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ON A CLASS OF FUNCTIONS WITH THE

GRAPH BOX DIMENSION s
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To Professor Dan Pascali, at his 70’s anniversary

Abstract

In our previous papers [1] − [3] the Hausdorff h−measures of a class
of functions have been studied . In the present paper, we prove that
this class of functions has the graph Box dimension s.

1. Introduction

The most important attributes of fractals are the dimensions. One of these
is Box counting dimension.

Definition 1. Let Rn be the Euclidean n - dimensional space.
If r0 > 0 is a given number, then, a continuous function h(r), defined on

[0, r0) , nondecreasing and such that lim
r→0

h(r) = 0 is called a measure function.
If E is a nonempty and bounded subset of Rn, δ > 0 and h is a measure

function, then, the Hausdorff h-measure of E is defined by:

Hh(E) = lim
δ→0

{
inf

i

∑
h(ρi)

}
.

inf being taken over all covers of E with a countable number of spheres of radii
ρi < δ.

Particularly, when h(r) = rs, the given measure is called the s-dimensional
Hausdorff measure and is denoted by H s.

Definition 2. The Hausdorff dimension of a nonempty set E ⊂ Rn is
the number defined by

dimH E = inf {s : Hs(E) = 0} = sup {s : Hs(E) = ∞}
Key Words: Hausdorff h-measure; fractals.
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It is known that the graph of a function f : D → R is the set

Γ (f) = {(x, f (x)) : x ∈ D} .

In our papers ([1] − [3]), the following functions were introduced:

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

2x , 0 ≤ x < 1
2

−2 (x − 1) , 1
2 ≤ x < 3

2

2(x − 2) , 3
2 ≤ x < 2

, (1)

f(x) =
∞∑

i=1

λs−2
i g(λix), (∀)x ∈ [0, 1] , (2)

where g is given in (1) and {λi}i∈N∗ is a sequence such that

(∃) ε > 1 : λi+1 ≥ ελi > 0, (∀) i ∈ N∗. (3)

Theorem 1 ([3]) Let h be a measure function, such that

h(t)˜P (t)eT (t), t ≥ 0,

where P and T are polynomials:

P (t) = a1t + a2t
2 + ... + apt

p, p ≥ 1,

T (t) = b0 + b1t + ... + amtm,

with the property
P ′ (t) + P (t) · T (t) > 0, t ≥ 0.

If f the function defined in (1), s ∈ [0 , 2), {λi}i∈N∗ ∈ R+ is a sequence that
satisfies (3) , then: Hh(Γ (f)) < +∞.

In what follows we shall determine the Box dimension of the graph of the
function given in (2), with a stronger restriction than (3).

There are many equivalent definitions ([6]) for the Box dimension, but we
shall use the following one.

Definition 3. Let β be a positive number and let E be a nonempty and
bounded subset of R2. Consider the β−mesh of R2,

{[iβ, (i + 1)β] × [jβ, (j + 1)β] : i, j ∈ Z} .

If Nβ (E) is the number of β− mesh squares that intersect E, then the
upper and lower Box dimension of E are defined by:

dimBE = lim
β→0

log Nβ (E)
− log β

; dimBE = lim
β→0

log Nβ (E)
− log β

.
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If these limits are equal, the common value is called Box dimension of E and
is denoted by dimB E.

For any given function f : [0, 1] → R and [t1, t2] ⊂ [0, 1] , we shall denote
by Rf [t1, t2] the oscillation of f on the interval [t1, t2] , that is

Rf [t1, t2] = sup
t1≤t, u≤t2

|f (t) − f (u)| .

In the second part of the paper we shall use the following results:
Lemma 1 ([6] ). Let f ∈ C [0, 1] , 0 < β < 1 and m be the least integer

greater than or equal to 1/β. If Nβ is the number of the squares of the β−
mesh that intersects Γ (f) , then

β−1
m−1∑
j=0

Rf [jβ, (j + 1)β] ≤ Nβ ≤ 2m + β−1
m−1∑
j=0

Rf [jβ, (j + 1)β] .

Lemma 2 ([6] ). If E is a set in R2, then

dimH E ≤ dimBE ≤ dimBE.

For briefly, any C in this paper indicates a positive constant that may have
different values.

