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Abstract

We consider a mathematical model which describes the frictionless
contact between a viscoplastic body and a rigid foundation. The process
is quasistatic and the contact is modeled with Signorini’s condition in
the form with a zero gap function. We provide an evolutionary mixed
variational formulation to the model involving a Lagrange multiplier,
for which we state and prove an existence and uniqueness result. The
proof is based on arguments on saddle points theory and Banach’s fixed
point theorem.
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1 Introduction

Unilateral problems involving Signorini’s contact condition were studied by
many authors, see for instance the references in [4, 10, 12]. In particular, the
existence of a unique weak solution to the frictionless Signorini contact prob-
lem for rate-type viscoplastic materials was proved in [13] and the numerical
analysis of the problem was considered in [3]. A convergence result in the
study of the same problem was provided in [14]. There it was proved that the
solution of the Signorini contact problem can be approached by the solution
of the corresponding contact problem with normal compliance as the stiffness
coefficient of the foundation converges to infinity. More details in the study of
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ational formulation, Lagrange multiplier, weak solution.
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frictionless contact problems with viscoplastic materials, including the analy-
sis of semi-discrete and fully discrete schemes, error estimates and numerical
simulations, can be found in [6]. Note that in [3, 6, 13, 14] the contact pro-
cess was assumed to be quasistatic and the problem was studied within the
framework of variational inequalities theory.

The aim of this paper is to present a new approach in the study of the
quasistatic frictionless contact problems for viscoplastic materials, based on a
mixed variational formulation involving a Lagrange multiplier. We model the
material behavior with the rate-type constitutive equation used in [3, 6, 13, 14]
and the contact with Signorini’s condition in a form with a zero gap function.
We derive a new variational formulation of the problem, different from that
obtained in [3, 6, 13, 14], then we obtain an existence and uniqueness result.
The proof is based on arguments on the saddle point theory which can be found
in [1, 2, 5, 7]. Our results in this paper lie the background necessary to the
numerical analysis of the problem by using the method of Lagrange multipliers.
This represents a modern method which was succesfully used in the numerical
study of various contact problems, see for instance [8, 9, 11, 15, 16] and the
references therein.

The rest of the paper is structured as follows. In Section 2 we present the
model, set it in a variational formulation and state our main result, Theorem
2.1. It states the existence of a unique weak solution to the model. The proof
of Theorem 2.1 is provided in Section 3.

2 Statement of the problem and main result

The physical setting is as follows. We consider a viscoplastic body that occu-
pies the bounded domain Ω ⊂ IRd (d = 1, 2, 3), with the boundary ∂Ω = Γ
partitionned into three disjoint measurable parts Γ1, Γ2 and Γ3, such that
meas Γ1 > 0. We assume that the boundary Γ is Lipschitz continuous and
denote by ν its unit outward normal, defined a.e. Let T > 0 and let [0, T ] be
the time interval of interest. The body is clamped on Γ1 × (0, T ) and there-
fore the displacement field vanishes there. A volume force of density f0 acts
in Ω × (0, T ), surface tractions of density f2 act on Γ2 × (0, T ) and, finally,
we assume that the body is in frictionless contact with a rigid foundation on
Γ3 × (0, T ).

We denote by u the displacement vector, σ the stress field and ε(u) the
small strain tensor. To describe the behavior of the material we use a rate-type
viscoplastic constitutive law,

σ̇ = Eε(u̇) + G(σ, ε(u)) in Ω × (0, T ), (2.1)

in which E is a fourth order tensor and G is a nonlinear constitutive function. In
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(2.1) and below, in order to simplify the notation, we do not indicate explicitly
the dependence of various functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ].

We neglect the inertial term in the equation of motion and obtain the qua-
sistatic approximation of the process. Thus, we use the equilibrium equation,

Div σ + f0 = 0 in Ω × (0, T ), (2.2)

in which Div σ denotes the divergence of the tensor σ. According to the phys-
ical setting, we have the following displacement-traction boundary conditions,

u = 0 on Γ1 × (0, T ), (2.3)
σν = f2 on Γ2 × (0, T ), (2.4)

in which σν denotes the Cauchy stress vector. We assume that the contact
is frictionless and it is modeled with Signorini’s condition in the form with a
zero gap function, that is

uν ≤ 0, σν ≤ 0, σνuν = 0, στ = 0 on Γ3 × (0, T ). (2.5)

Here and below the index ν and τ denote the normal and tangential compo-
nents of vectors and tensors. To complete our model, we also prescribe the
initial data, i.e.

u(0) = u0, σ(0) = σ0 in Ω, (2.6)

where u0 and σ0 represent the initial displacement and the initial stress,
respectively.

