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A KACZMARZ-KOVARIK ALGORITHM
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Abstract

In this paper we describe an iterative algorithm for numerical solu-
tion of ill-conditioned inconsistent symmetric linear least-squares prob-
lems arising from collocation discretization of first kind integral equa-
tions. It is constructed by successive application of Kaczmarz Extended
method and an appropriate version of Kovarik’s approximate orthogo-
nalization algorithm. In this way we obtain a preconditioned version
of Kaczmarz algorithm for which we prove convergence and make an
analysis concerning the computational effort per iteration. Numerical
experiments are also presented.

AMS Subject Classification : 65F10 , 65F20.

1 Kaczmarz extended and Kovarik algorithms

Beside many papers and books concerned with the qualitative analysis of
classes of linear and nonlinear operators and operatorial equations, professor
Dan Pascali also analysed the possibility to approximate solutions for some of
them (see e.g. [5], [6]). This paper is written in the same direction, by consid-
ering iterative methods for numerical solution of first kind integral equations
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of the form (see also the last section of the paper)
∫ 1

0

k(s, t)x(t)dt = y(s), s ∈ [0, 1].

In this respect, the rest of this introductory section will be concerned with the
description of the original versions of these methods. Let A be an n × n real
symmetric matrix. We shall denote by (A)i, r(A), R(A), N(A), bi the i-th
row, rank, range, null space of A and i-th component of b, respectively (all
the vectors that appear being considered as column vectors). The notations
ρ(A), σ(A) will be used for the spectral radius and spectrum of A and ‖ A ‖=
ρ(A) will be the spectral norm. PS will be the orthogonal projection onto
the vector subspace S, with respect to the Euclidean scalar product and the
associated norm, denoted by 〈·, ·〉 and ‖ · ‖, respectively. We shall consider a
vector b ∈ IRn and the linear least-squares problem : find x∗ ∈ IRn such that

‖ Ax∗ − b ‖= min! (1)

It is well known (see e.g. [1]) that the set of all (least-squares) solutions of (1),
denoted by LSS(A; b) is a nonempty closed convex subset of IRn containing
a unique solution with minimal norm, denoted by xLS . Moreover, if bA =
PR(A)(b) we have

x∗ ∈ LSS(A; b) ⇔ Ax = bA. (2)

If A has nonzero rows, i.e.

(A)i �= 0, i = 1, . . . , n, (3)

we define the applications (matrices)

fi(A; b; x) = x − < x, (A)i > − bi

‖ (A)i ‖2
(A)i, Pi(A; y) = y − < y, (A)i >

‖ (A)i ‖2
(A)i, (4)

K(A; b; x) = (f1 ◦ · · · ◦ fn)(A; b; x), Φ(A; y) = (P1 ◦ · · · ◦ Pn)(A; y), (5)

for x, y ∈ IRn and R the real n × n matrix of which i-th column (R)i is given
by

(R)i =
1

‖ (A)i ‖2
P1P2 . . . Pi−1((A)i), (6)

with P0 = I (the unit matrix). According to [11] (for symmetric matrices) we
have the following results.

Proposition 1 (i) We have

K(A; b; x) = Qx + Rb, Q + RA = I, Rx ∈ R(A), ∀ x ∈ IRn. (7)
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(ii) N(A) and R(A) are invariant subspaces for Φ and

Φ = PN(A) ⊕ Φ̃, PN(A)Φ̃ = Φ̃PN(A) = 0, (8)

where Φ̃ is the linear application defined by

Φ̃ = ΦPR(A). (9)

(iii) The application Φ̃ satisfies

‖ Φ̃ ‖=
√

ρ(Φ̃tΦ̃) < 1. (10)

The following extension of the original Kaczmarz’s projections method will be
considered (see [2], [7]).
Algortihm KE. Let x0 ∈ IRn, y0 = b; for k = 0, 1, . . . do

yk+1 = Φ(A; yk), βk+1 = b − yk+1, xk+1 = K(A; βk+1; xk). (11)

Next theorem, proved in [8] explains the convergence behaviour of the algo-
rithm KE.

