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Abstract

The coincidence degree, introduced by J. Mawhin in 1972, is directed
as a topological tool for the investigation of the semilinear equation Lu
+ Nu = f, where L is a linear Fredholm operator with zero index (not
necessarily invertible) and N is a nonlinear perturbation. Continuation
theorems involving these kind of pairs of mappings (L,N) became an
effective procedure in proving the existence of solutions of a large variety
of boundary value problems. We extend this method to the case when
L is a quasi-linear operator or a duality map, in view of its application
to problems involving a p-Laplacian.

Let X and Y be to real Banach spaces and let M : X ∩ dom M → Y
be a map. Assume that X1 = kerM is a linear subspace of X and denote
by X2 its complement subspace, i. e., X = X1 ⊕ X2. Likewise, let Y1 and
Y2 be two complementary linear subspaces of Y so that Y = Y1 ⊕ Y2.Assume
that dimX1 = dimY1. Let P : X → X1 and Q : Y → Y1be the coressponding
orthogonal projectors. Denote by J : Y1 → X1 a homeomorphism with J (0) =
0. The operator M is said to be quasi-linear if

(i) dim kerM = dim M−1 (0) = n < ∞;
(ii)R (M) = ImM = M (X ∩ domM) is a closed subset in Y2.

Let Ω be a bounded open subset of X , with 0 ∈ Ω, and consider a parameter

family of perturbation (generally nonlinear) Nλ : [0, 1]× −
Ω → Y with N1 =

N . Denote by Σλ ⊂ Ω × (0, 1] the set of solutions of the operator equation

Mu = Nλu, u ∈−
Ω, λ ∈ (0, 1] . (1)
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The continuous operator Nλ : [0, 1]× −
Ω→ Y is said to be M−compact if

(I − Q)Nλ

(
−
Ω

)
⊆ ImM and there is a compact operator R : [0, 1]× −

Ω→ X2

such that R (0, x) = 0, R/Σλ
= (I − P ) /Σλ

and

M (P + R) = (I − Q)Nλ

Finally, we introduce the intermediate map

S (λ, ·) = P + R (λ, ·) + JQN, (2)

which is cleary compact, under the above assumptions, and we are interested
in the solvability of the equation

Mu = Nu. (3)

It easy to prove the following equivalence

Proposition 1. Let Ω ⊂ X be a bounded nonempty domain, M be a
quasi-linear operator and Nλ be a family of M - compact perturbations. Then

u ∈−
Ω is a solution of the equation (1) if and only if it is a fixed point of the

map S defined by (2).

Our basic continuation result states:

Theorem 2. If the assumptions of the above proposition are satisfied and
in addition,we suppose that:

(i) Mu �= Nλu, ∀ (λ, u) ∈ (0, 1)× ∂Ω;
(ii) deg (JQN, Ω ∩ domM, 0) �= 0,

then the equation (3) has at least one solution in
−
Ω ∩ domM.

From the previous proposition and the hypothesis (i), it follows that u �=
Sλu for all (λ, u) ∈ (0, 1)×∂Ω. Also, condition (ii) implies u �= S0u for u ∈ ∂Ω.
The existence of a fix point for S1 is a consequence of the homotopy invariance
property of the Leray-Schauder degree.

Remark 3. When L = M is a Fredholm linear operator with index zero,
we define the (right) inverse K of L/doml∩X2 . We have

Y2 = ImL, Y1 = Y/ImL and dimX1 = dimY1 < ∞.

The operator Nλ = λN is L - compact. Define R (λ, ·) = K (I − Q)N. We
can justify that
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(I − Q)Nλ

(
−
Ω

)
= λ (I − Q)N

(
−
Ω

)
⊂ ImL = Y2,

R (λ, ·) /Σλ
= λ (I − Q)N/Σλ

= (I − P ) /Σλ
,

R (λ, ·) = λ (I − Q)N :
−
Ω→ X is compact,

L (P + R) = L [P + λK (I − Q)N ] = (I − Q)Nλ.

Thus, Theorem 2 can be regarded as an extension of Mawhin’s continuation
theorem [7].

As an application, we prove the existence of solutions of a boundary-value
problem involving the one-dimensional p-Laplacian operator

(Φp (u′))′ + f (t, u) = 0, t ∈ (0, 1) , (4)

with the boundary-value conditions

u (0) = 0 = αu (τ) − u (1) , (5)

where ′ = d
dt , Φp (s) = |s|p−2 s, while p > 1 and α, τ ∈ (0, 1) are constants.

Assume that f : [0, 1] × R → R verifies the Carathéodory conditions.
Let V =

{
v ∈ C1 [0, 1]

∣∣Φp (v′) ∈ C1 [0, 1] satisfying the conditions (5)
}

and look for the positive solutions u ∈ V , that is u (t) > 0, for t ∈ (0, 1).

To apply the above continuation theorem, we take the spaces
X = {x ∈ C [0, 1] |x (0) = 0} , Z = C [0, 1] , Y = Z × R and define the

operator M : X ∩ domM → Z × {0} ⊂ Y by

M =
(

d

dt

(
Φp

(
d

dt

))
, 0

)
.

