

An. Şt. Univ. Ovidius Constanța

APPROXIMATION SOLVABILITY OF HAMMERSTEIN EQUATION

Irina A. Leca

To Professor Dan Pascali, at his 70's anniversary

Abstract

Let X be a real reflexive Banach space and X^* its dual space. Let $K: D(K) \subset X \to X^*$ be a linear operator and $F: D(F) \subset X^* \to X$ be a nonlinear one with $R(F) \subset D(K)$ and $f \in X^*$. We study the abstract equation of Hammerstein type u + KFu = f and we present an approximation solvability method by using the class of perturbation of type (C).

1. Mappings of type (C)

In this paper, we introduce a class of mappings of type (C) which is fit for study of the approximation solvability of the equation u + KFu = f. Throughout this paper, X is a reflexive Banach space. " \rightarrow " and " \rightarrow " denote strong and weak convergence.

In the framework of monotone-like mapping, we introduce:

Definition 1. Let $A: D(A) \subset X \to X^*$. A is called mapping of type (C) if for any $\{u_n\} \subset D(A)$ such that $u_n \rightharpoonup u_0$ and $\lim_{n \to \infty} (A(u_n), u_n - u_0) \leq 0$, it follows that $A(u_n) \to A(u_0)$, as $n \to \infty$.

In order to determine the relationship of the class of the operators of type (C) with another mappings of monotone type we recall some definitions from [5], [7]:

Key Words: mapping of type (C), mapping of type (S_+) , equation of Hammerstein type, regularizing equation.

⁹¹

1) A is called mapping of type (S_+) if for any sequence $\{u_n\} \subset D(A)$ converging weakly to u_0 in X, for which $\lim_{n\to\infty} (A(u_n) - A(u_0), u_n - u_0) \leq 0$ is in fact strongly convergent in X.

2) A is said to be quasi-monotone if each sequence $\{u_n\} \subset D(A)$ with $u_n \rightharpoonup u_0$ in X, it follows that $\overline{\lim_{n \to \infty}} (A(u_n), u_n - u_0) \ge 0.$

3) A is called *angle-bounded* with the constant $a \ge 0$ if $|(A(u), v) - (A(v), u)| \le 2a (A(u), u)^{\frac{1}{2}} \cdot (A(v), v)^{\frac{1}{2}}$, for all u and v in D(A). The angle-boundedness of A with a = 0 corresponds to the *symmetry* of A, i.e. $(A(u), v) = (A(v), u), \forall u, v \in D(A)$.

Proposition 2. If $A : D(A) \subset X \to X^*$ satisfies one of the following conditions:

1.A is a continuous mapping of type (S_+) , 2.A is a continuous angle-bounded mapping, then A is a mapping of type (C).

To give some useful results we recall other definitions from [5]:

1) The map $J: X \to X^*$ given by $Ju = \left\{ f \in X \mid (f, u) = ||u||^2 = ||f||^2 \right\}$ is called the *normalized duality map* of X.

Without loss of generality we suppose further that is locally uniformly convex Banach space and J is single valued map.

2) Let $A: D(A) \subset X \to X^*$. A is called mapping of type quasi- (S_+) if for any $\varepsilon > 0$, $A + \varepsilon J$ are the mappings of type (S_+) , where $J: X \to X^*$ is a normalized duality map.

A basic relation between quasi-monotone operators and mappings of type (S) due to Calvert and Webb ([5]) is:

Theorem 3. The demicontinuous operator A is quasi-monotone if and only if $A + \varepsilon J \in (S)$ for each $\varepsilon > 0$.

Proposition 4. Let $\Omega \subset X$ be a weakly closed set, $\{u_n\} \subset \Omega$ such that $u_n \rightharpoonup u_0$ in X and $A : \Omega \rightarrow X^*$ be a mapping of type (C). Then A is a mapping of type quasi- (S_+) .

Proposition 5. Let $\Omega \subset X$ be a closed set, $\{u_n\} \subset \Omega$, $u_n \rightharpoonup u_0$ in X and $A: \Omega \to X^*$ be a bounded mapping of type (S_+) . If

 $\overline{\lim_{m \to n}} \left(A(u_n) - A(u_m), u_n - u_m \right) \le 0,$

then $u_n \to u_0$, as $n \to \infty$.

Proposition 6. Let $\Omega \subset X$ be a weakly closed set, $\{u_n\} \subset \Omega$ and $u_n \rightharpoonup u_0$ in X. If $A : \Omega \to X^*$ is a bounded mapping of type (C) and

 $\overline{\lim_{m,n}} \left(A(u_n) - A(u_m), u_n - u_m \right) \le 0,$ then $A(u_n) \to A(u_0)$, as $n \to \infty$.

