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Abstract

The equivalence between Ekeland’s Variational Principle, The Drop
Theorem, The Petal Theorem is proved and The Drop Theorem is gen-
eralized to Localy Convex Spaces
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1. Introduction and notations.

Ekeland’s variational principle is a very useful tool for nonlinear analysis,
being a classical mean for investigations of many nonlinear problems in various
areas in mathematics (see, for instance, [1] , [4] , [5] , [6], for surveys).

In this paper, we show that Ekeland’s variational principle, or more pre-
cisely, a slightly amended form of it, is a consequence of a beautiful geomet-
rical result known as the drop theorem [2], used in various situation ( see
[3] , [6] , [7] , [8] ). We also point out that in turn the drop theorem is a con-
sequence of the Ekeland’s variational principle. As well as a consequence of
this principle we introduce the petal theorem. All this results are presented in
Section 2 and the relationships between them are proved in Section 3. In the
end of this article we establish a generalization of the drop theorem in locally
convex spaces(see [10] , [11] , [12] , [14]).

In what follows, the petal Pγ (a, b) associated with γ ∈ ]0,∞[ and the
points a, b in a metric space (X, d) is the set
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Pγ (a, b) = {x ∈ X : γd (x, a) + d (x, b) ≤ d (a, b)} .

If (X, d) is a metric space, A and B sets in X , c a point in X and r > 0, then
B (c, r) denotes the closed r-ball centered at c, d (c, A) = inf {d (x, c) : x ∈ A}
(the distance of c from A), d (A, B) = inf {d (x, y) : x ∈ A, y ∈ B} (the dis-
tance of the sets A and B) and diam(A) = sup {d (x, y) : x, y ∈ A} (the diam-
eter of A). If E is a normed vector space (n.v.s.) the drop D (x, B) associated
with a point x ∈ E and a convex subset B of E is the convex hull of {x}∪B :

D (x, B) = {x + t (y − x) : y ∈ B, t ∈ [0, 1]} .

We note that Pγ (a, b) ⊂ Pδ (a, b) if δ ≤ γ. Moreover, when B is the r−ball
with center b in the n.v.s. E and γ ≤ (t + r)−1 (t − r) with t := d (a, b) > r
then, by convexity, we obtain D (a, B) ⊂ Pγ (a, b) .

For any subset A of the metric space (X, d), we take the function dA =
d |A×A .Then (A, dA) is a metric space and dA represents the induced metric
on A by the metric d of X. We call that A is complete, if the metric space
(A, dA) is complete.

2. The statements

We start with the classic statement of Ekeland’s variational principle (EVP)
and then we give our altered statement and its proof, because this form of EVP
will be crucial for our purposes.

Theorem 2.1 (basic EVP). Let (X, d) be a complete metric space and
f : X → R ∪ {∞} be a proper (f (x) �= ∞) , lower semicontinuous (l.s.c.)
function which is bounded from below. Then there exists x0 ∈ X such that
f (x0) < f (x) + d(x0, x) for x ∈ X, x �= x0.

Theorem 2.2 (altered EVP). Let (X, d) be a complete metric space and
f : X → R ∪ {∞} be a proper l.s.c. function which is bounded from below.
Then for every y ∈ X and every ε > 0, there exists x0 ∈ X such that

i) f (x0) < f (x) + εd (x, x0) , for x �= x0;
ii) f (x0) ≤ f (y) − εd (x0, y) .

Proof. Define the sets

Xε = {z ∈ X ; f (z) ≤ f (y) − εd (z, y) .}

and

M (x) = {z ∈ Xε; f (x) ≥ f (z) + εd (z, x)} .
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Then Xε is a nonempty complete metric space and f : Xε → R ∪ {∞}
is also proper l.s.c. Thus for every x ∈ Xε , M (x) is nonempty and closed.
Moreover z ∈ M (x) implies M (z) ⊆ M (x) . Indeed, if t ∈ M (z) , we have
f (z) ≥ f (t) + εd (t, z) .On the other hand, z ∈ M (x) implies f (x) ≥ f (z) +
εd (z, x) .From the last two inequalities, we have f (x) ≥ f (t) + εd (t, x) , that
is t ∈ M (x) .

Let x0 be given. We construct a set (xn)n≥1 as follows: choose x1 ∈ Xε

with f (x1) < ∞ and then find xn+1 ∈ M (xn) such that

f (xn+1) < inf
u∈M(xn)

f (u) + 1
n .

