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Abstract

We approach the spectra for nonlinear operators and we show that
the Neuberger spectrum is always nonempty in complex Banach spaces
and may be unbounded or not closed; the Kachurovskij spectrum is
always compact; the Rhodius and Dörfner spectra aren’t necessary to
be bounded or closed; the FMV-spectrum and the Feng spectrum are
always closed but may be unbounded.
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1. Introduction

The last 30 years have represented an opportunity to study several
spectra for nonlinear operators, such as : the Kachurovskij spectrum for Lips-
chitz continuous operators [8], the Neuberger spectrum for C1−operators [9],
the Rhodius spectrum for continuous operators, the Dörfner spectrum for lin-
ear bounded operators [4].These spectra are modelled on the familiar spectrum
for bounded linear operators in Banach spaces. In 1978 a nonlinear spectrum
constructed in a different way was introduced by Furi, Martelli and Vignoli
[3].The Furi-Martelli-Vignoli spectrum (denoted by FMV-spectrum) of a con-
tinuous nonlinear operator F in a Banach space X is based on solvability
properties of the operator equation in X :

(1.1) F (x) = G (x) ,
where G is a compact operator. Feng [2] defined another spectrum which

is built on solvability properties of equation (1.1), in a similarly way, for G
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satisfying boundary conditions on spheres. If we choose F (x) = x in (1.1),
the existence results are reduced to classical fixed point theorems. We apply
the classical fixed point methods for a problem of the form :

(1.2) Lx = F (x) ,

where F is a nonlinear operator and L is a linear operator with trivial
nullspace. In this case, the equation (1.2) is equivalent with the fixed point
problem x = L−1F (x).

2. The Rhodius and Neuberger spectra

Throughout the paper, X will be a Banach space over K (R or C) and
M (X) the class of continuous nonlinear operators F : X → X with F (0) = 0.
We denote the identity operator by I. We also define the resolvent set of
FεM (X) by

(2.1) ρ (F ) =
{
λεK : λI − F is bijective and (λI − F )−1

εM (X)
}

and the spectrum of FεM (X) by

(2.2) σ (F ) = K − ρ (F ) .

For λερ (F ) we denote by

(2.3) R (λ; F ) = (λI − F )−1 : X → X

the nonlinear resolvent operator of F .

Moreover, the spectral radius of F defined by

(2.4) r (F ) = sup {|λ| : λεσ (F )}
may be calculated by Gel’fand formula :

(2.5) r (F ) = lim
n→∞

n
√‖Fn‖,

where Fn denotes the nth iterate of F .

We set the class M (X) = C (X) of all continuous operators on X .
The Rhodius resolvent set is given by

(2.6) ρR (F ) = {λεK : λI − F is bijective and R (λ; F ) εC (X)}
and the Rhodius spectrum by

(2.7) σR (F ) = K− ρR (F ).

Remark 1. A point λεK belongs to ρR (F ) if and only if λI − F is
a homeomorphism on X.
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The relation (2.7) gives the definition of the usual spectrum in the
case of a bounded linear operator. If we want to find more properties of the
linear spectrum by restricting the operator class M (X), a choice is the class
C1 (X) of all continuously Fréchet differentiable operators on X which leads
to the Neuberger resolvent set

(2.8) ρN (F ) =
{
λεK : λI − F is bijective and R (λ; F ) εC1 (X)

}
and the Neuberger spectrum

(2.9) σN (F ) = K− ρN (F ).

Remark 2. A point λεK belongs to ρN (F ) if and only if λI − F is
a diffeomorphism on X.

The relations (2.8) and (2.9) give the classical resolvent set and the
classical spectrum, if F is linear.

Since C1 (X) ⊆ C (X), we have the inclusions :

(2.10) ρN (F ) ⊆ ρR (F ) and σN (F ) ⊇ σR (F ), for FεC1 (X).

Theorem 1. ( Neuberger [9] ) The spectrum σN (F ) is nonempty in
case K = C.

