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Abstract

The internal and superficial instability of a prestressed fiber rein-
forced orthotropic elastic composite is considered in the paper. Using
Guz’s formalism, boundary and far field conditions we get the criti-
cal values of compressive stresses which are producing the internal and
superficial instability in the body. The superficial instability appears
before that the internal instability. To avoid such a situation, due to
the structured character of the composites, the admissible compressive
load must be drastically limited. Numerical results for the particular
case of a graphite/epoxy orthotropic composite materials are obtained
in the paper.

AMS Subject Classification: 74B99, 74E30.

1 Introduction

The instability of the fiber-reinforced elastic composites is studied in the paper.
We suppose that the body is a linear orthotropic elastic body supposed to
small, infinitesimal initial deformations.

The phenomenon of internal instability was analised for the first time by
Biot [1] and Guz [2] and it concerns the loss of stability of the structure.
It depends on the geometrical and mechanical characteristics of the internal
structure and it is independent of geometrical characteristics of the body.
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The material is considered as a structureless continuum and its behavior is
described by constitutive equations containing material constants. The struc-
tural properties of the body are implicitely reflected by the value of the elas-
ticities occuring in the stress-strain relation of the material.

The homogeneous equilibrium state is studied. Using Guz’s representation
of incremental fields, boundary and far field conditions we get the values of
the critical stresses which produce internal and superficial instabilities.

The other result is that the critical load producing superficial instability is
greater than those producing internal instability, i.e. the superficial instability
appears the first.

For the graphite/epoxy orthotropic composite material our results are nu-
merically verified.

2 Equilibrium state of a prestressed infinite body

We study the behavior of an infinite body, submited to well-defined given
loads, acting at large distances. We assume in above conditions that the initial
deformed and prestressed infinite body is in a homogeneous equilibrium state.
The incremental behavior is governed by the differential system (see [2])

Plmum = 0 (1)

where Plm are the differential operators defined by

Plm = ωklmn
∂2

∂xk∂xn
, (2)

and ωklmn represent the instantaneous elasticities depending on the elasticities
cklmn of the material, as well as on the initial applied stress

◦
σ.

We assume that the stress free reference configuration of the body is locally
stable. Hence, the differential system (1) corresponding to

◦
σ = 0 is elliptic.

If, on a given loading paths, the instantaneous elasticity ω is positive definite;
i.e. the system (1) conserves its ellipticity, the solutions of various incremental
boundary value problems are unique, have a local character, and internal in-
stability does not occur. If for some critical values of the loading parameters,
the system (1) ceases to be elliptic, and becomes hyperbolic, the behavior of
the perturbation changes radically and their local character is lost. A pertur-
bation, appearing in a small domain, can propagate along the characteristics,
producing considerable damages in the material. By internal instability we
mean just the occurrence of such essential change in the behavior of the per-
turbation. Hence, internal instability occurs when on a given loading path the
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differential system (1) ceases to be elliptic. The corresponding critical values
of the loading parameters are determined using the above criterion.

According to Guz’s representation theorem (see [2]), we can replace the
system (1) by a simple equation,

(detP )ϕ(j) = 0, P = [Plm] , j = 1, 2, 3, (3)

satisfied by the displacement potentials ϕ(j). Consequently, the critical values
of the loading parameters, producing internal instability, are those values for
which on a given loading path the ellipticity of the equation (2) is for the first
time lost.

We can say that the occurrence of the internal instability is guaranteed if
the instantaneous elasticities satisfy the condition

ζlkωklmnζmn = 0 for any ζmn such that ζknζmn �= 0. (4)

In the following we shall illustrate these general ideas by some special
cases. We observe that the implications of the general criterion (4) can be
more easily determined using the factorized forms of the equations satisfied
by the displacement potentials.
Following [3] the equation (3) satisfied by the displacements potentiales ϕ(α)

can be factorized becoming(
∂2

∂x2
2

+ η2
1

∂2

∂x2
1

)(
∂2

∂x2
2

+ η2
2

∂2

∂x2
1

)
ϕ(α) = 0, (5)

where the parameters η2
1 and η2

2 satisfy equations

f (η) ≡ η4 − 2Aη2 + B = 0, (6)

with

A =
ω1111ω2222 + ω1221 ω2112 − (ω1122 + ω1212)

2

2 ω2222ω2112
, B =

ω1111ω1221

ω2222ω2112
. (7)

We start the analysis considering incremental plane states. Examining the
equation (5), it can be seen that internal instability occurs when

η1 = 0 or η2 = 0 for ω2222 �= 0 and ω2112 �= 0. (8)

According to equations (6) and (7), the above condition will be satisfied if

B = 0,
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or, more exactly, if

ω1221 = 0 or ω1111 = 0 for ω2222 �= 0 and ω2112 �= 0. (9)

Taking into account the values of the involved instantaneous elasticities, the
above conditions become

C66+
◦
σ11 = 0 or C11+

◦
σ11 = 0 for C22+

◦
σ22 �= 0 and C66+

◦
σ22 �= 0. (10)

The reference configuration of the body being assumed locally stable, the
elasticities of the material satisfy the inequalities

C11, C22, C66, C11C22 − C2
12 > 0. (11)

Thus, the relations (10) show that internal instability can occur only if
◦
σ11 is

a compressive stress; i.e.
◦
σ11< 0.