Obviously, M (xn+1) ⊆ M (xn) and, for every z ∈ M (xn+1) , we have

εd (z, xn+1) ≤ f (xn+1) − f (z) ≤ inf
u∈M(xn)

f (u) − f (z) + 1
n ≤ 1

n .

So diamM (xn) → 0 as n → ∞ and, since X is complete , ∩
n≥1

M (xn) =

{x0} .As x0 ∈ M (xn) implies M (x0) ⊆ M (xn) for n ≥ 1, we have M (x0) =
{x0} .Therefore f (x0) < f (x) + εd (x, x0) , for x �= x0.The same inequality
holds on X�Xε since, for z /∈ Xε, we have f (y) − εd (z, y) < f (z) and this,
together with the fact that x0 ∈ Xε , implies that

f (x0) ≤ f (y) − εd (x0, y) ≤ f (y) − εd (z, y) + εd (z, x0) < f (z) + εd (z, x0) .

Although varied forms of Ekeland’s variational principle have been pre-
sented by their author in [5] , our slightly altered form does not appear there.The
Theorem 2.2 is useful in the following form.

Theorem 2.3 (Ekeland’s usual variational theorem). Let (X, d) be
a complete metric space and f : X → R ∪ {∞} be a proper l.s.c. function
which is bounded from below. Then, for every ε, δ > 0 and x ∈ X with
f (x) ≤ inf

x∈X
f (x) + ε , there exists x0 ∈ X such that

i) f (x) ≤ f (x0) ;
ii) d (x, x0) ≤ δ;
iii) f (x) > f (x) − ε

δ d (x, x) , for x �= x.

Theorem 2.4. (the drop theorem). Let X be a Banach space, C
be a nonempty and closed subset of X, z0 be a point in X\C , ρ > 0 and
0 < r < R = d (z0, C) < ρ. Then there exists a ∈ C such that ‖a − z0‖ ≤ ρ
and D (B (z0, r) , a) ∩ C = {a} , where B (z0, r) is the closed ball with center
z0 and radius r.

Proof. By a translation we may assume that z0 = 0.Let K = B (0, ρ)∩C,
which is a closed subset of X , and consequently a complete metric space with
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a distance induced naturally by the norm of X . Define the following functional
f : K → R by f (x) = ρ+r

R−r ‖x‖ .By the Ekeland’s variational principle, given
ε = 1, there exists a ∈ K such that

(1) f (a) < f (x) + ‖x − a‖ .
Such an element a satisfies the first requirement of conclusion. We claim

now that D (B (z0, r) , a)∩C = {a} . Suppose by contradiction that x �= a, x ∈
D (B (z0, r) , a) ∩ C. So

(2) x ∈ C and x = (1 − t) a + tv,
for some v ∈ B (0, r) and 0 ≤ t ≤ 1. Clearly 0 < t < 1. From (2) we obtain

‖x‖ ≤ (1 − t) ‖a‖ + t ‖v‖ ,

which gives
(3) t (R − r) ≤ t (‖a‖ − ‖v‖) ≤ ‖a‖ − ‖x‖ .
It follows from (1) and (2) that

ρ+r
R−r ‖a‖ < ρ+r

R−r ‖x‖ + ‖x − a‖ = ρ+r
R−r ‖x‖ + t ‖a − v‖ .

Using (3) to estimate t in the above inequality and estimating ‖a − v‖ ≤
ρ + r, we obtain ‖a‖ < ‖x‖+ (‖a‖ − ‖x‖) , which is impossible. Therefore, we
have D (B (z0, r) , a) ∩ C = {a} .

The above theorem is due to Danes, who gave in [2] a different proof
from the above one, using the following result of Krasnoselskii and Zabreiko:
”Let X be a Banach space and let x, y ∈ X be given points such that
0 < r < ρ < ‖x − y‖ . Then

diam [D (B (x, r) , y) \B (x, ρ)] ≤ 2[‖x−y‖+r]
‖x−y‖−r (‖x − y‖ − ρ) .”

Theorem 2.5(the generalized drop theorem). Let (X, ‖.‖) be a Ba-
nach space, C ⊆ X a nonempty closed subset and B ⊆ X a nonempty bounded
closed and convex subset of X. If d (C, B) > 0, then given x0 ∈ C there exists
a ∈ C ∩ D (x0, B) such that C ∩ D (a, B) = {a} .

Here it is an another geometrical result known as ”the petal theorem”.

