

An. Şt. Univ. Ovidius Constanța

NONLINEAR NEUMANN BOUNDARY VALUE PROBLEMS WITH ϕ -LAPLACIAN OPERATORS

Cristian Bereanu and Jean Mawhin

To Professor Dan Pascali, at his 70's anniversary

Abstract

Using the Leray-Schauder degree theory we obtain existence results for Neumann boundary value problems

 $(\phi(u'))' = f(t, u, u'), \quad u'(0) = 0 = u'(T),$

where ϕ is an homeomorphism between \mathbb{R} and]-a, a[(or between]-a, a[and $\mathbb{R}), \phi(0) = 0$ and f is a suitable nonlinearity.

1 Introduction

Some nonlinear operators in suitable functions spaces have been introduced in [2] (see also [3]), whose fixed points coincide with the solutions of nonlinear boundary value problems of the type

$$(\phi(u'))' = f(t, u, u'), \quad l(u, u') = 0, \tag{1}$$

where l(u, u') denotes the Dirichlet, Neumann or periodic boundary conditions on $[0,T], \phi : \mathbb{R}^N \longrightarrow \mathbb{R}^N$ is a suitable monotone homeomorphism and $f : [0,T] \times \mathbb{R}^N \times \mathbb{R}^N \longrightarrow \mathbb{R}^N$ is a Carathéodory function. Applications are given to existence results when ϕ is the vector p-Laplacian (p > 1), f is asymptotically homogeneous and l(u, u') is the Dirichlet condition.

Key Words: Nonlinear Boundary value problem; Laplacian Ooperators.

⁷³

The aim of this paper is to study the existence of solutions for the Neumann boundary value problem

$$(\phi(u'))' = f(t, u, u'), \quad u'(0) = 0 = u'(T), \tag{2}$$

where $\phi : \mathbb{R} \to]-a, a[$ is an homeomorphism such that $\phi(0) = 0, f : [0, T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a continuous function satisfying some growth and sign conditions. An analogous result can be obtained for problems of type (2) with $\phi :]-a, a[\to \mathbb{R}$.

To prove the main results of this article we reformulate problem (2) in an abstract way which allows us to apply the Leray-Schauder degree. When $\phi:]-a, a[\to \mathbb{R}, \text{ new difficulties occur because the function } \phi^{-1} \text{ is not defined}$ everywhere. Our existence conditions require f to be everywhere bounded, with a bound depending upon a and T, and to satisfy a sign condition (see Theorem 1). When $\phi: \mathbb{R} \to]-a, a[$, a sign condition is sufficient (see Theorem 2). Examples are given. The method used here is inspired by the continuation theorem of coincidence degree theory [4] and by Theorem 3.1 in [2].

2 Notations and preliminaries

We first introduce some notations. Let C denote the Banach space of continuous functions on [0, T] endowed with the norm $||u||_{\infty} = \max_{t \in [0,T]} |u(t)|$, C^1 denote the Banach space of continuously differentiable functions on [0, T] equipped with the norm $||u|| = ||u||_{\infty} + ||u'||_{\infty}$ and $C^1_{\#}$ denote the closed subspace of $C^1_{\#} = C^1_{\#} =$

with the norm $||u|| = ||u||_{\infty} + ||u'||_{\infty}$ and $C^1_{\#}$ denote the closed subspace of C^1 defined by $C^1_{\#} = \{u \in C^1 : u'(0) = 0 = u'(T)\}$. We denote by P, Q the projectors

$$P,Q: C \to C, \quad Pu(t) = u(0), \quad Qu(t) = \frac{1}{T} \int_0^T u(s) ds,$$

and we define $H: C \to C$ by

$$Hu(t) = \int_0^t u(s)ds.$$

If $u \in C$, we write

$$[u]_{\mathcal{L}} = \min_{t \in [0,T]} u(t), \quad [u]_{\mathcal{M}} = \max_{t \in [0,T]} u(t).$$

We need the following elementary inequality.