Theorem 1 Let G be the n × n matrix defined by

G = (I − Φ̃)−1R. (12)

Then, for any matrix A satisfying (3) any b ∈ IRn and x0 ∈ IRn, the sequence
(xk)k≥0 generated with the algorithm (11) converges,

lim
k→∞

xk = PN(A)(x0) + GbA (13)

and the following equalities hold

LSS(A; b) = {PN(A)(x0) + GbA, x0 ∈ IRn}, xLS = GbA. (14)

Remark 1 The first and third steps from (11) consist on succesive orthogonal
projections onto the hyperplanes generated by the rows of A (see (4)-(5)).
Then, faster will be the convergence of the algorithm (11) if the values of the
angles between columns and rows will be closer to 90◦ (see e.g. [11]).

According to the above Remark 1, we will consider the Inverse-free modified
Kovarik algorithm from [3] (denoted in what follows by KOS). For this we
shall suppose in addition that A is positive semidefinite and

σ(A) ⊂ [0, 1). (15)
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Let aj , j ≥ 0 be the coefficients of the Taylor’s expansion

1√
1 − x

= a0 + a1x + . . . , x ∈ (−1, 1), (16)

i.e.

a0 = 1, aj+1 =
2j + 1
2j + 2

aj , j ≥ 0 (17)

and, for a given integer q ≥ 1 the truncated Taylor’s series S(Ak; q) defined
by

S(Ak; q) =
q∑

i=0

ai(−Ak)i. (18)

Algorithm KOS Let A0 = A ; for k = 0, 1, . . . , do

Kk = (I − Ak)S(Ak; nk), Ak+1 = (I + Kk)Ak, (19)

where nk, k ≥ 0 is a sequence of positive integers.
Next theorem (see [4]) analyses the convergence properties of the algorithm
KOS.

Theorem 2 Let A be symmetric and positive semidefinite such that (15)
holds. Then the sequence of matrices (Ak)k≥0 generated by the above algorithm
KOS converges to A∞ = A+A, where A+ is the Moore-Penrose pseudoinverse.
Moreover, the convergence is linear, i.e.

‖ Ak − A∞ ‖2 ≤ γk ‖ A − A∞ ‖2, ∀k ≥ 0, (20)

with

γ = max{1 − λmin(A) +
1
2
λmin(A)2, 1 − λmin(A)√

1 + λmin(A)
}, (21)

where by λmin(A) we denoted the minimal nonzero eigenvalue of A.

Remark 2 The assumption (15) is not restrictive; it can be easy obtained be
scalling the matrix coefficients in an appropriate way. Moreover, during the
application of KOS an approximate orthogonalization of the rows of A occurs
(see for details [10]); in this sense and according to the comments in Remark
1 before, KOS will be used as a preconditioner for KE as will be described in
the next section of the paper.
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2 The preconditioned Kaczmarz algorithm

According to the results and comments from the previus section, we propose
the following preconditioned Kaczmarz algorithm.
Algorithm PREKAZ. Let x0 ∈ IRn, A0 = A, b0 = b and

K0 = (I − A0)S(A0; n0); (22)

for k = 0, 1, 2, . . . do
Step 1. Compute Ak+1 and bk+1 by

Ak+1 = (I + Kk)Ak, bk+1 = (I + Kk)bk, (23)

Step 2. Compute yk+1 and βk+1 by

yk+1 = Φk+1(Ak+1; bk+1), (24)

βk+1 = bk+1 − yk+1. (25)

Step 3. Compute the next approximation xk+1 by

xk+1 = K(Ak+1; βk+1; xk) (26)

and update Kk to Kk+1 by

Kk+1 = (I − Ak+1)S(Ak+1; nk+1). (27)

Remark 3 The step (24) means succesive application of Φ(Ak+1; ·)
(k + 1) - times to the initial vector bk+1, i.e.

Φk+1(Ak+1; bk+1) = (Φ(Ak+1; ·) ◦ · · · ◦ Φ(Ak+1; ·))(bk+1). (28)

This aspect will be analysed in section 3.