Let Sd denote the space of second order tensors on IRd. With the assump-
tions above, our mechanical problem may be formulated as follows.

Problem P . Find a displacement field u : Ω × [0, T ] → IRd and a stress
field σ : Ω × [0, T ] → Sd such that (2.1)–(2.6) hold.

In order to derive a variational formulation of problem P we need additional
notation. Thus, we denote by “ ·” and | · | the inner product and the Euclidean
norm on the spaces IRd and Sd; everywhere below the indices i, j, k, l run from
1 to d, summation over repeated indices is implied and the index that follows
a comma represents the partial derivative with respect to the corresponding
component of the spatial variable; c will denote a positive generic constant
which may depend on Ω, Γ1, Γ2, Γ3, E and G but it is independent on time
and input data, and whose value may change from place to place.

We use the standard notation for Lebesgue and Sobolev spaces associated
to Ω and Γ. Moreover, we use also the spaces

H = { σ = (σij) : σij = σji ∈ L2(Ω) },
H1 = { u = (ui) : ε(u) ∈ H },
H1 = { σ ∈ H : Div σ ∈ L2(Ω)d }.
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Here ε and Div are the deformation and the divergence operators, respectively,
defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Div σ = (σij,j).

The spaces H, H1 and H1 are real Hilbert spaces endowed with the canonical
inner products given by

(σ, τ )H =
∫

Ω

σijτijdx,

(u, v)H1 = (u, v)L2(Ω)d + (ε(u), ε(v))H,

(σ, τ )H1 = (σ, τ )H + (Div σ, Div τ )L2(Ω)d .

The associated norms on the spaces H, H1 and H1 are denoted by ‖ · ‖H,
‖ · ‖H1 and ‖ · ‖H1 , respectively.

For every element v ∈ H1 we also write v for the trace of v on Γ and we
denote by vν and vτ the normal and the tangential components of v on Γ
given by vν = v · ν, vτ = v − vνν. We also denote by σν and στ the normal
and the tangential traces of a function σ ∈ H1, and we note that when σ is a
regular function then σν = (σν) ·ν, στ = σν−σνν, and the following Green’s
formula holds:

(σ, ε(v))H + (Divσ, v)L2(Ω)d =
∫

Γ

σν · v da ∀v ∈ H1. (2.7)

Now, let V be the closed subspace of H1 given by

V = { v ∈ H1 : v = 0 on Γ1 }.

Over the space V we consider the inner product

(u, v)V = (ε(u), ε(v))H

and let ‖ · ‖V be the associated norm. Since meas Γ1 > 0 it follows from
Korn’s inequality that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V . Therefore
(V, ‖ · ‖V ) is a real Hilbert space.

Let M be the dual space of the space H1/2(Γ3)d and denote by 〈·, ·〉Γ3 the
duality pairing between M and H1/2(Γ3)d. We also denote by K and Λ the
sets

K = { v ∈ V : vν ≤ 0 on Γ3 }, (2.8)

Λ =
{

µ ∈ M : 〈µ, v〉Γ3 ≤ 0 ∀v ∈ K
}

. (2.9)
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Clearly K and Λ are closed convex cones in V and M , respectively, and contain
the zero element of V and M , respectively.

For every subset Y of a real Banach space (X, ‖ · ‖X) we use the notation
C([0, T ]; Y ) for the set of continuous functions from [0, T ] to Y ; recall that
C([0, T ]; X) is a real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

In the study of the mechanical problem (2.1)–(2.6) we make the following
assumptions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) E = (Eijkl) : Ω × Sd → Sd.

(b) Eijkl ∈ L∞(Ω).

(c) E(x)σ · τ = σ · E(x)τ ∀σ, τ ∈ Sd, a.e. in Ω.

