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Abstract

We succinctly present the results in [2] and [3] on the convergence
rate of a multilevel method for the constrained minimization of non-
quadratic functionals. The main goal of this paper is to check up the
dependence of this convergence rate on the mesh and overlapping pa-
rameters by numerical tests concerning the solution of the two-obstacle
problem of a nonlinear elastic membrane.

AMS subject classification: 65N55, 65N30, 65J15

1 Introduction

The literature on the domain decomposition methods is very large. We can
see, for instance, the papers in the proceedings of the annual conferences on
domain decomposition methods starting with [8], or those cited in the books
[12] and [13]. The multilevel or multigrid methods can be viewed as domain
decomposition methods and we can cite, for instance, the results obtained by
[9], [10], and [13]. Evidently, this list is not exhaustive and it can be completed
with a lot of other papers.

In [1], the convergence of a Schwarz method for variational inequalities
coming from the minimization of a quadratic functional has been proved. In

Key Words: domain decomposition methods, variational inequalities, non-quadratic
minimization, multigrid and multilevel methods, finite element methods, nonlinear obstacle
problems.
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that paper, the convex set is not assumed to be decomposed as a sum of
convex subsets. This method has been extended to the one- and two-level
methods in [4]. Also, its convergence for the constrained minimization of
the non-quadratic convex functionals in a reflexive Banach space is proved
in [2]. This result extends to variational inequalities that given in [15] for
nonlinear equations. Using the general convergence theorem in [2], errors
estimates for the one- two- and multilevel methods are given in [3]. These
error estimates are similar with those which are obtained for the minimization
of quadratic functionals in [4] or [14]. The main goal of this paper is to
confirm by numerical examples the dependence on the mesh and overlapping
parameters of the convergence rate given in [3].

The paper is organized as follows. In Section 2, we succinctly present the
convergence result in [2]. In Section 3, we give the convergence rate for the
multilevel method in [3], and, as some particular cases, we obtain the depen-
dence of the convergence rate on the mesh and overlapping parameters for
the multigrid and two-level methods. Finally, in Section 4, we illustrate and
compare the convergence rates of the one- and two-level methods using numer-
ical tests concerning the solution of the two-obstacle problem for a nonlinear
elastic membrane.

2 General convergence result

In this section, a general algorithm and an error estimate theorem for it are
given. This general theory, the proof of the theorem included, are given in
detail in [2].

We consider a reflexive Banach space V , and some closed subspaces of it,
V1, · · · , Vm. Also, let K ⊂ V be a non empty closed convex set which satisfies
together with the subspaces V1, · · · , Vm the following

Assumption 2.1 There exist two constants C0 > 0 and p > 1 such that for
any w, v ∈ K and wi ∈ Vi with w +

∑i
j=1 wj ∈ K, i = 1, · · · , m, there exist

vi ∈ Vi, i = 1, · · · , m, satisfying

w +
i−1∑
j=1

wj + vi ∈ K for i = 1, · · · , m, (2.1)

v − w =
m∑

i=1

vi, (2.2)

and
m∑

i=1

||vi||p ≤ Cp
0

(
||v − w||p +

m∑
i=1

||wi||p
)

. (2.3)
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We point out that we do not assume that the space V is written as V =
V1 + · · · + Vm, as usually it is supposed in order to prove the convergence of
the Schwarz method. Also, in the above assumption, even if it looks rather
complicated, we do not assume that the convex set K should be written as
a sum of convex subsets, as it is supposed for the solution of the obstacle
problems. Moreover, we can easily check that if we impose the condition
K = K1 + · · ·+Km, Ki ⊂ Vi, i = 1, · · · , m, then equations (2.1) and (2.2) are
verified.

Let F : K → R be a Gâteaux differentiable functional which will be
assumed to be coercive if K is not bounded. We assume that for any real
number M > 0 there exist two functions

αM (τ) = AMτp, βM (τ) = BMτq−1, (2.4)

such that

< F ′(v) − F ′(u), v − u >≥ αM (||v − u||), for any u, v ∈ K, ||u||, ||v|| ≤ M,
(2.5)

and

βM (||v − u||) ≥ ||F ′(v) − F ′(u)||V ′ , for any u, v ∈ K, ||u||, ||v|| ≤ M, (2.6)

where F ′ is the Gâteaux derivative of F , and AM > 0, BM > 0 and q > 1 are
some real constants. We have marked here that the constants AM and BM

depend on M .
It is well known (see [6]) that if V and F satisfy the above assumptions,

then the minimization problem

u ∈ K : F (u) ≤ F (v), for any v ∈ K (2.7)

has an unique solution, and it also is the unique solution of the problem

u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K. (2.8)