Theorem 2.6 (the flower petal theorem). Let A a complete subset
of a metric space (X, d) . Let x0 ∈ A and let

b ∈ X\A, r ≤ d (b, A) , s = d (b, x0) .

Then for every γ > 0 there exists a ∈ A ∩ Pγ (x0, b) (so that in particular
d (a, x0) ≤ γ−1 (s − r)) such that Pγ (a, b) ∩ A = {a} .
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3. The implications

Proposition 3.1.The altered Ekeland’s variational principle (Theorem
2.2) implies the generalized drop theorem (Theorem 2.5).

Proof. Set Y = C ∩ D (x0, B) and define f : Y → R+ by f (x) =
d (x, B) .Then Y is a complete metric space and f is continuous on Y . Take
ε > 0 such that(1 − ε) d (Y, B) > ε ·diamB.By Theorem 2.2 there exists a ∈ Y
such that

f (a) < f (x) + ε ‖x − a‖ , x �= a,

i.e.

d (a, B) < d (x, B) + ε ‖x − a‖ , x �= a, x ∈ Y.

We show that C ∩D (a, B) = {a} or equivalently Y ∩D (a, B) = {a} since
D (a, B) ⊆ D (x0, B) .Assume that this is not true. Then there exists t ∈ (0, 1)
and u ∈ B such that x = ta + (1 − t)u ∈ Y.The convexity of B implies

d (x, B) + ε ‖x − a‖ ≤ td (a, B) + (1 − t) d(u, B) + ε (1 − t) ‖a − u‖ ≤
≤ td (a, B) + ε (1 − t) [d (a, B) + diamB] .

Hence we have that

d (a, B) < td (a, B) + ε (1 − t) [d (a, B) + diamB] ,

which leads to the contradiction (1 − ε) d (a, B) < ε · diamB.

Proposition 3.2. The altered Ekeland’s variational principle (Theorem
2.2) implies the petal theorem (Theorem 2.6).

Proof. Let A with the induced metric by the metric of X and we define
f : A → R by f (x) = d (x, b) . Function f is continuous and bounded below
by r. Using the Theorem 2.2 we can find a ∈ A such that

(1) f (a) < f (x) + γd (a, x) for each x ∈ A, x �= a,
(2) f (a) ≤ f (x0) + γd (a, x0) .
Then (1) shows that for each x ∈ A\ {a} we have x /∈ Pγ (a, b) , while (2)

implies γd (a, x0) ≤ s − d (a, b) ≤ s − r.
In what follows we prove that these theorems and Ekeland’s variational

principle are equivalent.

Proposition 3.3. The petal Theorem 2.6 implies the generalized drop
Theorem 2.5.
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Proof. It knows that if C ⊂ X is complete, then C is closed. We denote
by B the ball with center b and radius r. In Theorem 2.6 we take A =
C ∩ D (x0, B), γ = d−r

d+r , with d = d (b, C) . As t := d (a, b) ≥ d we have
d−r
d+r ≤ t−r

t+r , hence D (a, B) ⊂ Pγ (a, b) as t > r. As a ∈ D (x0, B) we have
D (a, B) ⊂ D (x0, B), hence

D (a, B) ∩ C ⊂ D (a, B) ∩ (C ∩ D (x0, B)) ⊂ Pγ (a, b) ∩A = {a} .

The following lemma will be used to prove that Theorem 2.5 implies The-
orem 2.2.

Lemma 3.4. Let E be a n.v.s. and let B ((0, h) , r) be the closed ball
with center (0, h) and radius r ∈ ]0, h[ in E × R endowed with the norm
‖(x, r)‖ = max (‖x‖ , r) . Then the cone K := R+B generated by B is given
by

K =
{
(x, t) ∈ E × R; t ≥ r−1 (h − r) ‖x‖} .

Proof. Let us note that K has a base

S = {(x, h − r) ; ‖x‖ ≤ r} .

Then S ⊂ K and, for each (x, t) ∈ B, we can write

(x, t) =
(
t−1 (h − r) x, h − r

)
with

∥∥t−1 (h − r) x
∥∥ ≤ r as t ∈ [h − r, h + r] , ‖x‖ ≤ r.As (x, t) ∈ S if t =

h − r and t ≥ r−1 (h − r) ‖x‖ , by homogeneity the last relation characterizes
K.

Proposition 3.5. The generalized drop Theorem 2.5 implies the Ekeland’s
variational principle (Theorem 2.2).