Proposition 7. Let $A: X \to X^*$ be a hemicontinuous monotone mapping of type (C) and $J: X \to X^*$ a normalized duality map. Then, for any $\varepsilon > 0$, $A + \varepsilon J$ is invertible and $(A + \varepsilon J)^{-1}: X^* \to X$ is a bounded continuous monotone mapping of type (S_+) .

2. Approximation solvability of Hammerstein equation

Let $K: D(K) \subset X \to X^*, F: D(F) \subset X^* \to X, R(F) \subset D(K)$ and $f \in X^*.$

The equation u + KFu = f (1)

is called *equation of Hammerstein type*.

We consider the case of D(K) = X and $D(F) = X^*$.

Definition 8. The equation

 $u + (K + \lambda J)(F + \varepsilon J^*)u = f \qquad (2)$

is called a *regularizing equation* of equation (1), where λ, ε are arbitrary positive numbers, and $J : X \to X^*, J^* : X^* \to X$ are normalized duality maps.

Suppose that equation (2) is approximatively solvable, i.e. there is a sequence of monotonically increasing finite dimensional subspaces $\{X_n\} \subset X$, in which the equations have a solutions u_n such that $u_n \to u$, where u is a solution of the original equation.

Let $u + (K + \lambda_n J) (F + \varepsilon_m J^*) u = f$ (3)

with $\lambda_n > 0, \varepsilon_m > 0, n, m \in \mathbb{N}$ and $\lambda_n \to 0$ $(n \to \infty), \varepsilon_m \to 0$ $(m \to \infty)$. If the equation (3) has a solution $u_{\lambda_n \varepsilon_m}$ satisfying $\lim_{m \to \infty n \to \infty} \lim_{n \to \infty} u_{\lambda_n \varepsilon_m} = u$ and u is a solution of the equation (1), then the equation (1) is said to be regularizing approximatively solvable.

Theorem 9.: Let $K : X \to X^*$ be continuous monotone mapping of type (S_+) and K(0) = 0. Suppose $N : X \to X^*$ is coercive with respect to $f \in X^*$, *i.e.* there is r > 0 such that

(Nu - f, u) > 0

for all $u \in X$, with ||u|| > r. Then the equation:

 $Nu + Ku = f \qquad (4)$ has at least a solution.

Theorem 10. Let K and N satisfy the condition of Theorem 9.

Let $\Gamma = (\{X_n\}, \{X_n^*\}; \{P_n\}, \{Q_n\})$ be an injective approximation scheme in the Petryshyn sense ([6]). Define an approximation equation of equation (4) by

 $\begin{array}{l} N_n u + K_n u = Q_n f \\ \text{where } N_n = Q_n N P_n, K_n = Q_n K P_n \text{ and } u \in X_n. \text{ Then} \\ (i) \ \forall n \in \mathbb{N}, \exists u_n \in X_n, \text{ such that } N_n u_n + K_n u_n = Q_n f \\ (ii) \ \exists \{u_{n_k}\} \subset \{u_n\} \text{ such that } P_{n_k} u_{n_k} \to u, \ k \to \infty \text{ and} \\ u \text{ is a solution of equation } (4). \end{array}$

Theorem 11. Let $K : X \to X^*$ be a continuous monotone mapping, $K(0) = 0, F : X^* \to X$ a bounded and hemicontinuous monotone mapping of type (C), $f \in X^*$ and $\Gamma = (\{X_n\}, \{X_n^*\}; \{P_n\}, \{Q_n\})$ an injective approximation scheme. Suppose that F is coercive, i.e.

$$(u - f, Fu) > 0 \qquad (5)$$

for all $u \in X^*$, with $||u|| \ge R > 0$. Then, the equation of Hammerstein type (1) is regularizing approximately solvable.

Proof. First, we prove that the equation (2) is approximatively solvable. For any $\varepsilon > 0$ and $\lambda > 0$, we introduce the mappings $F_{\varepsilon} : X^* \to X$ with $F_{\varepsilon} = F + \varepsilon J^*$ and $K_{\lambda} : X \to X^*$ with $K_{\lambda} = K + \lambda J$. By the condition (5), for $||u|| \ge \max(||f||, R)$ we have

 $(u - f, F_{\varepsilon}u) > 0 \tag{6}$

Let $v = F_{\varepsilon}u$. Since F is bounded, we have $||u|| \to \infty$ as $||v|| \to \infty$.