The proposed algorithm corresponding to the subspaces V1, · · · , Vm and
the convex set K is written as follows

Algorithm 2.1 We start the algorithm with an arbitrary u0 ∈ K. At itera-
tion n + 1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · , m,
wn+1

i ∈ Vi satisfying

wn+1
i = arg min

un+ i−1
m + vi ∈ K
vi ∈ Vi

G(vi), with G(vi) = F (un+ i−1
m + vi), (2.9)

and then we update
un+ i

m = un+ i−1
m + wn+1

i .
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As for problem (2.7), since the subspaces Vi are reflexive Banach spaces, prob-
lem (2.9) has a unique solution and it also satisfies the variational inequality

wn+1
i ∈ Vi, un+ i−1

m + wn+1
i ∈ K :

< F ′(un+ i−1
m + wn+1

i ), vi − wn+1
i >≥ 0,

for any vi ∈ Vi, un+ i−1
m + vi ∈ K.

(2.10)

Concerning the convergence of Algorithm 1, we have the following

Theorem 2.1 We consider that V is a reflexive Banach space, V1, · · · , Vm

are some closed subspaces of V , K is a non empty closed convex subset of
V , and F is a Gâteaux differentiable functional on K which is assumed to
be coercive if K is not bounded. We assume that the functional F satisfies
(2.5) and (2.6), and we make Assumption 2.1. On these conditions, if u is
the solution of problem (2.7) and un, n ≥ 0, are its approximations obtained
from Algorithm 2.1, then we have the following error estimations:

(i) if p = q we have

F (un) − F (u) ≤
(

Ĉ
Ĉ+1

)n [
F (u0) − F (u)

]
,

||un − u||p ≤ Ĉ+1
C̄

(
Ĉ

Ĉ+1

)n [
F (u0) − F (u)

]
.

(2.11)

(ii) if p > q we have

F (un) − F (u) ≤ F (u0)−F (u)[
1+nC̃(F (u0)−F (u))

p−q
q−1

] q−1
p−q

,

||u − un||p ≤ Ĉ
C̄

(F (u0)−F (u))
q−1
p−1

[
1+(n−1)C̃(F (u0)−F (u))

p−q
q−1

] (q−1)2
(p−1)(p−q)

.
(2.12)

The constants Ĉ, C̄ and C̃ are written as

Ĉ = Ĉ(m, C0, u
0) = BM ( p

AM
)

q
p |εij |

[
(1 + 2C0)

(
F (u0) − F (u)

) p−q
p(p−1) +(

BM ( p
AM

)
q
p |εij |

) 1
p−1

C
p

p−1
0 /η

1
p−1

]
/(1 − η),

(2.13)

C̄ =
(2 − η)AM

(1 − η)p
, (2.14)

C̃ =
p − q

(p − 1) (F (u0) − F (u))
p−q
q−1 + (q − 1)Ĉ

p−1
q−1

. (2.15)

The value of η can be arbitrary in (0, 1).
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The above algorithm can be viewed as a multiplicative Schwarz method,
in a subspace correction variant, if we use the Sobolev spaces. In this way, we
consider for a domain Ω in Rd, d ≥ 1, with Lipschitz continuous boundary
∂Ω, an overlapping decomposition Ω = ∪m

i=1Ωi in which the subdomains Ωi

have Lipschitz continuous boundary, too. We associate with the domain Ω the
space V = W 1,s

0 (Ω), 1 < s < ∞, and with the subdomains Ωi the subspaces
Vi = W 1,s

0 (Ωi), i = 1, · · · , m. For a convex sets K ⊂ V satisfying

Property 2.1 If v, w ∈ K, and if θ ∈ C1(Ω) with 0 ≤ θ ≤ 1, then θv + (1 −
θ)w ∈ K

it has been proved in [2] that Assumption 2.1 holds. Consequently, provided
that the functional F satisfies (2.5) and (2.6), Algorithm 2.1 converges and we
can apply Theorem 2.1 to get the convergence rate. The above Sobolev spaces
W 1,s

0 correspond to Dirichlet boundary conditions. Similar results can be
obtained if we consider appropriate subspaces of W 1,s for the mixed boundary
conditions.