Proof. Let M ⊂ E a subset of n.v.s. E. Replacing d by d′ = min (δ, d) ,
with δ := γ−1 (f (x0) − inf f (M) + 1) we may suppose d is bounded on M. In
fact (1) is true when d replaced by d′ and as γ−1 (f (x0) − f (a)) < δ,then (2)
is satisfied when d replaced by d′. Then (M, d) can be isometrically embedded
into a n.v.s. E and we may suppose that M is a complete subspace of a n.v.s.
E.

In Theorem 2.5 we set X = E × R, endowed with the norm ‖(x, t)‖ =
max (‖x‖ , |t|) .Taking g = −f and replacing f by x �−→ f (x0 + x) − f (x0) ,
if necessary, we suppose that x0 = 0, f (x0) = g (x0) = 0.Setting m =
sup {g (x) ; x ∈ M} ,we take r > γ−1m, h = γr + r > m + r. Let B :=
B ((0, h) , r) = B (0, r) × [h − r, h + r] and let K := R+B.For any (x, t) ∈ B
we have t ≥ h− r > m, hence (x, t) does not belong to the hypograph C of g :
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C = {(x, t) ∈ M × R; t ≤ g (x)} .

The drop theorem yields some (a, α) ∈ C ∩ D ((0, 0) , B) such that C ∩
D ((a, α) , B) = {(a, α)} .As (a, α) ∈ D ((0, 0) , B) = [0, 1]B, we have a ∈
B (0, r) and (a, h) ∈ B ⊂ D ((0, 0) , B) . By convexity, we also have (a, t) ∈
D ((0, 0) , B) for t ∈ [α, h] ; thus α < g (a) is impossible and α = g (a) . The
Lemma 3.4 ensures that g (a) ≥ r−1 (h − r) ‖a‖ = γd (a, x0) , that is (ii) holds
true.

Now let (x, t) ∈ (a, α)+K with x ∈ M, x �= a, t ≤ m. As t−α ≥ γ ‖x − a‖ >
0, by the Lemma 3.4, we obtain

(x − a, t − α) = s (z, h− r − α)

with

z = s−1 (x − a) , s = t−α
h−r−α ∈ ]0, 1[

as h − r − α ≥ h − r − m > 0 and t − α ≤ m − α < h − r − α.As K is a
convex cone we have

(a + z, h − r) = (a, α) + (z, h − r − α) ∈ K

hence

(a + z, h− r) ∈ K ∩ (E × {h − r}) = S ⊂ B.

Using the convexity of D ((a, α) , B) we get

(x, t) = (a, α) + s ((a + z, h− r) − (a, α)) ∈ D ((a, α) , B) .

It follows that (x, t) /∈ C.As for each x ∈ M we have g (x) ≤ m we get
(x, g (x)) /∈ (a, α) + K for x ∈ M, x �= a or g (x) − g (a) < γ ‖x − a‖ .

4. Danes’ drop theorem in locally convex spaces.

Now we give a generalization of Danes’ Theorem 2.5 to locally convex
spaces by substituting ”sequentially closed bounded convex set C ” in the
space for ”the closed bounded convex set B” of the Banach space and ” A is
strongly Minkowski separated from C ” for ”A is a positive distance from B”.

We say that two nonempty subsets A and B of a locally convex space E
are Minkowski separated (respectively, strongly Minkowski separated) if there
exist a continuous Minkowski gauge p on E and a point x0 in E such that
either p (x) > p (y) for all x ∈ Ax0 ≡ A + x0 and y ∈ Bx0 ≡ B + x0 or p (x) <



86 Georgiana Goga

p (y) for all x ∈ Ax0 and y ∈ Bx0 (respectively, either inf {p (x) ; x ∈ Ax0} >
sup {p (y) ; y ∈ Bx0} or sup {p (x) ; x ∈ Ax0} < inf {p (y) ; y ∈ Bx0}).

We replace the Minkowski gauge p by a continuous linear functional in the
above definition to obtain the common concept of separation sets. Clearly,
two separated (respectively, strongly separated) sets A and B are Minkowski
separation (respectively, strongly Minkowski separation) sets, if either of them
is bounded.

Proposition 4.1. Suppose that A is a convex set in a normed linear space
E, which is a positive distance from B ⊂ E, if either A or B is bounded. Then
A and B are strongly Minkowski separated.

Proof. Let d = d (A, B) > 0 and let S =
{
x ∈ E; d (A, x) ≤ d

2

}
. Then

S �= ∅ and d (S, B) > 0.Without loss of generality we assume that 0 ∈ int S
and let PS be the Minkowski gauge of S. It suffices to show

R = inf {PS (x) − PS (y) ; x ∈ B, y ∈ S} > 0.