Conversely, since F_{ε} is coercive, we have $||v|| \to \infty$ as $||u|| \to \infty$. Thus, the condition (6) is equivalent to the following: $\exists r > 0$ such that for $v \in X$, $||v|| \ge r$, we have

 $\left(F_{\varepsilon}^{-1}v - f, v\right) > 0$

By the Proposition 7, the assumption of the theorem and the above discussion, the corresponding conditions of Theorems 9 and 10 are satisfied. Hence, the equation

 $F_{\varepsilon}^{-1}v + K_{\lambda}v = f \qquad (7)$

is solvable in X. Furthermore, the equation (2) is also solvable in X^* . Equation (7) is approximatively solvable. Its approximation equation is

 $Q_n F_{\varepsilon}^{-1} P_n v + Q_n K_{\lambda} P_n v = Q_n f, \ v \in X_n \tag{8}$

By the definition of the mapping P_n , $R(P_n)$ is a closed subspace of X and $P_n : X_n \to R(P_n)$ is a bijection. Also, $R(Q_n)$ is a closed subspace of X_n^* , $Q_n : X^* \to R(Q_n) \subset X_n^*$ is a bijection.

Note that the equation (8) is solvable.

Thus the equation $u + Q_n K_\lambda F_{\varepsilon} Q_n^{-1} u = Q_n f$ has a solution in $R(Q_n)$. By Theorem 10 and the continuity of F_{ε}^{-1} , there exists a subsequence $\{u_{n_k}\} \subset \{u_n\}$ such that $u_{n_k} \to u \ (k \to \infty)$ and it can be proved easily that u is a solution of the equation (2).

Secondly, we are to show that $\exists \lambda_n > 0$, with $\lambda_n \to 0$ $(n \to \infty)$ and $\varepsilon_m > 0$, with $\varepsilon_m \to 0 \ (m \to \infty)$ such that solutions $\{u_{\lambda_n \varepsilon_m}\}$ of the equation (3) satisfy $\lim_{m \to \infty} \lim_{n \to \infty} u_{\lambda_n \varepsilon_m} = u \text{ and } u \text{ is a solution of the equation (1)}$

Let $v_{\lambda\varepsilon} = F_{\varepsilon}u_{\lambda\varepsilon}$. Then, $\forall \varepsilon > 0$ fixed, $\{v_{\lambda\varepsilon}\}$ are bounded with respect to $\lambda > 0$. Otherwise, there would be a subsequence $\{v_{\lambda_n \varepsilon}\}$ such that $||v_{\lambda_n \varepsilon}|| \to 0$ ∞ $(n \to \infty)$. Thus, $\exists N_1 \in \mathbb{N}$, such that for $n > N_1$, $||v_{\lambda_n \varepsilon}|| \ge r$. Since $F_{\varepsilon}^{-1}v_{\lambda_n\varepsilon} - f = -(K + \lambda_n J)v_{\lambda_n\varepsilon}$, we get a contradictory result:

$$0 < \left(F_{\varepsilon}^{-1}v_{\lambda_{n}\varepsilon} - f, v_{\lambda_{n}\varepsilon}\right) = -\left(\left(K + \lambda_{n}J\right)v_{\lambda_{n}\varepsilon}, v_{\lambda_{n}\varepsilon}\right) \le 0.$$

Since X is reflexive and $\{v_{\lambda\varepsilon}\}$ is bounded, there exists a subsequence $\{v_{\lambda_n\varepsilon}\}$ such that $v_{\lambda_n \varepsilon} \rightharpoonup v_{\varepsilon} \ (n \to \infty, \lambda_n \to 0).$

Let $A_1 = \{v_{\lambda_n \varepsilon}\}$. We choose arbitrarily $v_{\lambda_n \varepsilon} \in A_1, v_{\lambda_k \varepsilon} \in A_1$. Then $F_{\varepsilon}^{-1}v_{\lambda_{n}\varepsilon} + (K + \lambda_{n}J)v_{\lambda_{n}\varepsilon} = f \text{ and } F_{\varepsilon}^{-1}v_{\lambda_{k}\varepsilon} + (K + \lambda_{k}J)v_{\lambda_{k}\varepsilon} = f. \text{ Thus } F_{\varepsilon}^{-1}v_{\lambda_{n}\varepsilon} - F_{\varepsilon}^{-1}v_{\lambda_{k}\varepsilon} + Kv_{\lambda_{n}\varepsilon} - Kv_{\lambda_{k}\varepsilon} + \lambda_{n}Jv_{\lambda_{n}\varepsilon} - \lambda_{k}Jv_{\lambda_{k}\varepsilon} = 0. \text{ Since } A_{1} \text{ is bounded and K is monotone, we have}$

$$\overline{\lim_{n,k}} \left(F_{\varepsilon}^{-1} v_{\lambda_n \varepsilon} - F_{\varepsilon}^{-1} v_{\lambda_k \varepsilon}, v_{\lambda_n \varepsilon} - v_{\lambda_k \varepsilon} \right) \le 0$$

