An. Şt. Univ. Ovidius Constanţa

# AN IMPROVEMENT OF THE CONVERGENCE SPEED OF THE SEQUENCE $\left(\gamma_{n}\right)_{n>1}$ CONVERGING TO EULER'S CONSTANT 

## Cristinel Mortici and Andrei Vernescu

## To Professor Dan Pascali, at his 70's anniversary

## Abstract

There are a huge number of estimations for the convergence speed of the sequence

$$
\gamma_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\ln n .
$$

We refer here to the result of J. Franel (e.g. [3], p.523) and we give a stronger double inequality related to the sequence $\left(\gamma_{n}\right)_{n \geq 1}$.

The Euler's constant $\gamma=0,577 \ldots$ is defined as the limit of the sequence

$$
\begin{equation*}
\gamma_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\ln n . \tag{1}
\end{equation*}
$$

From the estimations

$$
\frac{1}{2 n+1}<\gamma_{n}-\gamma<\frac{1}{2 n}
$$

established in [10] it follows the convergence speed of the sequence $\left(\gamma_{n}\right)_{n \geq 1}$,

$$
\lim _{n \rightarrow \infty} n\left(\gamma_{n}-\gamma\right)=\frac{1}{2}
$$

Key Words: Convergence speed of a sequence; Euler constant.

The next step in the study of the convergence speed is to find other sequences which converge faster to $\gamma$. One method is to change the logarithmic term in (1). To be more precise, with the well-known notation

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}
$$

the sequence

$$
R_{n}=H_{n}-\ln \left(n+\frac{1}{2}\right)
$$

is strictly decreasing and convergent to $\gamma$. The convergence order of the sequence $\left(R_{n}\right)_{n \geq 1}$ is $1 / 24 n^{2}$. Indeed, De Temple gave in [2] the estimations

$$
\frac{1}{24(n+1)^{2}}<R_{n}-\gamma<\frac{1}{24 n^{2}}
$$

Negoi proved in [4] that the sequence

$$
T_{n}=H_{n}-\ln \left(n+\frac{1}{2}+\frac{1}{24}\right)
$$

is strictly increasing and convergent to $\gamma$. Moreover,

$$
\frac{1}{48(n+1)^{3}}<\gamma-T_{n}<\frac{1}{48 n^{3}}
$$

Later, Vernescu have found in [11] a fast convergent sequence to $\gamma$, by having the idea to replace the last term of the harmonic sum. He proved that the sequence

$$
x_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1}+\frac{1}{2 n}-\ln n
$$

is strictly increasing and convergent to $\gamma$. In this case,

$$
\begin{equation*}
\frac{1}{12(n+1)^{2}}<\gamma-x_{n}<\frac{1}{12 n^{2}} \tag{2}
\end{equation*}
$$

so the convergence order of the sequence $\left(x_{n}\right)_{n \geq 1}$ is $1 / 12 n^{2}$. This fact is close related with the asymptotic develop of the sum $H_{n}$,

$$
\begin{equation*}
H_{n}=\ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{1}{120 n^{4}}-\varepsilon_{n} \tag{3}
\end{equation*}
$$

where

$$
0<\varepsilon_{n}<\frac{1}{252 n^{2}}
$$

In the same sense we can see that every other replacement of the term $1 / n$ by $\alpha / n$, with $\alpha \neq 1 / 2$, leads to a weaker convergence, because the term $1 / 2 n$ from (3) dissapears only in case $\alpha=1 / 2$,

$$
H_{n}-\ln n-\frac{1}{2 n}=-\frac{1}{12 n^{2}}+\frac{1}{120 n^{4}}-\varepsilon_{n}
$$

The estimations (2) allow us to establish the better estimation

$$
\begin{equation*}
\frac{1}{2 n}-\frac{1}{12 n^{2}}<\gamma_{n}-\gamma<\frac{1}{2 n}-\frac{1}{12(n+1)^{2}} \tag{4}
\end{equation*}
$$

for the sequence $\left(\gamma_{n}\right)_{n \geq 1}$. In this sense, from the identity

$$
x_{n}=\gamma_{n}-\frac{1}{2 n}
$$

we deduce

$$
\frac{1}{12(n+1)^{2}}<\gamma-\left(\gamma_{n}-\frac{1}{2 n}\right)<\frac{1}{12 n^{2}}
$$

Hence

$$
\frac{1}{12(n+1)^{2}}-\frac{1}{2 n}<\gamma-\gamma_{n}<\frac{1}{12 n^{2}}-\frac{1}{2 n}
$$

so (4) is proved. Now mention that the estimations (4) we obtained here are stronger than the estimations

$$
\frac{1}{2 n}-\frac{1}{8 n^{2}}<\gamma_{n}-\gamma<\frac{1}{2 n}
$$

due to J. Franel (e.g. [3], p.523), because

$$
\frac{1}{2 n}-\frac{1}{12 n^{2}}>\frac{1}{2 n}-\frac{1}{8 n^{2}}
$$

and obviously

$$
\frac{1}{2 n}-\frac{1}{12(n+1)^{2}}<\frac{1}{2 n}
$$

## References

[1] Chao-Ping Chen, Feng Qi, The best lower and upper bounds of harmonic sequence, RGMIA Res. Rep. Coll. JIPAM, 2003.
[2] D.W. De Temple, Shun-Hwa Wang, Half integer approximations for the partial sums of the harmonic series, Journal of Mathematical Analysis and Applications, 160, (1991), 149-156.
[3] K. Knapp, Theory and applications in infinite series, 2nd edition, London-Glasgow, Blackie\&Son, 1964.
[4] T. Negoi, A zarter convergence to the constant of Euler, Gazeta Matematică, seria A, 15(94)(1997), 111-113.
[5] G. Polya, G. Szegö, Problems and theorems in analysis I, Springer Verlag Berlin, 1978.
[6] S.K.L. Rao, On the sequence for Euler's constant, Amer. Math. Montly (1956), 576573.
[7] J. Sandor, On a property of the harmonic series, Gazeta Matematică, 8 (1988), 311312.
[8] L. Toth, On the Problem C608, Amer. Math. Montly, 94(1989), 277-279.
[9] L. Toth, Problem E3432, Amer. Math. Montly, 98(1991), no. 3, 264.
[10] A. Vernescu, The order of convergence of the defining sequence of the constant of Euler, Gazeta Matematică (1983), 380-381.
[11] A. Vernescu, A new accelerate convergence to the constant of Euler, Gazeta Matematică, seria A, (1999), 273-278

Valahia University of Targovişte
Department of Mathematics,
Bd. Unirii 18, Targovişte
Romania
e-mail: cmortici@valahia.ro, avernescu@valahia.ro