Remark 3. It is not necessary for the Neuberger spectrum to be
bounded or closed. The Neuberger spectrum is defined for continuously differ-
entiable operators and it might be expressed through the spectra of the Fréchet
derivatives F ′(x) of F.

Definition 1. A continuous operator F on a Banach space X is called
proper if the preimage F−1 (K) of any compact set K ⊂ X is compact.

This notion plays an important role in the existence and uniqueness
results for solutions of nonlinear operator equations.

Theorem 2. ( Appell and Dorfner [4] ) Given FεC1 (X), denote by
π (F ) the set of all elements λεK such that the operator λI −F is not proper.
Then the formula :

(2.11) σN (F ) = π (F )
⋃ ( ⋃

xεX

σ
(
F

′
(x)

))

holds, where σ (L) denotes the usual spectrum of a bounded linear operator
L. In particular, σN (F ) �= Ø in case K = C.

Corollary. If X is an infinite-dimensional Banach space and
F : X → X is compact, then F cannot be proper and thus 0επ (F ) ⊆ σN (F ).
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3. The Kachurovskij and Dörfner spectra

Let X be a Banach space over K ( R or C ). We write FεLip (X) if
F is Lipschitz continuous on X , i.e.

(3.1) [F ]Lip = sup
x �=y

‖F (x)−F (y)‖
‖x−y‖ < ∞.

If F (0) = 0, the number (3.1) is a norm on the linear space Lip (X)
which makes it a Banach space.

Let us take M (X) = Lip (X), then we get to the Kachurovskij
resolvent set

(3.2) ρK (F ) = {λεK : λI − F is bijective and R (λ; F ) εLip (X)}
and the Kachurovskij spectrum

(3.3) σK (F ) = K− ρK (F ).

Remark 4. A point λεK belongs to ρK (F ) if and only if λI − F is
a lipeomorphism on X, i.e. λI − F is bijective on X and satisfies:

c ‖x − y‖ ≤ ‖λ (x − y) − F (x) + F (y)‖ ≤ C ‖x − y‖ , x, yεX , for some
C, c > 0.

We write FεB (X) , if F is linearly bounded on X , i.e.

(3.4) [F ]B = sup
x �=0

‖F (x)‖
‖x‖ < ∞ .

The linear space B (X) with norm (3.4) is a Banach space and [F ]B ≤
[F ]Lip.

Let us have M (X) = B (X). Then we get to the Dörfner resolvent
set

(3.5) ρD (F ) = {λεK : λI − F is bijective and R (λ; F ) εB (X)}
and the Dörfner spectrum

(3.6) σD (F ) = K− ρD (F ) , introduced in [4].

Remark 5 . A point λεK belongs to ρD (F ) if and only if λI − F is
a homeomorphism on X satisfying :

(3.7) c ‖x‖ ≤ ‖λx − F (x)‖ ≤ C ‖x‖ , xεX , for some C, c > 0.

Since Lip (X) ⊆ B (X) ⊆ C (X), we have the following inclusions :

(3.8) ρK (F ) ⊆ ρD (F ) ⊆ ρR (F ) and
σK (F ) ⊇ σD (F ) ⊇ σR (F ), for FεLip (X).
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For FεLip (X) ∩ C1 (X) , we have a relation between the spectra
σK (F ) and σN (F ), given by the following theorem.

Theorem 3. For FεLip (X)∩C1 (X) the inclusions ρK (F ) ⊆ ρN (F )
and σK (F ) ⊇ σN (F ) are true.

Proof. Fix xεX . From λεσ
(
F

′
(x)

)
, it follows that λI − F

′
is not

bijective and hence λI − F cannot be a lipeomorphism. This shows that

[F ]B = sup
x �=0

‖F (x)‖
‖x‖ < ∞ .

Moreover, λερK (F ) implies that λI − F is proper and λ /∈ π (F ). We
conclude that π (F ) ⊆ σK (F ).