We assume now that, on the considered loading path,

◦
σ22 = 0. (12)

In this case, the restrictions (10)3,4 are satisfied. Internal instability occurs
only if the applied compressive stress

◦
σ11 satisfies the condition

◦
σ11 = −C66 or

◦
σ11 = −C11. (13)

We suppose that the material is a fiber-reinforced composite, and the fibers
have the direction of the applied compressive force. For such composite ma-
terials, the transverse shear rigidity C66 is much smaller as the longitudinal
axial rigidity; i.e.

C66 � C11. (14)

Hence, internal instability occurs if the compressive stress, applied in the
fibers direction, reaches the critical value

◦
σ

ci

11 = −C66. (15)

The internal deformation produced by
◦
σ

ci

11 are infinitesimal, since the com-
pressive stress acts in the fibers direction and (12) is true. Hence, the condi-
tions in which the used incremental theory is applicable are fulfilled. Conse-
quently, the loss of internal stability actually can occur in a fiber-reinforced
composite, if the applied compressive force acts in the fibers direction.
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If the material is isotropic, C66 and C11 have the same order of magnitude
and internal instability can not occur for compressive force, for which the
linear theory of elasticity is applicable.

The loss of internal stability for fiber-reinforced composite materials, for
relatively small compressive stresses, is a direct consequence of their structured
character, reflected by the strong anisotropy of the composite.

We assume that the material is a fiber-reinforced elastic composite with
the fibers in the direction of Ox1 axis.

From Eqs. (5) using Baggio’s theorem, and from far field conditions we
get for the displacements potentials the following forms

ϕ(1) = (A1e
aη1x2 + A2e

aη2x2) sin ax1,

ϕ(2) = (B1e
aη1x2 + B2e

aη2x2) cos ax1,
(16)

where A1, A2, B1, B2 are arbitrary constants, and

a, η1, η2 > 0. (17)

First we suppose that ϕ(2) ≡ 0 and look for a possible eigenmode described
by ϕ(1).

Using Guz’s representation formula given the incremental displacement
and stress field we obtain that homogeneous boundary conditions are satisfied
if and only if there exists non vanishing constants A1 and A2 satisfying the
following homogeneous system(

ω1212ω1111 + ω2112ω1122η
2
1

)
A1 +

(
ω1212ω1111 + ω2112ω1122η

2
2

)
A2 = 0,

η1

{
ω1122 (ω1122 + ω1212) − ω1111ω2222 + ω2222ω2112η

2
1

}
A1+

+ η2

{
ω1122 (ω1122 + ω1212) − ω1111ω2222 + ω2222ω2112η

2
2

}
A2 = 0,

(18)
i.e. the determinant of the system is vanishing.

After long computations we obtain that superficial instability are occur if
and only if the following equation containing the unknown

◦
σ11 is fulfilled:√(

C11+
◦
σ11

)
C22C66

◦
σ11 +

√(
C66+

◦
σ11

)
C66

(
C11C22 − C2

12 + C22
◦
σ11

)
= 0.

(19)
If the stress-free reference configuration is locally stable, the inequalities

(11) are satisfied. Then we can conclude that the left-hand side of the above
equation is positive if

◦
σ11= 0. Hence, a static analogue of Rayleigh’s surface

waves can not exist, if the stress-free reference configuration of the body is
locally stable.
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3 Critical load producing superficial instability

The critical value of
◦
σ11, for which superficial instability can occur in a pre-

stressed equilibrium configuration, must satisfy equation (19).
We shall analyze now if such critical value may exist. After some obvious

transformations, (19) becomes

(
C11+

◦
σ11

)
C22C66

◦
σ

2

11 −
(
C66+

◦
σ11

)(
C11C22 − C2

12 + C22
◦
σ11

)2

= 0. (1)

We introduce the dimensionless ratios

x =
◦
σ11 /C11, ε = C66/C11 > 0. (2)

In this way, (1) takes the form

C22

C11

(
C22

C11
− ε

)
x3 +

C22

C11

[
ε

(
C22

C11
− 1
)

+ 2
(

C22

C11
− C2

12

C2
11

)]
x2 +

+
(

C22

C11
− C2

12

C2
11

)(
C22

C11
− C2

12

C2
11

+ 2ε
C22

C11

)
x + ε

(
C22

C11
− C2

12

C2
11

)2

= 0. (3)

We recall that for a fiber-reinforced composite,

C66 � C11;

hence,
ε � 1. (4)

Consequently, using an iterative method, we look for a root having the
following form:

x = x0 + εx1 + ε2x2 + ε3x3. (5)

Introducing (5) in (3), and neglecting terms of order ε4 and higher, we
determine successively the unknowns x0, x1, x2 and x3.

