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AN EXISTENCE AND UNIQUENESS

RESULT FOR SEMILINEAR EQUATIONS
WITH LIPSCHITZ NONLINEARITY
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Abstract

In this Note, it is presented an existence and uniqueness result for
the semilinear equation Au + F (u) = f, where the nonlinearity F is a
Lipschitz operator.

1. Introduction

Let H be a real Hilbert space endowed with the inner product 〈·, ·〉 and
the norm ‖·‖ .

In Mortici [2], the semilinear equation Au + F (u) = 0, is considered where
A : D(A) ⊆ H −→ H is a linear maximal monotone operator and the nonlinear
operator F : H −→ H is a strongly monotone Lipschitz operator. It is proved
that, under these assumptions, the equation Au + F (u) = 0 has a unique
solution.

In this paper, we prove an existence and uniqueness result for the semilinear
equation

Au + F (u) = f, (1)

where the nonlinearity F is a Lipschitz operator.
So, we show that the supposition “F is a Lipschitz operator” is sufficient

for obtaining a unique solution for the equation (1).
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2. The result

Theorem. Let A : D(A) ⊆ H −→ H be linear and maximal monotone,
F : H −→ H be nonlinear and assume that for some positive real c > M , we
have:

i) A is a strongly positive operator with the constant c, namely

〈Ax, x〉 ≥ c ‖x‖2
, for all x ∈ D(A);

ii) F is a Lipschitz operator with the constant M,

‖F (x) − F (y)‖ ≤ M ‖x − y‖ , for all x, y ∈ H.

Then the equation (1) has a unique solution for all f ∈ H.

Proof. The equation (1) can be equivalently written as

Lu + N(u) = f, (2)

where L = I + A and N = −I + F (I is the identity of H).
It’s clear that L is a strongly positive linear operator with constant c1 =

c + 1, N is a Lipschitz operator with the constant M1 = M + 1 and c1 > M1.
We have Rg(L) = {Lx|x ∈ D(L) = D(A)} = H because A is maximal

monotone. Also, from 〈Lx, x〉 ≥ c1 ‖x‖2 for all x ∈ D(L), we obtain that

‖Lx‖ ≥ c1 ‖x‖ , for all x ∈ D(L).

Consequently there exists L−1 : H −→ D(L) ⊆ H which is linear and con-
tinuous, L−1 ∈ L(H), the Banach space of all linear and continuous operators
from H to H. Moreover, ∥∥L−1

∥∥
L(H)

≤ 1
c1

,

where
∥∥L−1

∥∥
L(H)

= sup
{∥∥L−1v

∥∥ |v ∈ H, ‖v‖ ≤ 1
}

.

Now, the equation (2) can be equivalently written as

(I + L−1N)(u) = L−1f. (3)

With the notations V = I+L−1N and g = L−1f, the equation (3) becomes

V u = g (V : H −→ H) (4)

Using the Cauchy-Schwarz inequality, we obtain:

− 〈
L−1Nx − L−1Ny, x − y

〉 ≤ ∣∣〈L−1 (Nx − Ny) , x − y
〉∣∣ ≤



AN EXISTENCE AND UNIQUENESS RESULT 113

≤ ∥∥L−1 (Nx − Ny)
∥∥ · ‖x − y‖ ≤

≤ ∥∥L−1
∥∥

L(H)
· ‖Nx − Ny‖ · ‖x − y‖ ≤ M1

c1
‖x − y‖2

(|s| denote the absolute value of the real number s)
and then

〈V x − V y, x − y〉 =
〈
x + L−1Nx − y − L−1Ny, x − y

〉
=

= ‖x − y‖2 +
〈
L−1Nx − L−1Ny, x − y

〉 ≥

≥ ‖x − y‖2 − M1

c1
‖x − y‖2 =

(
1 − M1

c1

)
‖x − y‖2

,

for all x, y ∈ H.
It follows that V is a strongly monotone operator with the constant

α = 1−M1
c1

> 0, because c1 > M1. It is clear that the operator V is continuous.

Also V is coercive
(
i.e. 〈V x,x〉

‖x‖ −→ ∞ when ‖x‖ −→ ∞
)

and strictly monotone
(i.e.〈V x − V y, x − y〉 > 0, for all x, y ∈ H with x 
= y), because V is strongly
monotone.

By the Minty-Browder theorem (see Brezis [ 1], p.88), we obtain that the
equation (4) has a unique solution. It follows that the equation (1) has a
unique solution. �

3. An application

Let D ⊂ Rn be a bounded domain and f ∈ L2(D). We consider the
Dirichlet problem

{ −∆u(x) + au(x) + g(x, u(x)) = f(x), x ∈ D
u(x) = 0, x ∈ ∂D.

(5)

We suppose that g : D × R → R has partial derivative in u of the first
order and ∣∣∣∣∂g

∂u

∣∣∣∣ ≤ M in D (M > 0).

Also, we suppose that a ∈ R, a > M.
We study now the problem (5), in the following functional background:

H = L2(D), Au = −∆u + au, D(A) = H2(D) ∩ H1
0 (D), F (u) = g(·, u).

Let Bu = −∆u be an operator from H to H , defined on D(B) = H2(D)∩
H1

0 (D). It is well-known the fact that B is a maximal monotone operator. It
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results that the operator A = B + aI is strongly positive with the constant a
and maximal monotone. Also F is a Lipschitz operator with the constant M.

From the result we obtain that the problem (5) has a unique solution in
H2(D) ∩ H1

0 (D).
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