Note d (S, B) ≥ d
2 .Suppose, to the contrary, that R = 0.Then we can

choose sequences {xn} , {yn} from B and S, respectively, such that PS (xn)−
PS (yn) → 0.Since PS (xn) > 1, PS (yn) < 1, we get PS (xn) → 1. Let kn =
PS (xn)−1 ; then PS (knxn) = 1, knxn ∈ S.

i) If B is bounded, then ‖xn − knxn‖ = (1 − kn) ‖xn‖ → 0, but this con-
tradicts the hypothesis that d (S, B) ≥ d

2 .
ii)If A is bounded, then S is bounded also. Thus, there exists a positive

constant k ≥ 1 such that k−1PS (x) ≤ ‖x‖ ≤ kPS (x) , ∀x ∈ E.Therefore {xn}
is a bounded sequence. Hence d

2 ≤ d (S, B) ≤ ‖xn − knxn‖ → 0, which is a
contradiction.

Theorem 4.2.(Danes’ drop theorem in l.s.c.) Let C be a sequen-
tially closed bounded convex set in a sequentially complete locally convex space
(E, τ) . For every sequentially closed set A , which is strongly Minkowski sep-
arated from C , there exists z ∈ A such that D (z, C) ∩ A = {z} , where
D (z, C) = co (C ∪ z) .

Proof. Without loss of generality we assume that 0 ∈ C. Fix an element
u0 ∈ A.Let G = co (C ∪−C ∪±u0) and E1 = span G. Let p be the Minkowski
gauge by G; then p is a norm on E1.

First, we show that (E1, p) is a Banach space. It suffices to show that
the unit ball G of E1is complete with respect to p.Suppose that {xn} is a
τ - Cauchy sequence, since G is bounded and p is generated by G, and which
implies τ < τp on E1, where τp denotes the topology generated by the norm
p. Since C is τ -sequentially complete, xn must be τ -convergent to some
point x0 ∈ G. Given a positive number ε > 0, there is an integer k such
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that p (xm − xn) > ε whenever m, n ≥ k, or equivalently, xm − xn ∈ εG,
whenever m, n ≥ k, because G is τ -sequentially closed , xm − x0 ∈ εG , that
is p (xm − x0) ≤ ε for all m ≥ k.Therefore the sequence {xn} converges to x0

with respect to the norm topology τp. Thus, G is complete relatively to p.

Since C is bounded and convex, A is strongly Minkowski separated from
C.The Proposition 4.1 implies that there exists a point x0 ∈ E and a τ -
continuous Minkowski gauge p1on E1 such that

p1 (x) ≤ α < α + ε ≤ p1 (y) ,

whenever x ∈ C+x0, y ∈ A+x0 for some fixed α, ε > 0 .Without loss of gen-
erality we can assume that x0 = 0 and write (ε ≤) d = inf {p1 (y) − p1 (x) ; x ∈ C, y ∈ A} .
Since C is closed, bounded and convex relatively to the norm p1 on E1 , then
A ∩ D (u0, C) is also nonempty , closed and bounded. Define the function
f : E1 → R ∪ {∞} by

f (x) =
{

p1 (x) , x ∈ A ∩ D (u0, C)
∞ , otherwise; .

Then f is a norm (p)-lower- semicontinuous proper function on E1 since
p1 is τ -continuous on E1 .Choose λ > 0 such thatdiam D (u0, C) < d

λ , where
the diam D (u0, C) is in norm p. Use Ekeland’s variational principle to obtain
a point z ∈ D (u0, C) ∩ A such that

f (x) + λp (x − z) > f (z), for all x �= z in E1 .

We claim that D (z, C) ∩ A = {z} . Suppose that y ∈ D (z, C) ∩ A, with
y �= z. Then there exists 0 < µ < 1 and v ∈ C such that y = (1 − µ) z + µv ,
so that p1 (y) ≤ (1 − µ) p1 (z) + µp1 (v) and µd ≤ µ [p1 (z) − p1 (v)] ≤ p1 (z)−
p1 (y) .Hence

p1 (z) = f (z) < f (x) + λp (x − z) = f (x) + λp (µ (v − z)) =
p1 (y) + λµ (p (v − z)) ≤

≤ p1 (y) + λµdiam
D (u0, C) ≤ p1 (y) + µd ≤ p1 (y) + (p1 (z) − p1 (y)) = p1 (z) ,

a contradiction.
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