Elementary, but a long computation, gives

x0 = 0, x1 = −1, x2 = 0, x3 =
C11

C22

C2
11C

2
22

(C11C22 − C2
12)

2 . (6)

Introducing (6) in (5), we get

x = −ε

(
1 − ε2 C11

C22

C2
11C

2
22

(C11C22 − C2
12)

2

)
. (7)
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Using the notation (2) for the critical value
◦
σ

cs

11 for which superficial in-
stability occurs, we obtain the following expression:

◦
σ

cs

11 = −C66

(
1 − C2

66

C11C22

C2
11C

2
22

(C11C22 − C12)
2

)
. (8)

We recall that the critical value
◦
σ

ci

11, for which internal (structural) instability
occurs, is given by the equation (15). Hence, it results

◦
σ

cs

11 =
◦
σ

ci

11

(
1 − C2

66

C11C22

C2
11C

2
22

(C11C22 − C2
12)

2

)
, (9)

or using the engineering constants of the material, we get

◦
σ

ci

11 = −G12,
◦
σ

cs

11 = −G12

(
1 − G2

12

E1E2
(1 − ν13ν31) (1 − ν23ν32)

)
. (10)

In a fiber-reinforced composite

G2
12 � E1E2 and 0 <

G2
12

E1E2
(1 − ν13ν31) (1 − ν23ν32) < 1.

Consequently, according to (10),

◦
σ

ci

11<
◦
σ

cs

11< 0. (11)

Hence, the critical load-producing superficial instability is a compressive
one, as well as the critical load-producing structural (internal) instability.
Moreover, the superficial instability appears before the structural one.

4 Numerical results

In this Section we consider the particular case of a graphite/epoxy fiber rein-
forced orthotropic composite material.

We compute the critical values of the compresive stresses
◦
σ

ci
and

◦
σ

cs
pro-

ducing internal, and respectivelly superficial instability and the non-vanishing
components of produced strain

◦
ε by critical compressive stresses

◦
σ

cs
.

A graphite/epoxy fiber reinforced orthotropic composite material is char-
acterized by the following technical constants:

E1 = 190GPa, E2 = E3 = 10GPa, G12 = 7GPa, G13 = G23 = 6GPa,

ν12 = 0.3, ν13 = ν23 = 0.2.
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Using the reciprocity relations

νij

Ei
=

νji

Ej

we find
ν21 = 0.16, ν31 = ν32 = 0.1.

The critical compressive stress
◦
σ

ci

11 acting in the fibers direction and producing
internal(structural) instability of the material is given by the equation (15).
Since C66 = G12 we find

◦
σ

ci

11 = −7GPa.

The critical compressive stress
◦
σ

cs

11 producing superficial instability of the
material is given by the equation (10)2. We have

◦
σ

cs

11 = −G12(1 − G2
12

E1E2
(1 − ν13ν31)(1 − ν23ν32)).

Hence

◦
σ

cs

11 = −0.9883.

Consequently, superficial instability occurs before internal instability and
the compressive stress leading to superficial instability produces only infinites-
imal deformations.

In order to find the deformation produced by the above determined criti-

cal compressive stress
◦
σ

ci

11we must use the constitutive equations (see [3]) de-
scribing the behavior of an orthotopic material. Thus, for the non-vanishing
components of the produced strain

◦
ε, we find

◦
ε11 =

1
E1

◦
σ

ci

11,
◦
ε22 =

◦
ε33 = −ν12

E1

◦
σ

ci

11 .

Hence

◦
ε11 = 0.036,

◦
ε22 =

◦
ε33 = 0.0108.

These results show that in a fiber reinforced, hence structured composite
material, internal instability can occur for relatively small compressive stresses,
producing infinitesimal deformations. Hence the danger represented by the
occurrence of the internal (structural) instability actually exists and can be
detected using the linear elastic model of the material.
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5 Final remarks

We considered a prestressed fiber reinforced elastic composite. The incre-
mental behavior of the body is studied using Guz’s representation with the
displacement potentials ϕ(α), α = 1, 2. We obtained the critical values of the
compresive stresses which produce the loss of internal and respectivelly of su-
perficial instability and we observed that the superficial instability appears
before the structural one.

Since the critical load leading to superficial instability has the order at
magnitude of the transverse shear modulus, the losing of superficial stability,
for relatively small compressive stresses, can really occur in a fiber-reinforced
composite loaded by compressive forces acting in the fibers direction. To avoid
a dangerous situation, due to the structured character of the composites, the
admissible compressive forces must be drastically limited.

On results were numerically verified for the particular case of a graphite/epoxy
fiber reinforced elastic composite.
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