ON MAWHIN'S CONTINUATION PRINCIPLES

Silvia Fulina
To Professor Dan Pascali, at his 70's anniversary

Abstract

The coincidence degree, introduced by J. Mawhin in 1972, is directed as a topological tool for the investigation of the semilinear equation Lu $+\mathrm{Nu}=\mathrm{f}$, where L is a linear Fredholm operator with zero index (not necessarily invertible) and N is a nonlinear perturbation. Continuation theorems involving these kind of pairs of mappings (L, N) became an effective procedure in proving the existence of solutions of a large variety of boundary value problems. We extend this method to the case when L is a quasi-linear operator or a duality map, in view of its application to problems involving a p-Laplacian.

Let X and Y be to real Banach spaces and let $M: X \cap \operatorname{dom} M \rightarrow Y$ be a map. Assume that $X_{1}=\operatorname{ker} M$ is a linear subspace of X and denote by X_{2} its complement subspace, i. e., $X=X_{1} \oplus X_{2}$. Likewise, let Y_{1} and Y_{2} be two complementary linear subspaces of Y so that $Y=Y_{1} \oplus Y_{2}$.Assume that $\operatorname{dim} X_{1}=\operatorname{dim} Y_{1}$. Let $P: X \rightarrow X_{1}$ and $Q: Y \rightarrow Y_{1}$ be the coressponding orthogonal projectors. Denote by $J: Y_{1} \rightarrow X_{1}$ a homeomorphism with $J(0)=$ 0 . The operator M is said to be quasi-linear if
(i) $\operatorname{dim} \operatorname{ker} M=\operatorname{dim} M^{-1}(0)=n<\infty$;
(ii) $R(M)=\operatorname{Im} M=M(X \cap \operatorname{dom} M)$ is a closed subset in Y_{2}.

Let Ω be a bounded open subset of X, with $0 \in \Omega$, and consider a parameter family of perturbation (generally nonlinear) $N_{\lambda}:[0,1] \times \bar{\Omega} \rightarrow Y$ with $N_{1}=$ N. Denote by $\Sigma_{\lambda} \subset \Omega \times(0,1]$ the set of solutions of the operator equation

$$
\begin{equation*}
M u=N_{\lambda} u, u \in \bar{\Omega}, \lambda \in(0,1] . \tag{1}
\end{equation*}
$$

Key Words: Continuation methods; p-Laplacian operator.

The continuous operator $N_{\lambda}:[0,1] \times \bar{\Omega} \rightarrow Y$ is said to be M-compact if $(I-Q) N_{\lambda}(\bar{\Omega}) \subseteq I m M$ and there is a compact operator $R:[0,1] \times \bar{\Omega} \rightarrow X_{2}$ such that $R(0, x)=0, R / \Sigma_{\lambda}=(I-P) / \Sigma_{\lambda}$ and

$$
M(P+R)=(I-Q) N_{\lambda}
$$

Finally, we introduce the intermediate map

$$
\begin{equation*}
S(\lambda, \cdot)=P+R(\lambda, \cdot)+J Q N, \tag{2}
\end{equation*}
$$

which is cleary compact, under the above assumptions, and we are interested in the solvability of the equation

$$
\begin{equation*}
M u=N u \tag{3}
\end{equation*}
$$

It easy to prove the following equivalence
Proposition 1. Let $\Omega \subset X$ be a bounded nonempty domain, M be a quasi-linear operator and N_{λ} be a family of M - compact perturbations. Then $u \in \bar{\Omega}$ is a solution of the equation (1) if and only if it is a fixed point of the map S defined by (2).

Our basic continuation result states:
Theorem 2. If the assumptions of the above proposition are satisfied and in addition, we suppose that:
(i) $M u \neq N_{\lambda} u, \forall(\lambda, u) \in(0,1) \times \partial \Omega$;
(ii) $\operatorname{deg}(J Q N, \Omega \cap \operatorname{dom} M, 0) \neq 0$,
then the equation (3) has at least one solution in $\bar{\Omega} \cap \operatorname{dom} M$.
From the previous proposition and the hypothesis (i), it follows that $u \neq$ $S_{\lambda} u$ for all $(\lambda, u) \in(0,1) \times \partial \Omega$. Also, condition (ii) implies $u \neq S_{0} u$ for $u \in \partial \Omega$. The existence of a fix point for S_{1} is a consequence of the homotopy invariance property of the Leray-Schauder degree.