Theorem 1 is not true for the Kachurovskij and Dörfner spectra. On
the other hand, the Kachurovskij spectrum has another property, as we will
see in the next theorem.

Theorem 4. ( Maddox and Wickstead [10] ) The spectrum σK (F )
is compact.

Remark 6. The Rhodius, Kachurovskij and Dörfner spectra may be
empty. If we impose additional conditions on the operator F and the under-
lying space X, we may force these spectra to be nonempty.

Theorem 5. Suppose that dim X = ∞ and FεC (X) is compact.
Then 0εσR (F ).

Proof. The fact that λ = 0 belongs to one of the indicated spec-
tra implies that F is a compact homeomorphism. In particular, the identity
I = F−1F would be compact on X , contradicting the assumption that X is
infinitely dimensional.

4. The Furi-Martelli-Vignoli spectrum

Let X be a Banach space over K. The measure of noncompactness of
a bounded set M ⊂ X is defined by :

(4.1) α (M) = inf {ε > 0 : M has a finite ε − net in X} .

α (M) = 0 if and only if M is precompact.
Given a continuous operator F : X → X , the number

(4.2) [F ]A = inf {k > 0 : α (F (M)) ≤ kα (M) , M ⊂ X bounded}
is called the measure of noncompactness of F .
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Remark 7. [F ]A = 0 if and only if F is a compact operator.

For the measure of noncompactness of F, let be the number
(4.3) [F ]a = sup {k > 0 : α (F (M)) ≥ kα (M) , M ⊂ X bounded} .

Definition 2. We call an operator FεC (X) quasibounded, if

(4.4) [F ]Q = lim
‖x‖→∞

sup‖F (x)‖
‖x‖ < ∞.

We also consider the number :
(4.5) [F ]q = lim

‖x‖→∞
inf ‖F (x)‖

‖x‖.

From the definition and the assumption F (0) = 0, it follows that :
(4.6) [F ]Q ≤ [F ]B ≤ [F ]Lip , [F ]A ≤ [F ]Lip ,
where each of these inequalities may be strict.

If F is linear, we have [F ]Q = [F ]B = [F ]Lip = ‖F‖ .

Definition 3. A continuous operator F : X → X is called stably
solvable if, given any compact operator G in X with [G]Q = 0, the equation
F (X) = G (X) has a solution xεX .

Remark 8. Each stably solvable operator is surjective. For linear
operators, surjectivity is equivalent to stable solvability [7].

Definition 4. An operator FεC (X) is called FMV − regular if F is
stably solvable, [F ]a > 0, and [F ]q > 0.

Definition 5. Given FεC (X) , the set
(4.7) ρFMV (F ) = {λεK : λI − F is FMV-regular}
is called the Furi − Martelli − V ignoli resolvent set and
(4.8) σFMV (F ) = K− ρFMV (F )
the Furi − Martelli− V ignoli spectrum of F.

Lemma 1. Let FεC (X) be stably solvable, B ⊆ X be a closed subset,
and H : B → X be a continuous operator. Assume that

(4.9) F−1 (co H (B)) ⊆ B
and that the equality

(4.10) α (F (M)) = α (H (M)) (M ⊆ X)
implies the precompactness of M . Then the equation F (x) = H (x) has a
solution xεX.

Lemma 1 contains the fixed point theorems of Schauder, Darbo and
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Sadovskij, by choosing F = I and B closed, bounded and convex.

Lemma 2.Let F, GεC (X) with F being FMV − regular. Suppose
that [G]A < [F ]a and [G]Q < [F ]q. Then F + G is FMV − regular.

Theorem 6. The spectrum σFMV (F ) is closed.

Proof. Fix λε σFMV (F ) , and let 0 < ε < min
{
[λI − F ]a , [λI − F ]q

}
.

We apply Lemma 2 to show that µε σFMV (F ) for |µ − λ| < ε.