Lemma 1 If $w \in C$, then

$$\|H(I-Q)w\|_{\infty} \le \frac{T}{\sqrt{3}} \left(\frac{1}{T} \int_{0}^{T} w^{2}(t) dt\right)^{1/2} \le \frac{T}{\sqrt{3}} \|w\|_{\infty}.$$
 (3)

Proof. If v = H(I - Q)w, then $v \in C^1$ and v(0) = v(T) = 0, so that

$$v(t) = \sum_{n=1}^{\infty} A_n \sin n\omega t,$$

where $\omega = \frac{\pi}{T}$, and, as $w \in C \subset L^2(0,T)$, we have

$$w(t) \sim \sum_{n=1}^{\infty} n\omega A_n \cos n\omega t + \frac{1}{T} \int_0^T w(s) ds$$

with $\sum_{n=1}^{\infty} n^2 A_n^2 < +\infty$. Letting $a_n = n\omega A_n$ $(n \ge 1)$, so that $\sum_{n=1}^{\infty} a_n^2 < +\infty$, we get, for each $t \in [0, T]$,

$$\begin{aligned} |H(I-Q)w(t)| &= \left| \sum_{n=1}^{\infty} \frac{a_n}{n\omega} \sin n\omega t \right| &\leq \frac{1}{\omega} \left(\sum_{n=1}^{\infty} \frac{1}{n^2} \right)^{1/2} \left(\sum_{n=1}^{\infty} a_n^2 \right)^{1/2} \\ &\leq \frac{T}{\sqrt{3}} \left(\frac{1}{T} \int_0^T w^2(t) \, dt \right)^{1/2} \leq \frac{T}{\sqrt{3}} \|w\|_{\infty}. \end{aligned}$$

Finally, to each continuous function $f:[0,T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, we associate its Nemytskii operator $N_f: C^1 \to C$ defined by

$$N_f(u)(t) = f(t, u(t), u'(t)).$$

All the above defined operators P, Q, H, N_f are continuous.

3 Abstract formulation

Let $N: C^1_{\#} \to C$ be a continuous operator. We consider the operator \mathcal{G}_N given for $u \in C^1_{\#}$ by

$$\mathcal{G}_{\mathcal{N}}(u) = Pu + QN(u) + H \circ \phi^{-1} \circ H(I - Q)N(u).$$

Lemma 2 If N satisfies the condition

$$\|N(u)\|_{\infty} \le K < \sqrt{3} \frac{a}{T} \quad for \ all \quad u \in C^{1}_{\#}$$

$$\tag{4}$$

then the operator \mathcal{G}_N is well defined on $C^1_{\#}$ and u is a solution of

$$(\phi(u'))' = N(u), \quad u'(0) = 0 = u'(T) \tag{5}$$

if and only if u is a fixed point of \mathcal{G}_N .

Proof. Let $u \in C^1_{\#}$. Using (4) and (3) we have

$$||H(I-Q)N(u)||_{\infty} \le \frac{T}{\sqrt{3}} ||N(u)||_{\infty} \le \frac{TK}{\sqrt{3}} < a.$$
 (6)

From (6) we deduce that \mathcal{G}_N is well defined on $C^1_{\#}$. It is clear that $\mathcal{G}_N(u) \in C^1$ if $u \in C^1_{\#}$. We show that, in fact, $\mathcal{G}_N(u) \in C^1_{\#}$ for $u \in C^1_{\#}$. If $u \in C^1_{\#}$, then $(\mathcal{G}_N(u))' = \phi^{-1} \circ H(I-Q)N(u)$. Using the relations

$$H(I-Q)N(u)(0) = 0 = H(I-Q)N(u)(T), \quad \phi^{-1}(0) = 0,$$

it follows that

$$(\mathcal{G}_N(u))'(0) = 0 = (\mathcal{G}_N(u))'(T).$$

Now suppose that u is a solution of (5). Integrating both members over [0, T] we get

$$QN(u) = 0 \tag{7}$$

and, integrating both members over [0, t] we get $\phi(u') = H \circ N(u)$, from where it follows that $\phi(u') = H(I - Q)N(u)$, so, $u' = \phi^{-1} \circ [H(I - Q)N](u)$ and, integrating, $u = Pu + H \circ \phi^{-1} \circ [H(I - Q)N](u)$, which, because of (7) is equivalent to $u = \mathcal{G}_N(u)$. Conversely, if $u = \mathcal{G}_N(u)$, then

$$u - Pu - H \circ \phi^{-1} \circ [H(I - Q)N](u) = QN(u),$$

which gives

$$u = Pu + H \circ \phi^{-1} \circ [H(I - Q)N](u), \quad QN(u) = 0,$$

so that $u \in C^1_{\#}$ and u is a solution for (5) by differentiating the first equation, applying ϕ to both of its members, differentiating again and using the second equation.