Remark 3. When $L=M$ is a Fredholm linear operator with index zero, we define the (right) inverse K of $L / d o m l \cap X_{2}$. We have

$$
Y_{2}=I m L, Y_{1}=Y / I m L \text { and } \operatorname{dim} X_{1}=\operatorname{dim} Y_{1}<\infty
$$

The operator $N_{\lambda}=\lambda N$ is L - compact. Define $R(\lambda, \cdot)=K(I-Q) N$. We can justify that

$$
\begin{gathered}
(I-Q) N_{\lambda}(-\bar{\Omega})=\lambda(I-Q) N(\bar{\Omega}) \subset \operatorname{Im} L=Y_{2} \\
R(\lambda, \cdot) / \Sigma_{\lambda}=\lambda(I-Q) N / \Sigma_{\lambda}=(I-P) / \Sigma_{\lambda} \\
R(\lambda, \cdot)=\lambda(I-Q) N: \bar{\Omega} \rightarrow X \text { is compact } \\
L(P+R)=L[P+\lambda K(I-Q) N]=(I-Q) N_{\lambda}
\end{gathered}
$$

Thus, Theorem 2 can be regarded as an extension of Mawhin's continuation theorem [7].

As an application, we prove the existence of solutions of a boundary-value problem involving the one-dimensional p-Laplacian operator

$$
\begin{equation*}
\left(\Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+f(t, u)=0, t \in(0,1), \tag{4}
\end{equation*}
$$

with the boundary-value conditions

$$
\begin{equation*}
u(0)=0=\alpha u(\tau)-u(1), \tag{5}
\end{equation*}
$$

where $^{\prime}=\frac{d}{d t}, \Phi_{p}(s)=|s|^{p-2} s$, while $p>1$ and $\alpha, \tau \in(0,1)$ are constants.
Assume that $f:[0,1] \times R \rightarrow R$ verifies the Carathéodory conditions.
Let $V=\left\{v \in C^{1}[0,1] \mid \Phi_{p}\left(v^{\prime}\right) \in C^{1}[0,1]\right.$ satisfying the conditions (5) $\}$ and look for the positive solutions $u \in V$, that is $u(t)>0$, for $t \in(0,1)$.

To apply the above continuation theorem, we take the spaces
$X=\{x \in C[0,1] \mid x(0)=0\}, Z=C[0,1], Y=Z \times R$ and define the operator $M: X \cap \operatorname{dom} M \rightarrow Z \times\{0\} \subset Y$ by

$$
M=\left(\frac{d}{d t}\left(\Phi_{p}\left(\frac{d}{d t}\right)\right), 0\right) .
$$

It is easy to see that
$d o m M=V$, $\operatorname{ker} M=\{x=\alpha t \mid \alpha \in R\}$ and $\operatorname{Im} M=Z \times\{0\}$.
If we label
$X_{1}=\operatorname{ker} M, X_{2}=\{x \in X \mid x(1)=0\}, Y_{1}=\{0\} \times R, Y_{2}=Z \times\{0\}$,
we can determine the projectors $P: X \rightarrow X_{1}, Q: Y \rightarrow Y_{1}$ by
$P x=x(1) t$ and $Q y=Q(z, a)=\binom{0}{a}$, with $z \in Z, a \in R$.
Clearly, we have $\operatorname{dim} X_{1}=\operatorname{dim} Y_{1}=1$.
For any $\Omega \subset V$ and $\lambda \in[0,1]$, define the family $N_{\lambda}: \bar{\Omega} \rightarrow Y$ by

$$
\left(N_{\lambda} x\right)(t)=(-\lambda f(t, x(t)), \alpha x(\eta)-x(1))
$$

It is easy to show that

$$
(I-Q) N_{\lambda}(\bar{\Omega}) \subset Z \times\{0\}=I m M \text { and } Q N_{\lambda}(\bar{\Omega})=0
$$

The homeomorphism $J: Y_{1} \rightarrow X_{1}$ is given by $J(0, \alpha)=\alpha t$.
Now, we define $R:[0,1] \times \bar{\Omega} \rightarrow X_{2}$ in the form

$$
(R(\lambda, x))(t)=\int_{0}^{t} \Phi_{p}^{-1}\left[\Phi_{p}(x(1))+c-\int_{0}^{s} \lambda f(\tau, x(\tau)) d \tau\right] d s-x(1) t
$$

and, applying the Arzela-Ascoli theorem, we can prove that R is a continuous and compact operator. Moreover, for $x \in \Omega$ and $\lambda \in[0,1]$ given, the constant c is uniquely determined by the condition $(R(\lambda, x))(1)=0$.

Consider first $\lambda \neq 0$ and take the restriction of R on the solution set

$$
\Sigma_{\lambda}=\left\{u \in \bar{\Omega} \mid M u=N_{\lambda} u\right\} \subseteq\left\{u \in \bar{\Omega} \mid\left(\Phi_{p}\left(u^{\prime}\right)\right)^{\prime}=-\lambda f(t, u)\right\} .
$$

We can write

$$
\begin{align*}
& (R(\lambda, x))(t)=\int_{0}^{t} \Phi_{p}^{-1}\left[\Phi_{p}(u(1))+c+\int_{0}^{s}\left(\Phi_{p}\left(u^{\prime}(\tau)\right)\right)^{\prime} d \tau\right] d s-u(1) t \\
& \quad=\int_{0}^{t} \Phi_{p}^{-1}\left[\Phi_{p}(u(1))+c+\Phi_{p}\left(u^{\prime}(s)\right)-\Phi_{p}\left(u^{\prime}(0)\right)\right] d s-u(1) t \tag{6}
\end{align*}
$$