Remark 4 From (23) and because the matrices I + Kk are symmetric and
positive definite ∀k ≥ 0, we obtain easy that

N(Ak) = N(A), LSS(Ak; bk) = LSS(A; b), ∀ k ≥ 0. (29)

In what follows we shall prove convergence for the above algorithm PREKAZ.
For this, let Φk, Φ̃k, Rk and Gk be the matrices defined as in (5), (9), (6), (12),
respectively, but with Ak from (23) instead of A, bk as in (23) and bk

Ak
defined

by
bk
Ak

= PR(Ak)(bk). (30)

For proving our convergence result we need an auxiliary one which will be
presented below.
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Proposition 2 (i) If Φ̃∞ and R∞ are the matrices defined as in (9) and (6),
respectively but with A∞ from theorem 2 instead of A, then

lim
k→∞

Φ̃k = Φ̃∞, lim
k→∞

Rk = R∞. (31)

(ii) The sequence (bk
Ak

)k≥0 from (30) is bounded.

Proof. (i) It results as in the proof of Theorem 1 from [10].
(ii) If our conclusion would be false, it would exist a subsequence of (bk

Ak
)k≥0

(which, for simplicity we shall denote in the same way) such that

lim
k→∞

‖ bk
Ak

‖= +∞. (32)

But, from (2) and (30) we have the equivalence x ∈ LSS(Ak; bk) ⇔ Akx = bk
Ak

.
Then, for any x∗ ∈ LSS(A; b) we obtain (also using (29))

Akx∗ = bk
Ak

, ∀ k ≥ 0. (33)

But, from Theorem 2 we have that limk→∞ Ak = A∞, which tells us that it
exists an integer k0 ≥ 1 such that

‖ Akx∗ ‖ ≤ ‖ A∞x∗ ‖ + 1, ∀ k ≥ k0. (34)

Now, if k1 ≥ k0 ≥ 1 is an integer such that (see (32))

‖ bk
Ak

‖ > ‖ A∞x∗ ‖ + 1, ∀ k ≥ k1,

then by also using (33) and (34) we get a contradiction which completes our
proof.

Theorem 3 For any x0 ∈ IRn if (xk)k≥0 is the sequence generated with the
algorithm (22)-(27), then

lim
k→∞

xk = PN(A)(x0) + GbA. (35)

Proof. Let k ≥ 0 be arbitrary fixed and bk∗ ∈ IRn defined by

bk
∗ = PN(Ak)(bk). (36)

Then, we have the orthogonal decomposition of bk (see (30))

bk = bk
Ak

⊕ bk
∗ (37)

as in [8] we obtain

LSS(Ak; bk) = {PN(Ak)(x0) + Gkbk
Ak

, x0 ∈ IRn}, (38)



A KACZMARZ-KOVARIK ALGORITHM 141

xLS = Gkbk
Ak

= GbA, (39)

together with (by also using (29))

PN(Ak)(xk) = PN(A)(xk) = PN(A)(x0), ∀ k ≥ 0, (40)

for an arbitrary fixed initial approximation x0 ∈ IRn. Using (40) together with
(39), (7), (26), (8), we succesively get

xk+1 − (PN(A)(x0) + GbA) = xk+1 − (PN(Ak+1)(x
0) + Gk+1b

k+1
Ak+1

) =

(PN(Ak+1)(xk) + Φ̃k+1x
k + Rk+1β

k+1) − (PN(Ak+1)(x
k) + Gk+1b

k+1
Ak+1

) =

Φ̃k+1x
k + Rk+1β

k+1 − [(I − Φ̃k+1) + Φ̃k+1][(I − Φ̃k+1)−1Rk+1]bk+1
Ak+1

=

Φ̃k+1x
k + Rk+1β

k+1 − Rk+1b
k+1
Ak+1

− Φ̃k+1Gk+1b
k+1
Ak+1

− Φ̃k+1PN(Ak+1)(x0) =

Φ̃k+1[xk − (PN(A)(x0) + GbA)] + Rk+1(βk+1 − bk+1
Ak+1

). (41)

