
[4] for superlinear elliptic boundary value problems. Notice that here we deal
with sublinear problems, so the results in [4] are not applicable.

It is worth to point out that actually the location of eigensolutions in
our results is obtained by means of the graph of an auxiliary function whose
technical role is to create an artificial coercivity. This will be transparent from
the relevant arguments in the proofs of these results.

Let us now precise the functional setting. Throughout the paper Ω stands
for a bounded domain in R

N . The space H1
0 (Ω) is endowed with the Hilbertian

norm given by

‖v‖2 =
∫

Ω

|∇v(x)|2dx, ∀v ∈ H1
0 (Ω).

The dual of H1
0 (Ω) is denoted as usual by H−1(Ω). In the sequel the notation

〈·, ·〉 means the duality pairing between H1
0 (Ω) and H−1(Ω). We denote by λ1

the first eigenvalue of the negative Laplacian −∆ on H1
0 (Ω).

We can now state our results.

Theorem 1. Let f ∈ H−1(Ω) and a real number a > 1
λ1

such that there is a
constant α > 0 for which the Dirichlet problem

(P0)

⎧⎨
⎩

−∆u = 1
a (u+ + f) in Ω

u = 0 on ∂Ω
〈f, u〉 ≤ −α

is not solvable. Then for all ρ, r ∈ R with 0 < ρ < r there exists a solution
(u, s) ∈ H1

0 (Ω) × R of the Dirichlet problem with constraints

(P )

⎧⎪⎪⎨
⎪⎪⎩

−∆u = 1
a+s2 (u+ + f) + s2

a+s2 u− in Ω
u = 0 on ∂Ω
ρ ≤ s ≤ r

〈f, u〉 ≤ λ1
aλ1−1‖f‖2

H−1(Ω).

An equivalent formulation of Theorem 1 is the following statement.
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Theorem 1′. Let f ∈ H−1(Ω) and a real number a > 1
λ1

such that there is a
constant α > 0 for which the Dirichlet problem

(P ′
0)

⎧⎨
⎩

−∆u = 1
a (−u− + f) in Ω

u = 0 on ∂Ω
〈f, u〉 ≤ −α

is not solvable. Then for all ρ, r ∈ R with 0 < ρ < r there exists a solution
(u, s) ∈ H1

0 (Ω) × R of the Dirichlet problem with constraints

(P ′)

⎧⎪⎪⎨
⎪⎪⎩

−∆u = 1
a+s2 (−u− + f) − s2

a+s2 u+ in Ω
u = 0 on ∂Ω
ρ ≤ s ≤ r

〈f, u〉 ≤ λ1
aλ1−1‖f‖2

H−1(Ω).

This equivalence is a direct consequence of the following facts. An element
u ∈ H1

0 (Ω) is a solution of problem (P0) (corresponding to f ∈ H−1(Ω)) if and
only if −u is a solution of problem (P ′

0) with f substituted by −f . Similarly,
(u, s) ∈ H1

0 (Ω)×R is a solution of problem (P ) (corresponding to f ∈ H−1(Ω))
if and only if (−u, s) is a solution of problem (P ′) with f replaced by −f .

Theorem 2. Let f ∈ H−1(Ω) and a real number a > 0 such that there is a
constant α > 0 for which the Dirichlet problem

(P ′′
0 )

⎧⎨
⎩

−∆u = 1
a (−u+ + f) in Ω

u = 0 on ∂Ω
〈f, u〉 ≤ −α

is not solvable. Then for all ρ, r ∈ R with 0 < ρ < r there exists a solution
(u, s) ∈ H1

0 (Ω) × R of the Dirichlet problem with constraints

(P ′′)

⎧⎪⎪⎨
⎪⎪⎩

−∆u = 1
a+s2 (−u+ + f) + s2

a+s2 u− in Ω
u = 0 on ∂Ω
ρ ≤ s ≤ r
〈f, u〉 ≤ 1

a ‖f‖2
H−1(Ω).

Equivalently, Theorem 2 can be stated as follows.

Theorem 2′. Let f ∈ H−1(Ω) and a real number a > 0 such that there is a
constant α > 0 for which the Dirichlet problem

(P ′′′
0 )

⎧⎨
⎩

−∆u = 1
a (u− + f) in Ω

u = 0 on ∂Ω
〈f, u〉 ≤ −α
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is not solvable. Then for all ρ, r ∈ R with 0 < ρ < r there exists a solution
(u, s) ∈ H1

0 (Ω) × R of the Dirichlet problem with constraints

(P ′′′)

⎧⎪⎪⎨
⎪⎪⎩

−∆u = 1
a+s2 (u− + f) − s2

a+s2 u+ in Ω
u = 0 on ∂Ω
ρ ≤ s ≤ r
〈f, u〉 ≤ 1

a ‖f‖2
H−1(Ω).

