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Abstract

Using the Leray-Schauder degree theory we obtain existence results
for Neumann boundary value problems

(φ(u′))′ = f(t, u, u′), u′(0) = 0 = u′(T ),

where φ is an homeomorphism between R and ]−a, a[ (or between ]−a, a[
and R), φ(0) = 0 and f is a suitable nonlinearity.

1 Introduction

Some nonlinear operators in suitable functions spaces have been introduced
in [2] (see also [3]), whose fixed points coincide with the solutions of nonlinear
boundary value problems of the type

(φ(u′))′ = f(t, u, u′), l(u, u′) = 0, (1)

where l(u, u′) denotes the Dirichlet, Neumann or periodic boundary conditions
on [0, T ], φ : R

N −→ R
N is a suitable monotone homeomorphism and f :

[0, T ]×R
N×R

N −→ R
N is a Carathéodory function. Applications are given to

existence results when φ is the vector p-Laplacian (p > 1), f is asymptotically
homogeneous and l(u, u′) is the Dirichlet condition.
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The aim of this paper is to study the existence of solutions for the Neumann
boundary value problem

(φ(u′))′ = f(t, u, u′), u′(0) = 0 = u′(T ), (2)

where φ : R → ]−a, a[ is an homeomorphism such that φ(0) = 0, f : [0, T ]×R×
R → R is a continuous function satisfying some growth and sign conditions. An
analogous result can be obtained for problems of type (2) with φ : ]−a, a[→ R.

To prove the main results of this article we reformulate problem (2) in
an abstract way which allows us to apply the Leray-Schauder degree. When
φ : ]− a, a[→ R, new difficulties occur because the function φ−1 is not defined
everywhere. Our existence conditions require f to be everywhere bounded,
with a bound depending upon a and T, and to satisfy a sign condition (see
Theorem 1). When φ : R → ]−a, a[, a sign condition is sufficient (see Theorem
2). Examples are given. The method used here is inspired by the continuation
theorem of coincidence degree theory [4] and by Theorem 3.1 in [2].

2 Notations and preliminaries

We first introduce some notations. Let C denote the Banach space of continu-
ous functions on [0, T ] endowed with the norm ||u||∞ = max

t∈[0,T ]
|u(t)|, C1 denote

the Banach space of continuously differentiable functions on [0, T ] equipped
with the norm ||u|| = ||u||∞ + ||u′||∞ and C1

# denote the closed subspace of
C1 defined by C1

# = {u ∈ C1 : u′(0) = 0 = u′(T )}. We denote by P, Q the
projectors

P, Q : C → C, Pu(t) = u(0), Qu(t) =
1
T

∫ T

0

u(s)ds,

and we define H : C → C by

Hu(t) =
∫ t

0

u(s)ds.

If u ∈ C, we write

[u]L = min
t∈[0,T ]

u(t), [u]M = max
t∈[0,T ]

u(t).

We need the following elementary inequality.
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Lemma 1 If w ∈ C, then

‖H(I − Q)w‖∞ ≤ T√
3

(
1
T

∫ T

0

w2(t) dt

)1/2

≤ T√
3
‖w‖∞. (3)

Proof. If v = H(I − Q)w, then v ∈ C1 and v(0) = v(T ) = 0, so that

v(t) =
∞∑

n=1

An sin nωt,

where ω = π
T , and, as w ∈ C ⊂ L2(0, T ), we have

w(t) ∼
∞∑

n=1

nωAn cosnωt +
1
T

∫ T

0

w(s)ds

with
∑∞

n=1 n2A2
n < +∞. Letting an = nωAn (n ≥ 1), so that

∑∞
n=1 a2

n < +∞,
we get, for each t ∈ [0, T ],

|H(I − Q)w(t)| =

∣∣∣∣∣
∞∑

n=1

an

nω
sin nωt

∣∣∣∣∣ ≤ 1
ω

( ∞∑
n=1

1
n2

)1/2( ∞∑
n=1

a2
n

)1/2

≤ T√
3

(
1
T

∫ T

0

w2(t) dt

)1/2

≤ T√
3
‖w‖∞.