Now, from (25), (37), (24), (8) and (36) we obtain

βk+1−bk+1
Ak+1

= bk+1−yk+1−bk+1
Ak+1

= bk+1
∗ −yk+1 = bk+1

∗ −Φk+1(Ak+1; bk+1) =

bk+1
∗ − [PN(At

k+1)
⊕ Φ̃k+1]k+1(bk+1) = bk+1

∗ − [PN(At
k+1) ⊕ (Φ̃k+1)k+1](bk+1) =

[bk+1
∗ − PN(At

k+1)
(bk+1)] − (Φ̃k+1)k+1(bk+1) =

−(Φ̃k+1)k+1(bk+1) = −(Φ̃k+1)k+1(bk+1
Ak+1

). (42)

Let x∗ ∈ IRn be defined by ( see (35))

x∗ = PN(A)(x0) + GbA. (43)

Then, from (41) and (42) we obtain

xk+1 − x∗ = Φ̃k+1(xk − x∗) − Rk+1(Φ̃k+1)k+1(bk+1
Ak+1

), ∀ k ≥ 0. (44)

By iterating the equality (44) we get

xk+1 − x∗ = Φ̃k+1 . . . Φ̃1(x0 − x∗)−
k∑

j=1

Φ̃k+1 . . . Φ̃j+1Rj(Φ̃j)j(bj
Aj

) − Rk+1(Φ̃k+1)k+1(bk+1
Ak+1

),

thus, by taking norms

‖ xk+1 − x∗ ‖ ≤ ‖ Φ̃k+1 ‖ . . . ‖ Φ̃1 ‖‖ x0 − x∗ ‖ +
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k∑
j=1

(‖ Φ̃k+1 ‖ . . . ‖ Φ̃j+1 ‖‖ Φ̃j ‖j‖ Rj ‖‖ bj
Aj

‖)+

‖ Rk+1 ‖‖ Φ̃k+1 ‖k+1‖ bk+1
Ak+1

‖ . (45)

From (10) we obtain that

‖ Φ̃k ‖< 1, ∀ k ≥ 0, ‖ Φ̃∞ ‖< 1. (46)

Let then k0 ≥ 1 and M0 > 0 be such that

‖ Φ̃k ‖< 1+ ‖ Φ̃∞ ‖
2

< 1, (47)

‖ Rk ‖<‖ R∞ ‖ + 1, ‖ bk+1
Ak+1

‖≤ M0, ∀ k > k0 (48)

(such k0 and M0 exist according to (31), (46) and Proposition 2(ii)). Let now
µ ∈ (0, 1) and M > 0 be defined by

µ = max{‖ Φ̃1 ‖, . . . , ‖ Φ̃k0 ‖, 1+ ‖ Φ̃∞ ‖
2

}, (49)

M = max{‖ R1 ‖, . . . , ‖ Rk0 ‖, ‖ R∞ ‖ + 1, ‖ b0
A0

‖, . . . , ‖ bk0
Ak0

‖, M0}. (50)

Then, from (45)-(50) we get

‖ xk+1 − x∗ ‖≤ µk+1(‖ x0 − x∗ ‖ +M2(k + 1)), ∀ k ≥ 0, (51)

thus limk→∞ ‖ xk+1 − x∗ ‖= 0 and the proof is complete.

Corollary 1 In the above hypothesis, for any x0 ∈ IRn the sequence (xk)k≥0

generated with the algorithm PREKAZ converges to a solution of the problem
(1). Moreover, it converges to the minimal norm solution xLS if and only if
x0 ∈ R(A).