Now, choose $c=\Phi_{p}\left(u^{\prime}(0)\right)-\Phi_{p}(u(1))$ and obtain the above mentioned claim, namely

$$
(R(\lambda, x))(1)=\int_{0}^{1} \Phi_{p}^{-1}\left[\Phi_{p}(x(s))\right] d s-x(1)=x(1)-x(1)=0 .
$$

Since the constant c is unique, the same choice in (6) yields

$$
(R(\lambda, x))(t)=\int_{0}^{1} \Phi_{p}^{-1}\left[\Phi_{p}(u(1))-\Phi_{p}(u(1))+\Phi_{p}\left(u^{\prime}(0)\right)+\right.
$$

$$
\left.+\int_{0}^{s}\left(\Phi_{p}\left(u^{\prime}(\tau)\right)\right)^{\prime} d \tau\right] d s-u(1) t=u(t)-u(1) t=[(I-P) u](t)
$$

Finally, when $\lambda=0$ we take $c=0$ and then $(R(0, x))(t)=0$ holds for any $x \in \Omega$.

Therefore, $R:[0,1] \times \bar{\Omega} \rightarrow X_{2}$ fulfils all properties assumed by M - compact operators.

The condition (ii) in Theorem 2 represents in fact an a priori estimate. We point out a simple example related to the problem (4) - (5) considered above. For thes aim, consider the space X endowed with the norm

$$
\|x\|_{X}=\max _{0 \leq t \leq 1}\|x(t)\|
$$

Proposition 4. Suppose $0<\alpha<1$ and there is a constant $r>0$ such that

$$
\begin{equation*}
f(t, r)<0<f(t,-r), t \in[0,1] . \tag{7}
\end{equation*}
$$

Then the problem (4) - (5) has at least one solution $u \in V$ with $\|u\|_{X} \leq r$. Indeed, consider the problem

$$
\left\{\begin{array}{l}
\Phi_{p}\left(u^{\prime}\right)^{\prime}+\lambda f(t, u)=0, \\
\alpha u(\eta)-u(1)=0
\end{array}\right.
$$

on X, which is equivalent to

$$
M u=N_{\lambda} u, \lambda \in[0,1]
$$

where M and N_{λ} are defined above. Take $B_{r}=\left\{x \in X \mid\|x\|_{X}<r\right\}$ and prove, by contradiction, that

$$
M u \neq N_{\lambda} u \text { for }(\lambda, u) \in(0,1) \times \partial B_{r} .
$$

Therefore, the sign-change condition (7) is a sufficient condition for the continuation method in the case of boundary value problem (4)-(5).

Recently, a great deal of attention has been paid to problems involving p-Laplacian-like operators. It is worth mentioning the basic contribution of Chaitan P.Gupta and Raul Manasevich (cf.[1],[3],[5] and the references therein) with applications to m-point boundary value problems at resonance. We treated a simpler case to follow the continuation argument based on the
coincidence degree [2],[8]. A general approach of periodic solutions was performed in [5]. In the case of null Dirichlet conditions, even in an n-dimensional domain Ω, the p-Laplacian leads to the duality map on the Sobolev space $W_{0}^{p}(\Omega)$. Monotonicity and compactness methods for Dirichlet problems with a p-Laplacian operator are surveyed in [4].

References

[1] M.Garcia-Huidobro, C.P. Gupta and R. Manasevich, Solvability for nonlinear threepoint boundary value problem with p-Laplacian-like operator at resonance, Abstract Appl.Anal., 6 (2001), 191-213.
[2] W. Ge and J. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian, Nonlinear Analysis, 58 (2004), 477488.
[3] C.P. Gupta and S. I. Trofimchuk, A sharper condition for the solvability of three point second order boundary value problems, J. Math. Anal. Appl., 205 (1997), 586-597.
[4] P. Jebelean, Methods of Nonlinear Analysis with Applications to Boundary Value Problems with p-Laplacian (in Romanian), West Univ. Press, Timisoara, 2001.
[5] R. Manasevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Diff. Equations, 145 (1998), 367-393.
[6] J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Diff. Equations, 12, (1972), 610-636.
[7] J. Mawhin, Compacité, monotonie et convexité dans l'étude des problèmes aux limites semi-linéaires, Sémin. Anal. Moderne, 19, Sherbrooke, 1981.
[8] D. Pascali, Coincidence degree in bifurcation theory, Libertas Math. 11 (1991), 31-42.
"Ovidius" University of Constanta
Department of Mathematics and Informatics, 900527 Constanta, Bd. Mamaia 124 Romania
e-mail: sfulina@univ-ovidius.ro