Finally, to each continuous function f : [0, T ] × R × R → R, we associate
its Nemytskii operator Nf : C1 → C defined by

Nf (u)(t) = f(t, u(t), u′(t)).

All the above defined operators P, Q, H, Nf are continuous.

3 Abstract formulation

Let N : C1
# → C be a continuous operator. We consider the operator GN

given for u ∈ C1
# by

GN (u) = Pu + QN(u) + H ◦ φ−1 ◦ H(I − Q)N(u).
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Lemma 2 If N satisfies the condition

‖N(u)‖∞ ≤ K <
√

3
a

T
for all u ∈ C1

# (4)

then the operator GN is well defined on C1
# and u is a solution of

(φ(u′))′ = N(u), u′(0) = 0 = u′(T ) (5)

if and only if u is a fixed point of GN .

Proof. Let u ∈ C1
#. Using (4) and (3) we have

‖H(I − Q)N(u)‖∞ ≤ T√
3
‖N(u)‖∞ ≤ TK√

3
< a. (6)

From (6) we deduce that GN is well defined on C1
#. It is clear that GN (u) ∈ C1

if u ∈ C1
#. We show that, in fact, GN (u) ∈ C1

# for u ∈ C1
#. If u ∈ C1

#, then
(GN (u))′ = φ−1 ◦ H(I − Q)N(u). Using the relations

H(I − Q)N(u)(0) = 0 = H(I − Q)N(u)(T ), φ−1(0) = 0,

it follows that
(GN (u))′(0) = 0 = (GN (u))′(T ).

Now suppose that u is a solution of (5). Integrating both members over
[0, T ] we get

QN(u) = 0 (7)

and, integrating both members over [0, t] we get φ(u′) = H ◦N(u), from where
it follows that φ(u′) = H(I − Q)N(u), so, u′ = φ−1 ◦ [H(I − Q)N ](u) and,
integrating, u = Pu + H ◦ φ−1 ◦ [H(I − Q)N ](u), which, because of (7) is
equivalent to u = GN (u). Conversely, if u = GN (u), then

u − Pu − H ◦ φ−1 ◦ [H(I − Q)N ](u) = QN(u),

which gives

u = Pu + H ◦ φ−1 ◦ [H(I − Q)N ](u), QN(u) = 0,

so that u ∈ C1
# and u is a solution for (5) by differentiating the first equation,

applying φ to both of its members, differentiating again and using the second
equation.
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4 A compact homotopy

Assume now that f satisfies the condition

|f(t, u, v)| ≤ K <
√

3
a

T
for all (t, u, v) ∈ [0, T ]× R × R. (8)

For λ ∈ [0, 1] consider the family of abstract Neumann problems

(φ(u′))′ = λNf (u) + (1 − λ)QNf (u), u′(0) = 0 = u′(T ). (9)

As

‖λNf (u) + (1 − λ)QNf (u)‖∞ ≤ K <
√

3
a

T
, (10)

for all u ∈ C1
#, it follows from Lemma 2 that the operator M associated to

(9), which is, as easily shown, given by

M(λ, u) = Pu + QNf (u) + H ◦ φ−1 ◦ [λH(I − Q)Nf ](u) (11)

is well defined and continuous on [0, 1] × C1
#, and that u is a solution for (9)

if and only if u = M(λ, u).
To use Leray-Schauder degree [1, 5] for finding fixed points of M, we prove

in the next lemma that the continuous operator M is completely continuous on
C1

#, i.e. that for any sequence (λn, un)n ⊂ [0, 1]×C1
# with (||un||)n bounded,

the sequence (M(λn, un))n has a convergent subsequence.

Lemma 3 M is completely continuous on C1
#.