(d) There exists m > 0 such that
E(x)τ · τ ≥ m|τ |2 ∀ τ ∈ Sd, a.e. in Ω.

(2.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) G : Ω × Sd × Sd → Sd.

(b) There exists LG > 0 such that
|G(x, σ1, ε1) − G(x, σ2, ε2)| ≤ LG (|σ1 − σ2| + |ε1 − ε2|)
∀σ1, σ2, ε1, ε2 ∈ Sd, a.e. in Ω.

(c) The mapping x �→ G(x, σ, ε) is measurable on Ω, ∀σ, ε ∈ Sd.

(d) The mapping x �→ G(x,0,0) belongs to H.

(2.11)

f0 ∈ C([0, T ]; L2(Ω)d), f2 ∈ C([0, T ]; L2(Γ2)d). (2.12)

u0 ∈ K, σ0 ∈ H1. (2.13)

Next, let a : V × V → IR and b : V × M → IR be the bilinear forms

a(u, v) =
∫

Ω

E ε(u) · ε(v) dx, (2.14)

b(v, µ) = 〈µ, v〉Γ3 , (2.15)

and, using Riesz’s representation theorem, define the function f : [0, T ] → V
by

(f(t), v)V =
∫

Ω

f0(t) · v dx +
∫

Γ2

f2(t) · v da ∀v ∈ V, t ∈ [0, T ]. (2.16)
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It follows from (2.10) that a is symmetric, continuous and coercive, since

a(v, v) ≥ m ‖v‖2
V ∀v ∈ V. (2.17)

Also, it follows from the properties of the trace operator that the bilinear form
b is continuous and satisfies the following inf-sup property,

there exists α > 0 such that inf
0 �=µ∈M,

sup
0 �=v∈V

b(v, µ)
‖v‖V ‖µ‖M

≥ α. (2.18)

As a consequence of (2.18) we obtain

sup
0�=v∈V

b(v, µ)
‖v‖V

≥ α ‖µ‖M ∀µ ∈ M. (2.19)

Finally, note that assumptions (2.12) imply that

f ∈ C([0, T ]; V ). (2.20)

We now derive the mixed variational formulation of Problem P . To this
end we assume that (u, σ) are regular functions which satisfy (2.1)–(2.6) and
let v ∈ V , µ ∈ Λ and t ∈ [0, T ]. Using Green’s formula (2.7) and (2.2) we get

(σ(t), ε(v))H = (f0(t), v)L2(Ω)d +
∫

Γ

σ(t)ν · v da

and, due to (2.3), (2.4) and (2.16), we obtain

(σ(t), ε(v))H = (f(t), v)V +
∫

Γ3

σ(t)ν · v da.

Since στ = 0 on Γ3 × (0, T ), it follows from the previous equality that

(σ(t), ε(v))H = (f(t), v)V +
∫

Γ3

σν(t)vν da. (2.21)

Denote by β(t) the viscoplastic stress,

β(t) = σ(t) − Eε(u(t)), (2.22)

and define the Lagrange multiplier λ(t),

〈λ(t), v〉Γ3 = −
∫

Γ3

σν(t)vν da ∀v ∈ V. (2.23)
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It follows from (2.14)–(2.16), (2.21)–(2.23) that

a(u(t), v) + (β(t), ε(v))H + b(v, λ(t)) = (f (t), v)V . (2.24)

Moreover, taking into account (2.5), (2.8) and (2.9), we deduce that

λ(t) ∈ Λ, b(u(t), λ(t)) = 0, b(u(t), µ) ≤ 0 ∀µ ∈ Λ (2.25)

and, as a consequence of (2.22), (2.1) and (2.6), we obtain

β(t) =
∫ t

0

G(E ε(u(s)) + β(s), ε(u(s))) ds + σ0 − Eε(u0). (2.26)

To conclude, from (2.24), (2.25) and (2.26) we obtain the following varia-
tional formulation of the mechanical problem P .