By the Proposition 5, we have $v_{\lambda_n \varepsilon} \to v_{\varepsilon} \ (n \to \infty)$. In addition, by the continuity of F_{ε}^{-1} and K, v_{ε} satisfies the equation

$$F_{\varepsilon}^{-1}v + Kv = f$$

This equation is equivalent to the following equation:

$$u + KF_{\varepsilon}u = f \quad (9)$$

Let $u_{\varepsilon} = F_{\varepsilon}^{-1} v_{\varepsilon}$. Then u_{ε} satisfies the equation (9) and $u_{\lambda_n \varepsilon} = F_{\varepsilon}^{-1} v_{\lambda_n \varepsilon} \to$ $F_{\varepsilon}^{-1}v_{\varepsilon} = u_{\varepsilon} \ (n \to \infty).$

Let $\{u_{\varepsilon}\}_{\varepsilon>0}$ be a solution set of the equation (9). Similarly, we can prove that $\{u_{\varepsilon}\}_{\varepsilon>0}$ are bounded. By the reflexivity of X^* , then $\exists \{u_{\varepsilon_m}\}$ such that $u_{\varepsilon_m} \rightharpoonup u \ (m \rightarrow \infty, \ \varepsilon_m \rightarrow 0).$

Let $A_2 = \{u_{\varepsilon_m}\}$. We consider arbitrarily $u_{\varepsilon_m} \in A_2, u_{\varepsilon_l} \in A_2$, then we have $u_{\varepsilon_m} + KF_{\varepsilon_m}u_{\varepsilon_m} = f$ and $u_{\varepsilon_l} + KF_{\varepsilon_l}u_{\varepsilon_l} = f$.

Thus $u_{\varepsilon_m} - u_{\varepsilon_l} + KF_{\varepsilon_m}u_{\varepsilon_m} - KF_{\varepsilon_l}u_{\varepsilon_l} = 0.$

By the boundedness of A_2 and the monotonicity of K, we have

$$\lim_{r \to \infty} (Fu_{\varepsilon_m} - Fu_{\varepsilon_l}, u_{\varepsilon_m} - u_{\varepsilon_l}) \le 0.$$

By Proposition 7, we have $Fu_{\varepsilon_m} \to Fu \ (m \to \infty)$. Finally, by the continuity of K and the equation (9), we have $u_{\varepsilon_m} \to u \ (m \to \infty)$ and u + KFu = f. **Theorem 12.** Let $K : X \to X^*$ be a bounded and continuous monotone mapping of type (C), K(0) = 0, $F : X^* \to X$ a bounded and continuous monotone mapping and $f \in X^*$. Suppose that $\exists R > 0$, such that for $u \in X^*$, with $||u|| \ge R$, we have the condition (5). Suppose also that $\Gamma = (\{X_n\}, \{X_n^*\}; \{P_n\}, \{Q_n\})$ is an injective approximation scheme. Then, the equation (1) is regularizing approximatively solvable.

Proposition 13. Let monotone mappings $K : X \to X^*$ and $F : X^* \to X$ be such that the equation (1) has a solution and either K or F satisfies one of the following conditions:

- 1. Either K or F is strictly monotone;
- 2. Either K or F is angle-bounded.

Then the solution of the equation (1) is unique.

References

- C.Chidume and H.Zegeye, Approximation of solutions of nonlinear equations of Hammerstein type in Hilbert space, Proceedings of the American Mathematical Society, vol.133, (2005), 851-858.
- [2] P.M.Fitzpatrick and W.V.Petryshyn, New existence theorems for nonlinear equations of Hammerstein type, Trans. Am. Math. Soc., 160 (1971), 39-63.
- [3] J.Mawhin and M.Willem, Compact perturbations of some nonlinear Hammerstein equations, Riv. Mat. Univ. Parma, 4 (5), (1979), 199-213.
- M. Joshi and M.Ganesan, Approximate solvability of Hammerstein equation, Numer. Funct. Anal. and Optimiz., 9(10) (1987), 1039-1058.
- [5] D. Pascali, Topological Methods in Nonlinear Analysis, Courant Institute, New York, 1999.
- [6] D.Pascali, An introduction to numerical functional analysis Petryshyn's A-proper mapping theory, Courant Institute, New York, 2001.
- [7] D.Pascali and S.Sburlan, Nonlinear mappings of monotone type, Editura Academiei, Bucuresti, 1978.
- [8] R.Precup, Methods in nonlinear integral equations, Kluwer Acad.Publ. Dordrecht, 2002.
- [9] Y.Zhao and S.Song, Approximation solvability of an equation of Hammerstein type, Northeastern Math., 7 (3)(1991), 371-378.

Naval Academy "Mircea cel Bătran" Fulger Street no.1, Constanta Romania e-mail: irina_leca@yahoo.com