3 Some computational aspects

The step (24) of the above algorithm (in which we must apply k-times the
application Φ (Ak; ·)) requires a big computational effort (see also Remark 3).
Indeed, if M is the number of iterations of (22) - (27) to obtain some accuracy,
then the total number of applications of Φ (Ak; ·) in (24), denoted by NS, is

NS =
M(M + 1)

2
, (52)
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which, even for small values of M can be enough big (see the last section of
the paper). In order to improve this we can try to replace Φk in (24), by Φf(k),
where f : (0,∞) → (0,∞) is a function such that the following assumptions
are fulfiled:
(i) the algorithm (22) - (27) still converges and with ”almost the same” con-
vergence rate (see (51);
(ii) the total number of applications of Φ(Ak; ·) in (24), denoted by NS(f)
and given by

NS(f) =
M∑

k=1

f(k) (53)

satisfies
NS(f) < NS (54)

(in (24) we have f(k) = k, ∀k ≥ 1). In this sense, by also taking into account
(51) we formulate the following problem: for a given number γ ∈ (0, 1), find
f as before, such that ∑

k≥1

γf(k) < +∞ (55)

and (54) holds. The following three results give possible answers to the above
request (55) (for the proof see [9]).

Theorem 4 (i) If a > 0, a �= 1 the series
∑

k≥1 γ[logak] converge if and only
if a ∈ (1, 1

γ );
(ii) if a ∈ (γ,∞) then the series

∑
k≥1 γ[ka] converge;

(iii) if a ∈ ( 1
γ ,∞) then the series

∑
k≥1 γ[ak] converge, where by [x] we denoted

the integer part of the real number x.

Remark 5 We will see in the following section of the paper that, for some
values of a the choices of f as in theorem 4 before, also satisfy the assumption
(55).

4 Numerical experiments

We considered in our numerical experiments the following first kind integral
equation: for a given function y ∈ L2([0, 1]), find x ∈ L2([0, 1]) such that

∫ 1

0

k(s, t)x(t)dt = y(s), s ∈ [0, 1]. (56)
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We discretized (56) by a collocation algorithm with the collocation points (see
e.g. [10])

si = (i − 1)
1

n − 1
, i = 1, 2, . . . , n,

and we obtained a symmetric system

Ax = b, (57)

with the n × n matrix A and b ∈ IRn given by

Aij =
∫ 1

0

k(si, t)k(sj , t)dt, bi = y(si). (58)

We considered the following data

k(s, t) =
1

1 + |s − 0.5| + t
, y(s) = ln

2.5 − s

1.5 − s
,

s ∈ [0, 0.5) ln 1.5 + s 0.5+s, s ∈ [0.5, 1] (59)

where the right hand side y was computed such that the equation (56) has the
solution x(t) = 1, ∀t ∈ [0, 1]. Then, from (58) we obtained

Aij =
∫ 1

0

k(si, t)k(sj , t)dt =
1

αi(1 + αi)
, if

αi = αj ,1
αi−αj ln

(1+αj)αi
(1+αi)αj

,if
αi �= αj bi = y(si), (60)where

αi = 1 +
∣∣∣∣si − 1

2

∣∣∣∣ , i = 1, . . . , n. (61)

For n ≥ 3, the rank of the matrix A is given by

rank(A) =
n + 1

2
, if

nisoddn
2 , ifniseven.(62)First of all we have to observe that, because the prob-

lem (56) with the data (59) is consistent, it results that the system (57) is also
consistent. We then applied the algorithm PREKAZ, for different values of n
and different choices for the function f in (53), with the ”residual” stopping
rule

‖ Axk − b ‖≤ 10−6. (63)

The corresponding numbers of iterations are presented in Table 1 below.
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Table 1. Results for the system (57)
n f(k) = k f(k) = [k0.8] f(k) = [log1.3k]
8 21 21 21
16 22 22 23
32 22 23 23
64 23 24 24
128 23 24 25

In Table 2 we computed the values NS(f) from (53) for all the choices for f
from Table 1.

Table 2. Total number of iterations
n NS(k) NS([k0.8]) NS([log1.3k])
8 231 139 164
16 253 145 172
32 253 145 172
64 276 161 175
128 276 161 175

We may observe a reduction of the total number of iterations for reaching the
accuracy requested by the stopping rule (63).
Note. All the computations were made with the Numerical Linear Algebra
software package OCTAVE, freely available under the terms of the GNU Gen-
eral Public License, see www.octave.org.
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