It is easy to see that
domM = V, kerM = {x = αt |α ∈ R} and ImM = Z × {0} .
If we label
X1 = kerM, X2 = {x ∈ X |x (1) = 0} , Y1 = {0} × R, Y2 = Z × {0} ,
we can determine the projectors P : X → X1, Q : Y → Y1 by

Px = x (1) t and Qy = Q (z, a) =
(

0
a

)
, with z ∈ Z, a ∈ R.

Clearly, we have dim X1 = dim Y1 = 1.

For any Ω ⊂ V and λ ∈ [0, 1] , define the family Nλ :
−
Ω→ Y by



76 Silvia Fulina

(Nλx) (t) = (−λf (t, x (t)) , αx (η) − x (1)) .

It is easy to show that

(I − Q)Nλ

(
−
Ω

)
⊂ Z × {0} = ImM and QNλ

(
−
Ω

)
= 0.

The homeomorphism J : Y1 → X1 is given by J (0, α) = αt.

Now, we define R : [0, 1]× −
Ω→ X2 in the form

(R (λ, x)) (t) =

t∫
0

Φ−1
p

⎡
⎣Φp (x (1)) + c −

s∫
0

λf (τ, x (τ)) dτ

⎤
⎦ ds − x (1) t,

and, applying the Arzela-Ascoli theorem, we can prove that R is a con-
tinuous and compact operator. Moreover, for x ∈ Ω and λ ∈ [0, 1] given, the
constant c is uniquely determined by the condition (R (λ, x)) (1) = 0.

Consider first λ �= 0 and take the restriction of R on the solution set

Σλ =
{

u ∈−
Ω |Mu = Nλu

}
⊆

{
u ∈−

Ω
∣∣∣(Φp (u′))′ = −λf (t, u)

}
.

We can write

(R (λ, x)) (t) =

t∫
0

Φ−1
p

⎡
⎣Φp (u (1)) + c +

s∫
0

(Φp (u′ (τ)))′ dτ

⎤
⎦ ds − u (1) t

=

t∫
0

Φ−1
p [Φp (u (1)) + c + Φp (u′ (s)) − Φp (u′ (0))] ds − u (1) t. (6)

Now, choose c = Φp (u′ (0)) − Φp (u (1)) and obtain the above mentioned
claim, namely

(R (λ, x)) (1) =

1∫
0

Φ−1
p [Φp (x (s))]ds − x (1) = x (1) − x (1) = 0.

Since the constant c is unique, the same choice in (6) yields

(R (λ, x)) (t) =
1∫
0

Φ−1
p [Φp (u (1)) − Φp (u (1)) + Φp (u′ (0))+



ON MAWHIN’S CONTINUATION PRINCIPLES 77

+
s∫
0

(Φp (u′ (τ)))′ dτ

]
ds − u (1) t = u (t) − u (1) t = [(I − P )u] (t) .

Finally, when λ = 0 we take c = 0 and then (R (0, x)) (t) = 0 holds for any
x ∈ Ω.

Therefore, R : [0, 1]× −
Ω→ X2 fulfils all properties assumed by M - compact

operators.

The condition (ii) in Theorem 2 represents in fact an a priori estimate. We
point out a simple example related to the problem (4) - (5) considered above.
For thes aim, consider the space X endowed with the norm

‖x‖X = max
0≤t≤1

‖x (t)‖ .

Proposition 4. Suppose 0 < α < 1 and there is a constant r > 0 such
that

f (t, r) < 0 < f (t,−r) , t ∈ [0, 1] . (7)

Then the problem (4) - (5) has at least one solution u ∈ V with ‖u‖X ≤ r.

Indeed, consider the problem
{

Φp (u′)′ + λf (t, u) = 0,
αu (η) − u (1) = 0,

on X, which is equivalent to

Mu = Nλu, λ ∈ [0, 1] ,

where M and Nλ are defined above. Take Br = {x ∈ X |‖x‖X < r } and prove,
by contradiction, that

Mu �= Nλu for (λ, u) ∈ (0, 1)× ∂Br.

Therefore, the sign-change condition (7) is a sufficient condition for the
continuation method in the case of boundary value problem (4)-(5).

Recently, a great deal of attention has been paid to problems involv-
ing p-Laplacian-like operators. It is worth mentioning the basic contribu-
tion of Chaitan P.Gupta and Raul Manasevich (cf.[1],[3],[5] and the references
therein) with applications to m-point boundary value problems at resonance.
We treated a simpler case to follow the continuation argument based on the
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coincidence degree [2],[8]. A general approach of periodic solutions was per-
formed in [5]. In the case of null Dirichlet conditions, even in an n-dimensional
domain Ω, the p-Laplacian leads to the duality map on the Sobolev space
W p

0 (Ω) . Monotonicity and compactness methods for Dirichlet problems with
a p-Laplacian operator are surveyed in [4].
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