2. Results

Theorem 2. If f is the function given in (2) , s∈ [1, 2) and {λi}i∈N∗ ∈ R+

is a sequence that satisfies (3) , then dimBΓ (f) ≤ s.
Proof. Let us consider 0 < β < 1, small enough, and k ∈N∗ such that:

λ−1
k+1 ≤ β < λ−1

k . (4)

Then for every 0 ≤ x ≤ 1 − β:

|f(x + β) − f(x)| =

∣∣∣∣∣
∞∑

i=1

λs−2
i {g(λi(x + β)) − g(λix)}

∣∣∣∣∣ ≤

≤
k∑

i=1

λs−2
i |g(λi(x + β)) − g(λix)| +

∞∑
i=k+1

λs−2
i |g(λi(x + β)) − g(λix)|

Since
|g(λi(x + β)) − g(λix)| ≤ 2,
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then

|f(x + β) − f(x)| = 2

[
β

k∑
i=1

λs−1
i +

∞∑
i=k+1

λs−2
i

]
.

Using the condition (3) it can be deduced that

k∑
i=1

λs−1
i < C1λ

s−1
k ;

∞∑
i=k=1

λs−2
i < C2λ

s−2
k+1,

so
|f(x + β) − f(x)| ≤ 2βC1λ

s−1
k + 2C2λ

s−2
k+1. (5)

Using (4) and (5) we obtain

|f(x + β) − f(x)| ≤ 2βC1

(
β−1

)s−1
+ 2C2β

2−s ⇔
|f(x + β) − f(x)| ≤ Cβ2−s,

From lemma 1 we deduce that

Nβ ≤ 2m + β−1
m−1∑
j=0

Rf [jβ, (j + 1)β] ≤ 2β−1 + β−1
(
β−1Cβ2−s

)⇒
Nβ ≤ 2β−1 + Cβ−s.

Since β ∈ (0, 1) and s ∈ [1, 2) , then β−1 < β−s and Nβ ≤ Cβ−s. Therefore

dimBΓ (f) = lim
β→0

log Nβ

− logβ
≤ lim

β→0

log C − s log β

− log β
= s,

so, dimBΓ (f) ≤ s.
Theorem 3. In the hypotheses of the theorem 2, if ε > 2, λ1 > 1 and

λi+1λi−1 > λ2
i , for every i ∈ N∗ − {1} , then dimH Γ (f) = s.

Proof. The proof follows that of the theorem 8.2 from [5] .
Let S be a square with sides of length h, parallel to the coordinates axes.

Let I be the interval of projection of S onto the x-axis. We show that the
Lebesgue measure of the set E = {x : (x, f (x)) ∈ S} can not be too big.

Let us define

fk (x) =
∞∑

i=k+1

λs−2
i g (λix) .

Since |g (λix)| ≤ 1, s − 2 < 0 and λi+1 ≥ ελi > 2λi, (∀) i ∈ N∗, we have

|f (x) − fk (x)| ≤
∞∑

i=k+1

λs−2
i |g (λix)| ≤

∞∑
i=k+1

λs−2
i <

λs−2
k+1

1 − εs−2
< 2λs−2

k+1. (6)
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Indeed,

s ∈ [1, 2) , ε > 2 ⇒ 1
2

<
1
ε
≤ εs−2 ⇒ 1

1 − εs−2
< 2.

A point x is called an exceptional point for g if the derivative g′ (x) doesn’t
exist.

For non-exceptional x,

|f ′
k (x)| =

∣∣∣∣∣
k∑

i=1

λs−2
i g′ (λix)

∣∣∣∣∣ ≥
∣∣λs−1

k

∣∣ |g′ (λix)| −
k−1∑
i=1

λs−1
i |g′ (λix)| =

= 2λs−1
k −

k−1∑
i=1

λs−1
i |g′ (λix)| .

Using Holder inequalities, it can be proved that there is k ∈ N∗ such that

|f ′
k (x)| ≥ λs−1

k .

First suppose that the square S has the side h = λ−1
k , for such k. Let m be

a natural number such that

λs−2
k+m ≤ h = λ−1

k < λs−2
k+m−1.