In fact, from [(µ − λ) I]A = |µ − λ| < [λI − F ]a and
[(µ − λ) I]Q = |µ − λ| < [λI − F ]q , it follows that
µI − F = (λI − F ) + (µ − λ) I is FMV-regular.

This shows that λ is an interior point of σFMV (F ), and thus σFMV (F )
is open in K.

Theorem 7. Suppose that FεC (X) satisfies [F ]A < ∞ and [F ]Q <
∞. Then the spectrum σFMV (F ) is bounded.

Proof. For λεK with |λ| > max
{

[F ]A , [F ]Q
}

, we have [λI − F ]q > 0
and [λI − F ]a ≥ |λ| − [F ]A > 0.

We claim that λI−F is stably solvable for such λ. Now, if G : X → X
is compact with [G]Q = 0, then the operator :

H = (1/λ) (F + G) satisfies both the inequalities:
[H ]A ≤ (1/ |λ|) [F ]A < 1 and [H ]Q ≤ (1/ |λ|) [F ]Q < 1.

From Darbo‘s fixed point theorem, it follows that H has a fixed point
xεX , which is a solution of the equation λx − F (x) = G (x) .

We have proved that the Furi-Martelli-Vignoli spectral radius
(4.11) rFMV (F ) = sup {|λ| : λεσFMV (F )}
satisfies the upper estimate:

(4.12) rFMV (F ) ≤ max
{
[F ]A , [F ]Q

}
.

Remark 9. The spectrum σFMV (F ) may be unbounded if [F ]Q = ∞.

Theorem 3 is analogous to the following statement :
If dim X = ∞ and FεC (X) is compact, then 0εσFMV (F ) .

The FMV-spectrum is one of the most useful nonlinear spectrum from
the point of view of applications. The class of stably solvable operators, which
is basic in the definition of this spectrum has been introduced in [7]. This spec-
trum is based on the notion of stable solvability and has several applications
of topological character.
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5. The Feng spectrum

The notion of F-regularity may be used to define a new spectrum
in rather the same way as defining of FMV-spectrum by means of FMV-
regularity.

Given FεC (X), we call the set
(5.1) ρF (F ) = {λεK : λI − F is F − regular}
the Feng resolvent set, and its complement
(5.2) σF (F ) = K − ρF (F )
the Feng spectrum of F .

Remark 10. A bounded linear operator on a Banach space is F-
regular if and only if it is an isomorphism [2].

Moreover, we have the following theorem :

Theorem 8.( Feng [2] ) The spectrum σF (F ) is closed.

Theorem 9. ( Feng [2] ) Suppose that FεC (X) satisfies [F ]A < ∞
and [F ]B < ∞. Then the spectrum σF (F ) is bounded.

The proof of Theorem 9 provides, as that of Theorem 7, the upper
estimate

(5.3) rF (F ) ≤ max {[F ]A , [F ]B}
for the Feng spectral radius

(5.4) rF (F ) = sup {|λ| : λεσF (F )}.
Remark 11. The Feng spectrum may be unbounded if [F ]B = ∞.

The next theorem shows that the Feng spectrum has an intermediate
role between the Dörfner spectrum and the Furi-Martelli-Vignoli spectrum.

Theorem 10. For FεB (X) , the inclusions
(5.5) ρD (F ) ⊆ ρF (F ) ⊆ ρFMV (F ) and σD (F ) ⊇ σF (F ) ⊇ σFMV (F )

are true.

Proof. The inclusion ρF (F ) ⊆ ρFMV (F ) was proved in [2], so we
have to prove that ρD (F ) ⊆ ρF (F ), the two-sided estimate (3.7) is true which
implies that [λI − F ]b ≥ c > 0 and [λI − F ]a ≥ c > 0.

Moreover, for any r > 0, the set (λI − F )Br is opened in X , by the
continuity of (λI − F )−1

.
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The operator λI − F is k-epi on Br for 0 < k < c. Then v (λI − F ) > 0
and hence λερF F.
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