The constants Ĉ and C̄ in the error estimations in Theorem 2.1 depend
on the domain decomposition parameters through C0. For the multilevel mul-
tiplicative Schwarz method, we show in the next section that Assumption 1
holds for any closed convex set K satisfying a certain property. In this case we
are able to explicitly write the dependence of C0 on the domain decomposition
and mesh parameters.

3 Multilevel multiplicative Schwarz method

The framework and details concerning the proofs of the results in this section
can be found in [3]. Over the domain Ω ⊂ Rd we consider a family of L regular
simplicial meshes Thj , of mesh sizes hj, such that Thj+1 is a refinement of Thj ,
j = 1, · · · , L − 1. We write

Ωj =
⋃

τ∈Thj

τ (3.1)

and we assume that Ω = ΩL. Also, we assume that if a node of Thj lies on ∂Ωj

then it lies on ∂Ωj+1, too, that is, it lies on ∂Ω. Also, for the nodes xj ∈ ∂Ω
of Thj , j = 1, · · · , L− 1, we consider the set ωj defined as the union of the all
τ ∈ Thj having xj as a vertex, and we define the set Sxj as the union of ωj

with all τ ∈ Thj+1 , τ �⊂ Ωj , which are contained in the smallest sphere which
is centered at xj and contains ωj. We assume that

Ωj+1\Ωj ⊂
⋃

xj node of Thj
, xj∈∂Ω

Sxj for j = 1, · · · , L − 1. (3.2)
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Since the mesh Thj+1 is a refinement of Thj , we have hj+1 ≤ hj, and we assume
that there exists a constant γ, independent of the number of meshes, L, such
that

1 < γ ≤ hj

hj+1
, j = 1, · · · , L − 1. (3.3)

At each level j = 1, · · · , L, we consider an overlapping decomposition
{Oi

j}1≤i≤Mj of Ωj , and we assume that the mesh partition Thj of Ωj sup-
plies a mesh partition for each Oi

j , 1 ≤ i ≤ Mj. Also, we assume that the
overlapping size for the domain decomposition at the level 1 ≤ j ≤ L is δj ,
i.e.,

Oi
j ∩ ∂(

⋃
l �=i

Ol
j) �= ∅ and dist(∂Oi

j\∂Ωj , O
i
j ∩ ∂(

⋃
l �=i

Ol
j) ≥ δj (3.4)

is satisfied. In addition, we suppose that there exists a constant C such that

diam(Oi
j+1) ≤ Chj , j = 1, · · · , L − 1, i = 1, · · · , Mj. (3.5)

Now, at each level j = 1, · · · , L, we color the subdomains Oi
j , i = 1, · · · , Mj ,

such that the subdomains with the same color do not intersect with each other,
and the union of the subdomains Ol

j having the color i will be denoted by Ωi
j ,

i = 1, · · · , mj . Finally, we assume that m1 = 1, and let us write

m = max
j=1,··· ,L

mj . (3.6)

At each level j = 1, · · · , L, we introduce the linear finite element spaces,

Vhj = {v ∈ C0(Ω̄j) : v|τ ∈ P1(τ), τ ∈ Thj , v = 0 on ∂Ωj}, (3.7)

and, for i = 1, · · · , mj, we write

V i
hj

= {v ∈ Vhj : v = 0 in Ωj\Ωi
j} (3.8)

The spaces Vhj and V i
hj

, j = 1, · · · , L, i = 1, · · · , mj , will be considered as
subspaces of W 1,s, 1 ≤ s ≤ ∞. We denote by || · ||0,s the norm in Ls, and by
|| · ||1,s and | · |1,s the norm and seminorm in W 1,s, respectively. The convex
set will be a subset KhL of VhL satisfying

Property 3.1 If v, w ∈ KhL, and if θ ∈ C1(Ω) with 0 ≤ θ ≤ 1, then LhL(θv+
(1 − θ)w) ∈ KhL .

Above, LhL is the P1–Lagrangian interpolation operator which uses the func-
tion values at the nodes of the mesh ThL .

It is proved in [3] an inequality of Friedrichs-Poincaré type for the finite
element spaces. In general, the constant in this inequality depends on how
complicated is the shape of the domain. Since our meshes are regular, we give
here the following simplified result
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Lemma 3.1 Let ω ⊂ Rd be a domain of diameter H, and Th a simplicial
regular mesh partition of it. If v is a continuous function which is linear on
each τ ∈ Th, and x0 ∈ ω̄0 is a node of Th such that v(x0) = 0, then

||v||0,s,ω ≤ CHCd,s(H, h)|v|1,s,ω ,

where Cd,s(H, h) =

⎧⎪⎨
⎪⎩

1 if d = s = 1 or 1 ≤ d < s ≤ ∞(
ln H

h + 1
)d−1

d if 1 < d = s < ∞(
H
h

) d−s
s if 1 ≤ s < d < ∞,

and the constant C is independent of domain and mesh.