λi+1λi−1 > λ2
i , (∀) i ≥ 2 ⇒ λk

λk−1
<

λk+1

λk
< ... <

λk+m−1

λk+m−2
⇒

(
λk+1

λk

)(m−1)(2−s)

λ2−s
k ≤

[
λk

λk+1

λk

λk+2

λk+1
· · · λk+m−1

λk+m−2

]2−s

= λ2−s
k+m−1. (7)

But,

λ−1
k < λs−2

k+m−1 ⇒ λ2−s
k+m−1 < λk ⇒

(
λk+1

λk

)(m−1)(2−s)

λ2−s
k < λk ⇒

(
λk+1

λk

)(m−1)(2−s)

< λs−1
k =

(
λk

λk−1
· · · λ2

λ1
λ1

)s−1

⇒
(

λk+1

λk

)(m−1)(2−s)

<

(
λk+1

λk

)(k−1)(s−1)

λs−1
1 ,

because, by hypothesis, the sequence
{

λi+1
λi

}
i∈N∗

is increasing.
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Hence, taking logarithm, we obtain

(m − 1) (2 − s) log
λk+1

λk
< (k − 1) (s − 1) log

λk+1

λk
+ (s − 1) log λ1 ⇒

(m − 1) log
λk+1

λk
<

(k − 1) (s − 1)
2 − s

log
λk+1

λk
+

s − 1
2 − s

log λ1.

λk+1

λk
> 2 ⇒ log

λk+1

λk
> 1 ⇒ m <

(k − 1) (s − 1)
2 − s

+
s − 1
2 − s

log λ1

log λk+1
λk

+ 1 ⇔

m < k
s − 1
2 − s

+
3 − 2s

2 − s
+

s − 1
2 − s

log λ1

log λk+1
λk

⇔

m <
k

2 − s

[
s − 1 +

3 − 2s

k
+

s − 1
k

log λ1

log λk+1
λk

]
⇒

m <
k

2 − s

[
(s − 1)

(
1 +

1
k

log λ1

log λk+1
λk

)
+

3 − 2s

k

]
.

But,

s ∈ [1, 2) ⇒ |3 − 2s| < 1 ⇒ 3 − 2s

k
< 1, k ∈ N∗ ⇒

m <
k

2 − s

[
(s − 1)

(
1 +

log λ1

log λ2
λ1

)
+ 1

]
⇒

m < k

[
s − 1
2 − s

(
1 +

log λ1

log λ2
λ1

)
+

1
2 − s

]
⇒ m < ka,

m < k

[
C · s − 1

2 − s
+ 1
]

= ka,

where C = 1 + log λ1

log
λ2
λ1

and a = C + 1 don’t depend on k.

If m = 1, then (x, f (x)) ∈ S if (x, fk (x)) ∈ S1, where S1 is a rectangle
obtained by extending S at a distance 2λs−2

k+1 above and below. The derivative
changes sign at most once in the interval. On each section on which f ′

k (x) is
of constant sign, |f ′

k (x)| > λs−1
k . Thus, (x, fk (x)) ∈ S1 if x lies in an interval

of length at most 1
2λ1−s

k times the height of S 1.

L1 (E) ≤ 2 · 1
2
λ1−s

k · 5h = 5hs
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If m > 1, dividing I in subintervals that satisfies the conditions that f ′
k, ... ,

f ′
k+m−1 have constant signs and using (7) , E can be covered by at most

1
4 · 2m−1

(
λk+m−1

λk

)s−1

intervals of height less than 5h. So,

L1 (E) ≤ 2 · 2m−1

(
λk+m−1

λk

)s−1

· 5h · 1
2
λ1−s

k+m−1 ≤ 5 · 2m−1hs ≤ 5 · 2akhs.

Thus, there exists constants b and c such that L1 (E) ≤ cbkhs if h = λ−1
k .

Analogous, if S is a square of side h, where λ−1
k+1 < h < λ−1

k , then, L1 (E) ≤
c1h

t, t < s.

If {Ui} is any cover of Γ (f), and we consider Ui ⊂ Si, where Si is a square
with the side equal to |Ui| , then [0, 1] ⊂ ⋃

i

Ei, with Ei = {x : (x, f (x)) ∈ Si} .

Then∑
i

|Ui|t =
∑

i

2−
1
2 t |Si|t ≥ c−1

1

∑
i

L1 (Ei) ≥ c−1
1 ⇒ Hs (Γ (f)) ≥ c−1

1 > 0,

if t < s ⇒ dimH Γ (f) = s.

Theorem 4. In the hypotheses of the theorem 3, dimB Γ (f) = s.
Proof. Using the theorems 2 and 3 and lemma 2, it results that

s = dimH Γ (f) ≤ dimBΓ (f) ≤ dimBΓ (f) ≤ s ⇒ dimB Γ (f) = s.
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”Ovidius” University of Constanta
Department of Mathematics and Informatics,
900527 Constanta, Bd. Mamaia 124
Romania
e-mail: abarbulescu@univ-ovidius.ro