4 A compact homotopy

Assume now that f satisfies the condition

$$|f(t, u, v)| \le K < \sqrt{3} \, \frac{a}{T} \quad \text{for all} \quad (t, u, v) \in [0, T] \times \mathbb{R} \times \mathbb{R}.$$
(8)

For $\lambda \in [0, 1]$ consider the family of abstract Neumann problems

$$(\phi(u'))' = \lambda N_f(u) + (1-\lambda)QN_f(u), \quad u'(0) = 0 = u'(T).$$
 (9)

As

$$\|\lambda N_f(u) + (1-\lambda)QN_f(u)\|_{\infty} \le K < \sqrt{3} \,\frac{a}{T},\tag{10}$$

for all $u \in C^1_{\#}$, it follows from Lemma 2 that the operator \mathcal{M} associated to (9), which is, as easily shown, given by

$$\mathcal{M}(\lambda, u) = Pu + QN_f(u) + H \circ \phi^{-1} \circ [\lambda H(I - Q)N_f](u)$$
(11)

is well defined and continuous on $[0,1] \times C^1_{\#}$, and that u is a solution for (9) if and only if $u = \mathcal{M}(\lambda, u)$.

To use Leray-Schauder degree [1, 5] for finding fixed points of \mathcal{M} , we prove in the next lemma that the continuous operator \mathcal{M} is completely continuous on $C^1_{\#}$, i.e. that for any sequence $(\lambda_n, u_n)_n \subset [0, 1] \times C^1_{\#}$ with $(||u_n||)_n$ bounded, the sequence $(\mathcal{M}(\lambda_n, u_n))_n$ has a convergent subsequence.

Lemma 3 \mathcal{M} is completely continuous on $C^1_{\#}$.

Proof. Let $(\lambda_n, u_n)_n \subset [0, 1] \times C^1_{\#}$ with $(||u_n||)_n$ bounded. We may assume that $\lambda_n \to \lambda_0$. Let $v_n = \mathcal{M}(\lambda_n, u_n), (n \in \mathbb{N})$. Then

$$v_n = Pu_n + QN_f(u_n) + H \circ \phi^{-1} \circ [\lambda_n H(I - Q)N_f](u_n), \ (n \in \mathbb{N}).$$

Because of (8),

$$\begin{aligned} \|QN_f(u_n)\|_{\infty} &\leq K, \\ \|\phi^{-1} \circ [\lambda_n H(I-Q)N_f](u_n)\|_{\infty} &\leq \max\left\{ \left|\phi^{-1}(-\frac{KT}{\sqrt{3}})\right|, \left|\phi^{-1}(\frac{KT}{\sqrt{3}})\right|\right\} := M, \\ (n \in \mathbb{N}). \end{aligned}$$
(12)

From (12) it follows that $(v_n)_n$ is bounded in C. Let $t_1, t_2 \in [0, T]$. Then, for all $n \in \mathbb{N}$, using (12) we have

$$|v_n(t_1) - v_n(t_2)| = \left| \int_{t_1}^{t_2} \phi^{-1} \circ [\lambda_n H(I - Q)N_f](u_n)(s)ds \right| \le M|t_1 - t_2|,$$

which implies that $(v_n)_n$ is equicontinuous. Applying Arzela-Ascoli theorem, passing if necessary to a subsequence, we may assume that $v_n \longrightarrow v$ in C. On the other hand

$$v'_n = \phi^{-1} \circ [\lambda_n H(I - Q)N_f](u_n), \quad (n \in \mathbb{N})$$

so, using (12), it follows that $||v'_n||_{\infty} \leq M$ for all $n \in \mathbb{N}$. Furthermore, if $t_1, t_2 \in [0, T]$, then

$$\left|\phi(v_n'(t_2)) - \phi(v_n'(t_1))\right| \le \left|\int_{t_1}^{t_2} (I - Q) N_f(u_n)(s) ds\right| \le 2K |t_1 - t_2|.$$
(13)

Using (6), (4) and the uniform continuity of ϕ^{-1} on compact intervals of] - a, a[, it follows that $(v'_n)_n$ is equicontinuous. Applying Arzela-Ascoli theorem, we may assume, passing to a subsequence, that $v'_n \to w$ in C, with $||w||_{\infty} \leq M$. It follows that $v \in C^1_{\#}$, v' = w, so that $v_n \to v$ in C^1 .