The above lemma can be very useful in the various error estimations. In the
proof of the following proposition we use some operators Ihj : Vhj+1 → Vhj ,
whose properties are found using the above lemma.

Proposition 3.1 Let, for each level j = 1, · · · , L, Ω1
j , · · · , Ωmj

j be the over-
lapping decomposition of the domain Ωj defined in this section with ΩL = Ω
and m1 = 1. Then Assumption 2.1 is verified for the piecewise linear finite
element spaces, V = VhL and V i

j = V i
hj

, j = 1, · · · , L, i = 1, · · · , mj defined
in (3.7) and (3.8), respectively, and any convex set K = KhL ⊂ VhL with
Property 3.1. The constant in (2.3) of Assumption 2.1 can be taken of the
form

C0 = Cm2(L + 1)2−
1
p− 1

s

L∑
j=1

[1 + (m − 1)
hj−1

δj
]Cd,s(hj−1, hL) (3.9)

in which we take h0 = h1. The constant C is independent of the mesh and
domain decomposition parameters.

The multigrid method is obtained from the multilevel method by taking the
subsets Oi

j as the supports of the basis functions associated with the nodes of
Thj . Evidently, all the previous assumptions on the domain decompositions are
satisfied and we can take δj = hj. In the multigrid methods, the construction
of a finer mesh from a coarse one, is made following the same procedure of
division of the simplexes at each level. Therefore, we can assume that 1 < γ ≤

hj

hj+1
≤ Cγ, j = 1, · · · , L − 1. From (3.9), if we write h = hL and H = h1,

we get
C0 = CL3− 1

p− 1
s γCd,s(H, h). (3.10)

In the case of the two-level method, if we denote by H = h1, h = h2 and
δ = δ2, from (3.9), we get

C0 = Cm2[1 + (m − 1)
H

δ
]Cd,s(H, h) (3.11)
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This expression of C0 fits with that one given in [4] for the case of the mini-
mization of quadratic functionals. Also, it is proved in [3] that for the one-level
method the constant C0 can be taken of the form

C0 = C(m + 1)(1 +
m − 1

δ
). (3.12)

4 Numerical example

We illustrate the error estimations for the one- and two- level methods given
in the previous sections, by a numerical example concerning the two-obstacle
problem of a nonlinear elastic membrane without exterior forces: find u ∈ K
such that ∫

Ω

|∇u|s−2∇u∇(v − u) ≥ 0 for any v ∈ K.

Here, Ω ⊂ R2, K = W 1,s
0 (Ω) ∩ [a, b], a, b ∈ L∞(Ω), a ≤ b, and 1 < s < ∞.

Evidently, we take V = W 1,s
0 , and our problem is equivalent with

u ∈ K : F (u) = min
v∈K

F (v), with F (v) =
1
s

∫
Ω

|∇v|s. (4.1)

Using [7], we can show that if 1 < s ≤ 2, then we can take αM (τ) = α
(2M)2−s τ2

and βM (τ) = βτs−1 in (2.4). If s ≥ 2, we get (see [5]) αM (τ) = ατs and
βM (τ) = β(2M)s−2τ . The convex set K having Property 3.1, we can conclude
that Algorithm 1 can be applied for the solution of problem (4.1).

In our numerical tests, the domain Ω is the rectangle (0, 4)×(0, 3), and the
two obstacles of the convex set K are given by (see Figure 4.1.b): a(x, y) =

3+
√

(1
6

)2 − (x − 2)2 − (y − 1.5)2 if (x−2)2+(y−1.5)2 ≤
(

1
6

)2, else a(x, y) = 0,

and b(x, y) = 1/6−
√(

1
6

)2 − (x − 4/3)2 − (y − 3/4)2 if (x−4/3)2+(y−3/4)2 ≤(
1
6

)2, else b(x, y) = 19
6 . The meshes TH and Th contain right triangles, which

are obtained through a rectangular uniform refinement of Ω. In Figure 4.1.a,
the fine mesh Th contains 30×30 rectangles, ie. 1800 triangles, and the coarse
mesh TH contains 6 × 6 rectangles, ie. 72 triangles. The obstacles a and b
in Figure 4.1.b are plotted for a mesh Th coming from a 60 × 60 rectangular
uniform partition of Ω.
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The domain decomposition on the first level contains only one subdomain
O1

1 = Ω1
1 = Ω, M1 = m1 = 1. The subdomains Oi

2, i = 1, . . . , M2, on the
second level, are obtained from an uniform rectangular partition of Ω. In
Figure 4.1.a we have M2 = 9, and evidently, the number of the subdomains
Ωi is m2 = 4. The width of the overlaps in this figure is of 2 triangles in Th.