Problem PV . Find a displacement field u : [0, T ] → V , a viscoplastic
stress field β : [0, T ] → H and a Lagrange multiplier λ : [0, T ] → Λ such that

a(u(t), v) + (β(t), ε(v))H + b(v, λ(t)) = (f (t), v)V , (2.27)

b(u(t), µ − λ(t)) ≤ 0, (2.28)

β(t) =
∫ t

0

G(E ε(u(s)) + β(s), ε(u(s))) ds + σ0 − Eε(u0), (2.29)

for all v ∈ V , µ ∈ Λ and t ∈ [0, T ].

Our main result that we state here and prove in the next section is the
following.

Theorem 2.1. Assume that (2.10)–(2.13) hold. Then, there exists a
unique solution (u, β, λ) of Problem PV . Moreover, the solution satisfies

u ∈ C([0, T ]; V ), β ∈ C([0, T ];H), λ ∈ C([0, T ]; Λ). (2.30)

A triplet (u, β, λ) which satisfies (2.27)–(2.29) is called a weak solution to
the contact problem P and we conclude by Theorem 2.1 that Problem P has
a unique weak solution. Note that once the weak solution is know, then the
stress field σ can be easily obtained by using (2.22). It can be shown that,
under the assumption of Theorem 2.1, σ ∈ C([0, T ];H1).

3 Proof of Theorem 2.1

The proof of Theorem 2.1 will be carried out in several steps and is based
on arguments on saddle point theory and fixed point. Everywhere below we
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assume that (2.10)–(2.13) hold. We start by solving the contact problem in
the particular case when the viscoplastic stress is known. To this end let η
be an arbitrary element of the space C([0, T ]; V ) and consider the following
auxiliary problem.

Problem P 1
η . Find a displacement field uη : [0, T ] → V and a Lagrange

multiplier λη : [0, T ] → Λ such that, for all t ∈ [0, T ],

a(uη(t), v) + b(v, λη(t)) = (f (t) − η(t), v)V ∀v ∈ V, (3.1)

b(uη(t), µ − λη(t)) ≤ 0 ∀µ ∈ Λ. (3.2)

In the study of Problem P 1
η we have the following result.

Lemma 3.1. There exists a unique solution (uη, λη) of Problem P 1
η and

it satisfies
uη ∈ C([0, T ]; V ), λη ∈ C([0, T ]; Λ). (3.3)

Moreover, if (ui, λi) represents the solution of Problem P 1
ηi

for ηi ∈ C([0, T ]; V ),
i = 1, 2, there exists c > 0 such that

‖uη1(t) − uη2(t)‖V + ‖λη1(t) − λη2(t)‖M ≤ c ‖η1(t) − η2(t)‖V (3.4)

for all t ∈ [0, T ].

Proof. Let t ∈ [0, T ] be fixed. The existence of a unique solution to (3.1)–
(3.2) follows from classical results of saddle points theory, see for instance [7]
p. 341. Note that the solution is the unique saddle point of the Lagrangean
functional Lη

t : V × Λ → IR defined by

Lη
t (v, µ) =

1
2

a(v, v) − (f (t), v)V + b(v, µ) + (η(t), v)V .

In order to prove the regularity (3.3) of the solution, let t1, t2 ∈ [0, T ]. We
have

a(uη(t1), v) + b(v, λη(t1)) = (f (t1) − η(t1), v)V , (3.5)
b(uη(t1), µ − λη(t1)) ≤ 0, (3.6)
a(uη(t2), v) + b(v, λη(t2)) = (f (t2) − η(t2), v)V , (3.7)
b(uη(t2), µ − λη(t2)) ≤ 0, (3.8)

for all v ∈ V and µ ∈ Λ. We take v = uη(t2) − uη(t1) in (3.5), v = uη(t1) −
uη(t2) in (3.7) and add the corresponding equalities to obtain

a(uη(t1) − uη(t2), uη(t2) − uη(t1)) + (3.9)
b(uη(t2) − uη(t1), λη(t1) − λη(t2)) =

(f (t1) − f(t2), uη(t2) − uη(t1))V + (η(t2) − η(t1), uη(t2) − uη(t1))V .
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We then take µ = λη(t2) in (3.6), µ = λη(t1) in (3.8) and add the correspond-
ing inequalities to find

b(uη(t1) − uη(t2), λη(t2) − λη(t1)) ≤ 0. (3.10)