5 A priori estimates

Let f be a function as in Section 3, and \mathcal{M} the corresponding nonlinear operator given by (11).

Lemma 4 If there exists R > 0 and $\epsilon \in \{-1, 1\}$ such that, with

$$M = \max\{ \left| \phi^{-1}(-\frac{KT}{\sqrt{3}}) \right|, \left| \phi^{-1}(\frac{KT}{\sqrt{3}}) \right| \},\$$

one has

$$\epsilon u f(t, u, v) > 0 \quad if \quad |u| \ge R, \ |v| \le M, \ t \in [0, T],$$
(14)

then there is a constant $\rho > R$ such that for each $\lambda \in [0, 1]$, each possible fixed point u of $\mathcal{M}(\lambda, \cdot)$ verifies the inequality $||u|| < \rho$.

Proof. Let $\lambda \in [0,1]$ and $u = \mathcal{M}(\lambda, u)$. Hence $u' = \phi^{-1} \circ [\lambda H(I-Q)N_f(u)]$, and, from (6) and from the choice of M it follows that

$$\|u'\|_{\infty} \le M. \tag{15}$$

Because $u = \mathcal{M}(\lambda, u)$, it follows from Lemma 2 that u is a solution of (9), which implies that

$$\int_0^T f(t, u(t), u'(t))dt = 0.$$
 (16)

If $[u]_M \leq -R$ (respectively $[u]_L \geq R$) then, from (15) and (14), it follows that

$$\epsilon \int_0^T f(t, u(t), u'(t)) dt < 0 \quad (\text{respectively} \quad \epsilon \int_0^T f(t, u(t), u'(t)) dt > 0).$$

Using (16) we have that

$$[u]_M > -R \text{ and } [u]_L < R.$$
 (17)

It is clear that

$$[u]_M \le [u]_L + \int_0^T |u'(t)| dt.$$
 (18)

From relations (17), (18) and (15), we obtain that

$$-(R+M) < [u]_L \le [u]_M < R+M.$$
(19)

It follows that ||u|| < R + 2M and it suffices to take $\rho = R + 2M$.

6 Main results. Examples

The existence result when $\phi :] - a, a[\rightarrow \mathbb{R}$ follows from the above a priori estimates and Leray-Schauder theory.

Theorem 1 Let $f : [0,T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function verifying conditions (8) and (14). Then (2) has at least one solution.

Proof. Let \mathcal{M} be the operator given by (11). We have that $\mathcal{M}(1, \cdot) = \mathcal{G}_{N_f}$ and $\mathcal{N}(0, \cdot) = P + QN_f$. Using Lemma 3, Lemma 4 and the homotopy invariance of the Leray-Schauder degree [1, 5], we obtain that $d_{\mathrm{LS}}[I - \mathcal{N}(1, \cdot), B_{\rho}(0), 0]$ and $d_{\mathrm{LS}}[I - \mathcal{N}(0, \cdot), B_{\rho}(0), 0]$ are well defined and equal. But the range of $\mathcal{N}(0, \cdot)$ is contained in the subset of constant functions, isomorphic to \mathbb{R} , so, using a property of the Leray-Schauder degree we have that

$$d_{\rm LS}[I - \mathcal{N}(0, \cdot), B_{\rho}(0), 0] = d_{\rm B}[I - \mathcal{N}(0, \cdot)|_{\mathbb{R}}, (-\rho, \rho), 0]$$
$$= d_{\rm B}[-QN_f, (-\rho, \rho), 0] = \frac{-\text{sign}(QN_f(\rho)) + \text{sign}(QN_f(-\rho))}{2},$$

where $d_{\rm B}$ denotes the Brouwer degree. But, using (14) and the fact that $\rho > R$ we see that $QN_f(\pm \rho) = \frac{1}{T} \int_0^T f(t, \pm \rho, 0) dt$ have opposite signs, which implies that

$$|d_{\rm LS}[I - \mathcal{N}(1, \cdot), B_{\rho}(0), 0]| = |d_{\rm LS}[I - \mathcal{N}(0, \cdot), B_{\rho}(0), 0]| = 1.$$

Then, from the existence property of the Leray-Schauder degree, there is $u \in B_{\rho}(0)$ such that $u = \mathcal{N}(1, u) = \mathcal{G}_{N_f}(u)$, and u is a solution for (2) by Lemma 2.