Proof. Let (λn, un)n ⊂ [0, 1] × C1
# with (‖un‖)n bounded. We may assume

that λn → λ0. Let vn = M(λn, un), (n ∈ N). Then

vn = Pun + QNf(un) + H ◦ φ−1 ◦ [λnH(I − Q)Nf ](un), (n ∈ N).

Because of (8),

‖QNf(un)‖∞ ≤ K,

‖φ−1 ◦ [λnH(I − Q)Nf ](un)‖∞ ≤ max{
∣∣∣∣φ−1(−KT√

3
)
∣∣∣∣ ,
∣∣∣∣φ−1(

KT√
3

)
∣∣∣∣} := M,

(n ∈ N). (12)

From (12) it follows that (vn)n is bounded in C. Let t1, t2 ∈ [0, T ]. Then, for
all n ∈ N, using (12) we have

|vn(t1) − vn(t2)| =
∣∣∣∣
∫ t2

t1

φ−1 ◦ [λnH(I − Q)Nf ](un)(s)ds

∣∣∣∣ ≤ M |t1 − t2|,
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which implies that (vn)n is equicontinuous. Applying Arzela-Ascoli theorem,
passing if necessary to a subsequence, we may assume that vn −→ v in C. On
the other hand

v′n = φ−1 ◦ [λnH(I − Q)Nf ](un), (n ∈ N)

so, using (12), it follows that ‖v′n‖∞ ≤ M for all n ∈ N. Furthermore, if
t1, t2 ∈ [0, T ], then

|φ(v′n(t2)) − φ(v′n(t1))| ≤
∣∣∣∣
∫ t2

t1

(I − Q)Nf (un)(s)ds

∣∣∣∣ ≤ 2K|t1 − t2|. (13)

Using (6), (4) and the uniform continuity of φ−1 on compact intervals of ] −
a, a[, it follows that (v′n)n is equicontinuous. Applying Arzela-Ascoli theorem,
we may assume, passing to a subsequence, that v′n → w in C, with ‖w‖∞ ≤ M.
It follows that v ∈ C1

#, v′ = w, so that vn → v in C1.

5 A priori estimates

Let f be a function as in Section 3, and M the corresponding nonlinear oper-
ator given by (11).

Lemma 4 If there exists R > 0 and ε ∈ {−1, 1} such that, with

M = max{
∣∣∣∣φ−1(−KT√

3
)
∣∣∣∣ ,
∣∣∣∣φ−1(

KT√
3

)
∣∣∣∣},

one has

εuf(t, u, v) > 0 if |u| ≥ R, |v| ≤ M, t ∈ [0, T ], (14)

then there is a constant ρ > R such that for each λ ∈ [0, 1], each possible fixed
point u of M(λ, ·) verifies the inequality ‖u‖ < ρ.

Proof. Let λ ∈ [0, 1] and u = M(λ, u). Hence u′ = φ−1 ◦ [λH(I − Q)Nf (u)],
and, from (6) and from the choice of M it follows that

‖u′‖∞ ≤ M. (15)

Because u = M(λ, u), it follows from Lemma 2 that u is a solution of (9),
which implies that ∫ T

0

f(t, u(t), u′(t))dt = 0. (16)
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If [u]M ≤ −R (respectively [u]L ≥ R) then, from (15) and (14), it follows that

ε

∫ T

0

f(t, u(t), u′(t))dt < 0 (respectively ε

∫ T

0

f(t, u(t), u′(t))dt > 0).

Using (16) we have that

[u]M > −R and [u]L < R. (17)

It is clear that

[u]M ≤ [u]L +
∫ T

0

|u′(t)|dt. (18)

From relations (17), (18) and (15), we obtain that

−(R + M) < [u]L ≤ [u]M < R + M. (19)

It follows that ||u|| < R + 2M and it suffices to take ρ = R + 2M.

6 Main results. Examples

The existence result when φ : ] − a, a[→ R follows from the above a priori
estimates and Leray-Schauder theory.