The computed solutions for s = 2.0, s = 1.5 and s = 3.0 are plotted in Figure
4.2 for a mesh Th coming from a 60 × 60 rectangular uniform partition of Ω.

We have seen in the previous section that the constant C0 depends on 1/δ
in equation (3.12), in the case of the one-level method, and on H/h and H/δ
in equation (3.11), for the two-level method. We have tried to verify it by
numerical tests for the nonlinear membrane problem taking various values of
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H , h and δ. In all the numerical tests the calculus has been stopped at a
relative error of 1.E-03 at the nodes of Th between two consecutive computed
solutions. The solution on the subdomains have been calculated by the relax-
ation method, which is a particular case of the Schwarz domain decomposition
method. The computing of the solutions on subdomains has been stopped at
a relative error of 1.E-05 at the nodes of Th between two consecutive com-
puted subsolutions. For the results in Figure 4.3, H/h = 6 and H/δ = 2 stay
unchanged while the coarse mesh size H varies and it corresponds to 2, 4, . . .
, 18, 20 segments on each side of the rectangular domain Ω. The number of
the iterations is bounded for the two-level method, and it is in concordance
with the fact that C0 in (3.11) is constant. Also, we see that the number of
iterations is an decreasing function of H for the one-level method. Since H/δ
is constant, it follows that the number of iterations is an increasing function of
1/δ, and it is in concordance with C0 in (3.12). For the results in Figure 4.4,
we have taken H = 5.0/12, h = 5.0/120 and δ = 1h, 2h, · · · , 10h. We see that,
in both cases, the number of iterations is a decreasing function of δ, and it is
concordance with the expressions of C0 in (3.12) and (3.11). For the results
in Figure 4.5, H = 5.0/6, δ = 5.0/12, and h corresponds to partitions Th with
12, 24, 36, · · · , 120 segments on each side of the rectangular domain Ω. For the
one-level method, the number of iterations is constant for h ≤ 5/24, and it
is in concordance with C0 in (3.12). In the case of the two-level method, the
number of iterations is a decreasing function of h for s = 1.5 and s = 2, and
it is also in concordance with C0 in (3.11). For s = 3 > d = 2, Cd,s(H, h) = 1,
and the number of iterations should be bounded. In Figure 4.5.b, the number
of iterations for s = 3 becomes constant for values of h less than 5.0/60.
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In the tests in Figure 4.6 we have taken h = 5.0/120, δ = 5.0/20 and H =
5.0/20, 5.0/12, 5.0/10, 5.0/8 and 5.0/6. In the case of the two-level method,
the number of iterations is an increasing function of H which is in concordance
with our constant C0 in (3.11).
Finally, we see from the above numerical tests that the number of iterations for
the two-level method is significantly less than that for the one-level method.
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Since the number of iterations is less in the two-level method than that one
in the one-level method, even if the projection for the two-level method is a
bit more complicated than that in the one-level method, the two-level method
is more efficient in point of view of the computing time. For instance, we see
in Figure 4.3 that for H = 5.0/10, h = 5.0/60 and δ = 5.0/20, the number of
iteration is: 23 for s = 1.5, 19 for s = 2.0, and 15 for s = 3.0, in the case of
the one-level method, and 13 for s = 1.5, 10 for s = 2.0, and 9 for s = 3.0,
in the case of the two-level method. The computing time obtained on a PC
with one processor Intel Pentium III of 600MHz was: 18min45sec for s = 1.5,
6min16sec for s = 2.0, and 17min8sec for s = 3.0, in the case of the one-level
method, and 13min54sec for s = 1.5, 4min43sec for s = 2.0, and 14min27sec
for s = 3.0, in the case of the two-level method. Naturally, the computing time
for s = 2.0 is less than that one for s = 1.5 or s = 3.0, since, in this case, we
solve linear equations in the relaxation method. This case corresponds to the
minimization of a quadratic functional. The finite element problem in these
computing time tests have had 3481 unknowns.
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