We combine now (3.9) and (3.10) and use the coercivity of the form a, (2.17),
to obtain

‖uη(t1) − uη(t2)‖V ≤ c (‖f(t1) − f(t2)‖V + ‖η(t1) − η(t2)‖V ). (3.11)

Next, we use (3.9), the inf-sup property of the form b, (2.19), and (3.11) to
deduce

‖λη(t1) − λη(t2)‖M ≤ c (‖f(t1) − f(t2)‖V + ‖η(t1) − η(t2)‖V ). (3.12)

The regularity (3.3) is now a consequence of the last two inequalities, (3.11)
and (3.12), combined with the regularity (2.20) of f and η. The uniqueness
of the solution follows from the unique solvability of (3.1), (3.2) at each time
moment t ∈ [0, T ].

Consider now η1, η2 ∈ C([0, T ]; V ) and denote by (ui, λi) the solution
of Problem Pηi for i = 1, 2. Arguments similar as those used in the proof of
(3.11) and (3.12) yield to the inequalities

‖uη1(t) − uη2(t)‖V ≤ c ‖η1(t) − η2(t)‖V ∀ t ∈ [0, T ], (3.13)
‖λη1(t) − λη2(t)‖M ≤ c ‖η1(t) − η2(t)‖V ∀ t ∈ [0, T ], (3.14)

which imply (3.4).

We now use the displacement field uη obtained in Lemma 3.1 to construct
the following auxiliary problem for the viscoplastic stress field.

Problem P 2
η . Find a viscoplastic stress field βη : [0, T ] → H such that

βη(t) =
∫ t

0

G(Eε(uη(s)) + βη(s), ε(uη(s))) ds + σ0 − Eε(u0) (3.15)

for all t ∈ [0, T ].

In the study of Problem P 2
η we have the following result.

Lemma 3.2. There exists a unique solution of Problem P 2
η and it satisfies

βη ∈ C([0, T ];H). (3.16)

Moreover, if βi represents the solutions of problem P 2
ηi

for ηi ∈ C([0, T ]; V ),
i = 1, 2, there exists c > 0 such that

‖β1(t) − β2(t)‖H ≤ c

∫ t

0

‖η1(s) − η2(s)‖V ds ∀ t ∈ [0, T ]. (3.17)
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Proof. Let Θη : C([0, T ];H) → C([0, T ];H) be the operator given by

Θη β(t) =
∫ t

0

G(Eε(uη(s)) + β(s), ε(uη(s)))ds + σ0 − Eε(u0) (3.18)

for all β ∈ C([0, T ];H) and t ∈ [0, T ]. For β1, β2 ∈ C([0, T ];H) we use (3.18)
and (2.11) to obtain

‖Θη β1(t) − Θη β2(t)‖H ≤ LG
∫ t

0

‖β1(s) − β2(s)‖H ds

for all t ∈ [0, T ]. It follows from this inequality that for p large enough, a power
Θp of the operator Θ is a contraction on the Banach space C([0, T ]; V ) and
therefore there exists a unique element βη ∈ C([0, T ]; V ) such that Θηβη = βη.
Moreover, βη is the unique solution of Problem P 2

η .
Consider now η1, η2 ∈ C(0, T ; V ) and, for i = 1, 2, denote uηi = ui,

βηi
= βi. Let t ∈ [0, T ]; we have

β1(t) =
∫ t

0

G(Eε(u1(s)) + β1(s), ε(u1(s)))ds + σ0 − Eε(u0),

β2(t) =
∫ t

0

G(Eε(u2(s)) + β2(s), ε(u2(s)))ds + σ0 − Eε(u0).

Keeping in mind (2.11) and (2.10) we deduce

‖β1(t) − β2(t)‖H ≤

c
(∫ t

0

‖u1(s) − u2(s)‖V ds +
∫ t

0

‖β1(s) − β2(s)‖Hds
)

and, taking into account (3.4), yields

‖β1(t) − β2(t)‖H ≤ c
(∫ t

0

‖η1(s) − η2(s)‖V ds +
∫ t

0

‖β1(s) − β2(s)‖H ds
)
.

Using now a Gronwall inequality we deduce that (3.17) holds, which concludes
the proof of the lemma.