The equivalence between Theorems 2 and 2′ can be justified analogously
as for Theorems 1 and 1′. Consequently, we have only to prove Theorems 1
and 2.

The proofs of Theorems 1 and 2 rely on the following minimax result in
[3].

Lemma 1 . Let X be a Banach space, F : X × R → R be a C1 function and
let numbers δ > 0 and ρ, r with 0 < ρ < r such that

(i) F (0, 0) ≤ 0, F (0, r) ≤ 0;

(ii) F (v, ρ) ≥ δ > 0, ∀v ∈ X ;

(iii) F ∈ C1(X × R) satisfies the Palais-Smale condition.

Then the number
c = inf

γ∈Γ
max

τ∈[0,1]
F (γ(τ)),

where

Γ = {γ ∈ C([0, 1], X × R) : γ(0) = (0, 0), γ(1) = (0, r)},

is a critical value of F , i.e., there exists (u, s) ∈ X × R such that

F ′(u, s) = (Fu(u, s), Fs(u, s)) = (0, 0) and F (u, s) = c.

Moreover, one has the estimate

F (u, s) ≥ δ .

We see that in Theorems 1 and 1′ the condition a > 1/λ1 is imposed,
whereas in Theorems 2 and 2′ one has only a > 0. The proofs of Theorems 1
and 2 are presented in the next sections 2 and 3.
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2. Proof of Theorem 1

According to the statement Theorem 1 we assume there is an α > 0 such
that problem (P0) has no solutions because otherwise the result is proved. Fix
numbers ρ, r ∈ R with 0 < ρ < r and denote ε = a − 1

λ1
. By hypothesis we

know that ε > 0. Let us consider any C1 function β : R → R satisfying the
properties

(β1) β(0) = β(r) = 0;

(β2) β(ρ) = 1
2ε ‖f‖2

H−1(Ω) + α
2 ;

(β3) lim
|t|→∞

β(t) = +∞;

(β4) β′(t) < 0 ⇐⇒ t < 0 or ρ < t < r;
and

β′(t) = 0 =⇒ t ∈ {0, ρ, r}.
It is clear that such a function β(t) exists. We apply Lemma 1 setting

X = H1
0 (Ω) and the function F : H1

0 (Ω) × R → R defined by

F (v, t) =
1
2
(a + t2)‖v‖2 + β(t) − 1

2

∫
Ω

(v+)2 dx +
t2

2

∫
Ω

(v−)2 dx − 〈f, v〉 (1)

for all (v, t) ∈ H1
0 (Ω) × R. Since

∫ v(x)

0

τ+ dτ =
1
2

(v+)2(x) and −
∫ v(x)

0

τ− dτ =
1
2

(v−)2(x),

F in (1) can be expressed as follows

F (v, t) =
1
2
(a + t2)‖v‖2 + β(t) −

∫
Ω

∫ v(x)

0

τ+ dτ dx

−t2
∫

Ω

∫ v(x)

0

τ− dτ dx − 〈f, v〉, ∀(v, t) ∈ H1
0 (Ω) × R. (2)

By (2) we have that F ∈ C1(H1
0 (Ω) × R) (see, e.g., [1], [5]). Let us check

assumptions (i)-(iii) of Lemma 1.
In view of (β1) we have F (0, 0) = F (0, r) = 0, which shows that assumption

(i) in Lemma 1 holds true. Using (1) as well as (β2) and the variational
characterization of λ1, we find the estimate

F (v, ρ) ≥ a

2
‖v‖2 + β(ρ) − 1

2
‖v‖2

L2(Ω) − ‖f‖H−1(Ω) ‖v‖

≥ β(ρ) − 1
2ε

‖f‖2
H−1(Ω) =

α

2
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for all v ∈ H1
0 (Ω), so (ii) of Lemma 1 is satisfied with δ = α/2 .