The case where $\phi :] -a, a[\to \mathbb{R}$ is simpler to treat because ϕ^{-1} is now defined over \mathbb{R} , so that the fixed point operator \mathcal{G}_N is well defined without growth restriction upon N. Notice now that a solution of (2) or of (5) must satisfy the estimate -a < u'(t) < a for all $t \in [0, T]$ in order to be defined. This estimate is satisfied for any possible fixed point of \mathcal{G}_N or \mathcal{M} . The complete continuity of \mathcal{M} is proved like in Lemma 3. We have the following result

Theorem 2 Let ϕ :] -a, a[$\rightarrow \mathbb{R}$ be a homeomorphism such that $\phi(0) = 0$ and f: [0, T] $\times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function such that, for some R > 0 and some $\epsilon \in \{-1, 1\}$,

$$\epsilon u f(t, u, v) > 0 \quad if \quad |u| \ge R, \ |v| < a, \ t \in [0, T].$$
 (20)

Then (2) has at least one solution.

Proof. If $\lambda \in [0, 1]$ and u is a possible fixed point of $\mathcal{M}(\lambda, \cdot)$, then

$$u' = \phi^{-1} \circ [\lambda H(I - Q)N](u),$$
 (21)

and

$$\int_0^T f(t, u(t), u'(t)) dt = 0.$$
(22)

If follows from (21) that

$$|u'(t)| < a \quad (t \in [0, T]).$$
 (23)

Now, if $[u]_M \leq -R$, we have, using (21) and (20),

 $\epsilon f(t, u(t), u'(t)) < 0 \quad (t \in [0, T]),$

which gives a contradiction to (22). Similarly if $[u]_L \ge R$. Hence,

$$[u]_M > -R, \quad [u]_L < R.$$
 (24)

Now, using (23),

$$[u]_M - [u]_L \le \int_0^T |u'(t)| \, dt < aT,$$

which implies, together with (24) that

$$\|u\|_{\infty} < R + aT$$

and hence

$$||u|| < R + a(T+1) \tag{25}$$

for all possible fixed points of $\mathcal{M}(\lambda, \cdot)$. The end of the proof is then entirely similar to that of Theorem 1.

Example 1 Using Theorem 1 we obtain that the Neumann boundary value problem

$$\left(\frac{u'}{\sqrt{1+u'^2}}\right)' = \alpha(\arctan u + \sin t), \quad u'(0) = u'(1) = 0$$

has at least one solution if $|\alpha| \leq 0.835$.

Example 2 Using Theorem 1 we obtain that the Neumann boundary value problem $\$

$$\left(\frac{u'}{\sqrt{1+u'^2}}\right)' = \frac{\sqrt{3}}{4}\arctan(u+t) + \frac{\sqrt{3}}{3}\sin(u'+t^2), \quad u'(0) = u'(1) = 0$$

has at least one non constant solution.

Example 3 Using Theorem 2 we obtain that the Neumann boundary value problem

$$\left(\frac{u'}{\sqrt{1-u'^2}}\right)' = (u+t)^3 + \sin^2(u'), \quad u'(0) = 0 = u'(T)$$

has at least one non constant solution.

References

- J. Leray, J. Schauder, *Topologie et équations fonctionnelles*, Ann. Ec. Norm. Sup. 51 (1934), 45-78.
- [2] R. Manásevich, J. Mawhin, Periodic Solutions for Nonlinear Systems with p-Laplacian-Like Operators, J. Differential Equations 145 (1998), 367-393.
- [3] R. Manásevich, J. Mawhin, Boundary Value Problems for Nonlinear Perturbations of Vector p-Laplacian-like Operators, J. Korean. Math. Soc. 37, (2000), 665-685.
- [4] J.Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Series No.40, AMS, Providence RI, 1979.
- [5] D. Pascali, Operatori neliniari, Ed. Academiei R.S.R., Bucuresti, 1974.

Cristian Bereanu Département de Mathématique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.

Jean Mawhin Département de Mathématique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.