Theorem 1 Let f : [0, T ] × R × R → R be a continuous function verifying
conditions (8) and (14). Then (2) has at least one solution.

Proof. Let M be the operator given by (11). We have that M(1, ·) = GNf
and

N (0, ·) = P + QNf . Using Lemma 3, Lemma 4 and the homotopy invariance
of the Leray-Schauder degree [1, 5], we obtain that dLS[I − N (1, ·), Bρ(0), 0]
and dLS[I − N (0, ·), Bρ(0), 0] are well defined and equal. But the range of
N (0, ·) is contained in the subset of constant functions, isomorphic to R, so,
using a property of the Leray-Schauder degree we have that

dLS[I −N (0, ·), Bρ(0), 0] = dB[I −N (0, ·)|R, (−ρ, ρ), 0]

= dB[−QNf , (−ρ, ρ), 0] =
−sign(QNf (ρ)) + sign(QNf (−ρ))

2
,

where dB denotes the Brouwer degree. But, using (14) and the fact that ρ > R

we see that QNf(±ρ) = 1
T

∫ T

0
f(t,±ρ, 0)dt have opposite signs, which implies

that
|dLS[I −N (1, ·), Bρ(0), 0]| = |dLS[I −N (0, ·), Bρ(0), 0]| = 1.

Then, from the existence property of the Leray-Schauder degree, there is u ∈
Bρ(0) such that u = N (1, u) = GNf

(u), and u is a solution for (2) by Lemma
2.
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The case where φ : ] − a, a[ → R is simpler to treat because φ−1 is now
defined over R, so that the fixed point operator GN is well defined without
growth restriction upon N. Notice now that a solution of (2) or of (5) must
satisfy the estimate −a < u′(t) < a for all t ∈ [0, T ] in order to be defined. This
estimate is satisfied for any possible fixed point of GN or M. The complete
continuity of M is proved like in Lemma 3. We have the following result

Theorem 2 Let φ : ]− a, a[→ R be a homeomorphism such that φ(0) = 0 and
f : [0, T ] × R × R → R be a continuous function such that, for some R > 0
and some ε ∈ {−1, 1},

εuf(t, u, v) > 0 if |u| ≥ R, |v| < a, t ∈ [0, T ]. (20)

Then (2) has at least one solution.

Proof. If λ ∈ [0, 1] and u is a possible fixed point of M(λ, ·), then

u′ = φ−1 ◦ [λH(I − Q)N ](u), (21)

and ∫ T

0

f(t, u(t), u′(t)) dt = 0. (22)

If follows from (21) that

|u′(t)| < a (t ∈ [0, T ]). (23)

Now, if [u]M ≤ −R, we have, using (21) and (20),

εf(t, u(t), u′(t)) < 0 (t ∈ [0, T ]),

which gives a contradiction to (22). Similarly if [u]L ≥ R. Hence,

[u]M > −R, [u]L < R. (24)

Now, using (23),

[u]M − [u]L ≤
∫ T

0

|u′(t)| dt < aT,

which implies, together with (24) that

‖u‖∞ < R + aT,

and hence

‖u‖ < R + a(T + 1) (25)

for all possible fixed points of M(λ, ·). The end of the proof is then entirely
similar to that of Theorem 1.
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Example 1 Using Theorem 1 we obtain that the Neumann boundary value
problem

(
u′

√
1 + u′2

)′
= α(arctan u + sin t), u′(0) = u′(1) = 0

has at least one solution if |α| ≤ 0.835.

Example 2 Using Theorem 1 we obtain that the Neumann boundary value
problem
(

u′
√

1 + u′2

)′
=

√
3

4
arctan(u + t) +

√
3

3
sin(u′ + t2), u′(0) = u′(1) = 0

has at least one non constant solution.

Example 3 Using Theorem 2 we obtain that the Neumann boundary value
problem

(
u′

√
1 − u′2

)′
= (u + t)3 + sin2(u′), u′(0) = 0 = u′(T )

has at least one non constant solution.
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