We claim that the functional F : H1
0 (Ω)×R → R introduced in (1) satisfies

the Palais-Smale condition on the product space H1
0 (Ω)×R. Towards this let

{(vn, tn)} ⊂ H1
0 (Ω) × R be a sequence such that

|F (vn, tn)| ≤ M for all n, (3)

with a constant M > 0, and

F ′(vn, tn) = (Fv(vn, tn), Ft(vn, tn)) → 0 in H−1(Ω) × R as n → ∞. (4)

Taking into account (1), from (3) we have

M ≥ F (vn, tn) ≥ β(tn) − 1
2ε

‖f‖2
H−1(Ω) . (5)

On the basis of property (β3) we derive from (5) that

{tn} is bounded in R. (6)

Furthermore, from (3) and the variational characterization of λ1 we get

M ≥ F (vn, tn) ≥ 1
2

(
a − 1

λ1

)
‖vn‖2 + β(tn) − ‖f‖H−1(Ω) ‖vn‖.

Making use of (6) we see that

{vn} is bounded in H1
0 (Ω). (7)

In view of (6) and (7), we have that, along a relabelled subsequence, {tn} is
convergent in R and {vn} is weakly convergent in H1

0 (Ω). This yields that
{vn} is strongly convergent in L2(Ω) as well as the sequences {v−n }, {v+

n }. On
the other hand (4) implies

Fv(vn, tn) = (a + t2n)(−∆vn) − v+
n − t2nv−n − f → 0 in H−1(Ω) as n → ∞.

It follows that

{(a + t2n)(−∆vn)} is convergent in H−1(Ω).

Since then {−∆vn} is convergent in H−1(Ω), we conclude that up to a sub-
sequence {vn} is convergent in H1

0 (Ω). Hence F satisfies the Palais-Smale
condition which means that (iii) in Lemma 1 is verified.

Applying Lemma 1 to the function F ∈ C1(H1
0 (Ω) × R) in (1) provides a

point (u, s) ∈ H1
0 (Ω) × R such that

(a + s2)(−∆u) − u+ − s2u− − f = 0 in H−1(Ω), (8)
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s‖u‖2 + β′(s) + s

∫
Ω

(u−)2 dx = 0. (9)

1
2
(a + s2)‖u‖2 + β(s) − 1

2

∫
Ω

(u+)2 dx +
s2

2

∫
Ω

(u−)2 dx − 〈f, u〉 ≥ α

2
. (10)

Notice that (9) gives

s2‖u‖2 + sβ′(s) + s2

∫
Ω

(u−)2 dx = 0.

This equality enables us to deduce

sβ′(s) ≤ 0. (11)

In view of property (β4), it turns out from (11) that either s = 0 or ρ ≤ s ≤ r .
Consider first the situation s = 0. Then (8) and (10) with s = 0 become

−∆u =
1
a
(u+ + f), (12)

a

2
‖u‖2 − 1

2

∫
Ω

(u+)2 dx − 〈f, u〉 ≥ α

2
, (13)

respectively. By (12) we get

‖u‖2 − 1
a

∫
Ω

(u+)2 dx − 1
a
〈f, u〉 = 0. (14)

Combining (13) and (14) yields 〈f, u〉 ≤ −α, which together with (12) ensures
that u is a solution of problem (P0). This contradicts our assumption on
problem (P0) corresponding to the positive number α.

It remains to consider the situation

ρ ≤ s ≤ r . (15)

From (8) we see that (u, s) is a solution of the equation in problem (P ).
Moreover, by (8) we find

(a + s2)‖u‖2 −
∫

Ω

(u+)2 dx + s2

∫
Ω

(u−)2 dx − 〈f, u〉 = 0. (16)

Substituting (16) in (10) leads to

β(s) − 1
2
〈f, u〉 ≥ α

2
. (17)
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We note that the properties (β4), (β2), (15) and the definition of ε imply

β(s) ≤ β(ρ) =
1
2ε

‖f‖2
H−1(Ω) +

α

2
=

λ1

2(aλ1 − 1)
‖f‖2

H−1(Ω) +
α

2
.

It now suffices to use (17) for obtaining the estimate

〈f, u〉 ≤ λ1

aλ1 − 1
‖f‖2

H−1(Ω).

Recalling that (15) holds, it follows that the pair (u, s) ∈ H1
0 (Ω) × R solves

problem (P ). This completes the proof. �

Remark 1. A direct proof of Theorem 1′, without passing as in section 1
through Theorem 1, can be done by arguing like in the proof of Theorem 1
excepting that now in place of F (v, t) in (1) we take the function F : H1

0 (Ω)×
R → R defined by

F (v, t) =
1
2
(a + t2)‖v‖2 + β(t) +

t2

2

∫
Ω

(v+)2 dx − 1
2

∫
Ω

(v−)2 dx − 〈f, v〉

for all (v, t) ∈ H1
0 (Ω) × R, where β ∈ C1(R) satisfies the requirements (β1)-

(β4).