We now introduce the operator Θ : C([0, T ]; V ) → C([0, T ]; V ) which maps
every element η ∈ C([0, T ]; V ) to the element Θη ∈ C([0, T ]; V ) defined by

(Θη(t), v)V = (βη(t), ε(v))H ∀v ∈ V, t ∈ [0, T ]. (3.19)

Recall that here βη represents the viscoplastic stress obtained in Lemma 3.2.
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Lemma 3.3. The operator Θ has a unique fixed point.

Proof. For η1, η2 ∈ C([0, T ]; V ) and t ∈ [0, T ] we have

(Θη1(t) − Θη2(t), v)V = (βη1
(t) − βη2

(t), ε(v))H ∀v ∈ V

which shows that

‖Θη1(t) − Θη2(t)‖V ≤ ‖βη1
(t) − βη2

(t)‖H.

Using now (3.17) we deduce

‖Θη1(t) − Θη2(t)‖V ≤ c

∫ t

0

‖η1(s) − η2(s)‖H ds.

which concludes the proof of the lemma.

We have now all the ingredients to prove Theorem 2.1.

Proof of Theorem 2.1. Let η∗ be the fixed point of the operator Θ
introduced in (3.19) and denote u∗ = uη∗ , λ∗ = λη∗ , β∗ = βη∗ . We prove
that the triple (u∗, β∗, λ∗) satisfies (2.27)–(2.29). To this end we use (3.1) for
η = η∗ to write

a(u∗(t)), v)) + (η∗(t), v)V + b(v, λ∗(t)) = (f(t), v)V ∀v ∈ V, t ∈ [0, T ]

and, since

(η∗(t), v)V = (Θη∗(t), v)V = (β∗(t), ε(v))H ∀v ∈ V, t ∈ [0, T ],

we obtain

a(u∗(t)), v) + (β∗(t), ε(v))H + b(v, λ∗(t)) = (f (t), v)V ∀v ∈ V, t ∈ [0, T ],

which shows that (2.27) holds. Taking now η = η∗ in (3.2) we obtain (2.28)
and since β∗ is the unique solution of Problem P 2

η∗ , we deduce that (2.29)
is satisfied. Consequently, the triple (u∗, β∗, λ∗) is a solution of Problem PV

and, since the regularity (2.30) follows from Lemmas 3.1 and 3.2, we conclude
the existence part of the theorem.

To prove the uniqueness of the solution consider two solutions (ui, βi, λi)
of Problem PV which satisfy (2.30) for i = 1, 2. Let t ∈ [0, T ]; we use (2.27),
(2.28) and arguments similar to those used in the proof of the inequalities
(3.13) and (3.14) to obtain

‖u1(t) − u2(t)‖V ≤ c ‖β1(t) − β2(t)‖H, (3.20)
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‖λ1(t) − λ2(t)‖M ≤ c ‖β1(t) − β2(t)‖H. (3.21)

On the other hand, from (2.29) and (2.11) and (2.10) we find that

‖β1(t) − β2(t)‖H ≤ (3.22)

c
(∫ t

0

‖u1(s) − u2(s)‖V ds +
∫ t

0

‖β1(s) − β2(s)‖H ds
)
.

We plug now (3.20) in (3.22) to deduce

‖β1(t) − β2(t)‖H ≤ c

∫ t

0

‖β1(s) − β2(s)‖V ds

and, using a Gronwall type argument, we find that β1(t) = β2(t). The unique-
ness part of the theorem is now a straight consequence of the inequalities (3.20)
and (3.21), which concludes the proof.

Acknowledgment. The work of the second author was performed in the
framework of the european community program “Improving Human Research
Potential and the Socio-Economic Knowledge Base - Breaking complexity,”
Contract No. HPRH-CT-2002-00286, and of the Grant CNCSIS 80/2005.

References

[1] D. Braess, Finite Elements, Cambridge University Press, Cambridge,
1997.

[2] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,
Springer-Verlag, New York, 1991.

[3] J. Chen, W. Han and M. Sofonea, Numerical analysis of a contact problem
in rate-type viscoplasticity, Numer. Funct. Anal. and Optimiz. 22 (2001),
505–527.
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