3. Proof of Theorem 2

We follow the same lines as in the proof of Theorem 1 in section 2, but now
taking into account that we only have that a > 0. We point out only the
differences in the treatment. As in the proof of Theorem 1 we assume there
is an α > 0 such that problem (P0) has no solutions and fix numbers ρ, r ∈ R

with 0 < ρ < r. Consider now β ∈ C1(R) which fulfils the conditions (β1)-(β4)
with ε = a . We introduce the C1 function F : H1

0 (Ω) × R → R by

F (v, t) =
1
2
(a + t2)‖v‖2 + β(t) +

1
2

∫
Ω

(v+)2 dx +
t2

2

∫
Ω

(v−)2 dx − 〈f, v〉 (18)

for all (v, t) ∈ H1
0 (Ω) × R. Assumption (i) in Lemma 1 is justified as in the

proof of Theorem 1. By (18) and (β2) we derive

F (v, ρ) ≥ a

2
‖v‖2 + β(ρ) − ‖f‖H−1(Ω) ‖v‖

≥ β(ρ) − 1
2a

‖f‖2
H−1(Ω) =

α

2
, ∀v ∈ H1

0 (Ω).

Thus (ii) of Lemma 1 is valid with δ = α/2 .
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Let us check that (iii) of Lemma 1 is verified, i.e. the Palais-Smale con-
dition is true for the functional F : H1

0 (Ω) × R → R in (18). To this end let
{(vn, tn)} ⊂ H1

0 (Ω)×R be a sequence such that (3) and (4) hold for F in (18).
We infer from (3) and (18) that

M ≥ β(tn) − 1
2a

‖f‖2
H−1(Ω).

This in conjunction with (β3) entails (6). Again by (3) and (18) we get

M ≥ a

2
‖vn‖2 + β(tn) − ‖f‖H−1(Ω)‖vn‖.

Due to (6) we conclude that (7) is also true. Proceeding now as in the proof
of Theorem 1 we deduce that condition (iii) in Lemma 1 is satisfied.

We are in a position to apply Lemma 1 to the functional F (v, t) in (18)
which produces a point (u, s) ∈ H1

0 (Ω) × R such that we have (9) and

(a + s2)(−∆u) + u+ − s2u− − f = 0 in H−1(Ω), (19)

1
2
(a + s2)‖u‖2 + β(s) +

1
2

∫
Ω

(u+)2 dx +
s2

2

∫
Ω

(u−)2 dx − 〈f, u〉 ≥ α

2
. (20)

Because of (9), we may justify as in the proof of Theorem 1 that either s = 0
or ρ ≤ s ≤ r . Furthermore, we may eliminate like before the case s = 0. To
handle the remaining situation ρ ≤ s ≤ r we observe that by means of (19)
and (20) we arrive at (17). From now on the proof goes on in a similar way
to the one of Theorem 1. �

Remark 2. A proof of Theorem 2′, which is different from the one in section
1 based on Theorem 2, is to follow the same reasoning as in the proof of
Theorem 2 considering in place of (18) the function F : H1

0 (Ω)×R → R given
by

F (v, t) =
1
2
(a + t2)‖v‖2 + β(t) +

t2

2

∫
Ω

(v+)2 dx +
1
2

∫
Ω

(v−)2 dx − 〈f, v〉

for all (v, t) ∈ H1
0 (Ω) × R, where β ∈ C1(R) satisfies conditions (β1)-(β4)

taking ε = a . �



110 D. Motreanu

References

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory
and applications, J. Func. Anal., 14 (1973), 349-381.

[2] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied
Mathematical Sciences, 74, Springer-Verlag, New York, 1989.

[3] D. Motreanu, A saddle point approach to nonlinear eigenvalue problems, Math. Slo-
vaca, 47 (1997), 463-477.

[4] D. Motreanu, A new approach in studying one parameter nonlinear eigenvalue prob-
lems with constraints, Nonlinear Anal., 60 (2005), 443-463.

[5] P. H. Rabinowitz, Minimax methods in critical point theory with applications to dif-
ferential equations, CBMS Regional Conference Series in Mathematics, 65, American
Mathematical Society, Providence, RI, 1986.

[6] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser Boston, Inc.,
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