
An. Şt. Univ. Ovidius Constanţa Vol. 12(1), 2004, 99–114

COMPARING CONVOLUTIONS WITH

DHAENE-VANDEBROEK AND DE PRIL’S
RECURSIONS FROM A COMPUTATIONAL

POINT OF VIEW

Raluca VERNIC

Abstract

In this paper, we compare from a computational point of view three
algorithms used in a specific actuarial context to evaluate the distribu-
tion function of the aggregate claims. For comparison, the number of
multiplications involved is considered.

1 Introduction

One quantity of great interest in insurances is the aggregate claims distribu-
tion, which is usually estimated for a homogeneous portfolio of policies during
a fixed period. Since there exists several methods to evaluate the aggregate
claims distribution, an important question is which one performs better from
the computational point of view and under what circumstances. Between the
papers that attempt to give an answer to these questions, usually for some
particular algorithms, we recall [1], [2], [5], [6] etc.

In the present paper we compare three algorithms by the number of mul-
tiplications required. The first two algorithms are exact ones, though their
accuracy was disputed because of the rounding and scaling involved (see e.g.
[6]), while the third algorithm is clearly an approximate one.

The paper is structured as follows: in the second section we present the
algorithms, while section three is concerned with the evaluation and com-
parison of the number of multiplications. This section is divided into several
subsections because, depending on the support of the severity distribution, the
number of multiplications required by the same algorithm can be significantly
different.

Key Words: Aggregate claims distribution; Convolutions; Recursive algorithms; Com-
putational aspects.

99

100 Raluca VERNIC

2 The algorithms

Consider a portfolio of n policies. Let us divide this portfolio into a number
of classes by clustering all policies with the same probability of a strictly
positive claim amount and with the same severity distribution, as displayed
in the next table. The severity distribution of a policy corresponds to the
conditional distribution of the claim amount, given that a claim has occurred.

claim probability
q1 q2 · · · qj · · · qb

g1(x)
g2(x) · · ·

claim · · ·
amount gi(x) · · · nij

distribution · · ·
ga(x)

The class (i, j), i = 1, . . . , a, j = 1, . . . , b, contains all policies with severity
distribution gi and claim probability qj = 1 − pj . The number of policies in
class (i, j) is denoted by nij . It is assumed that for each j, 0 < qj < 1 and
that the claim amounts of the individual policies are positive integer multiples
of some convenient monetary unit, so that for each i, gi(x) is defined for
x = 1, 2, . . .

The probability that the aggregate claims S equal s is denoted by p(s) :=
Pr [S = s]. We assume that the claim amounts of the policies are mutually
independent.

We will now recall three methods for evaluating Pr [S = s] and we will
compare them by the number of multiplications involved when calculating the
distribution function (df) of S up to the value s.

2.1 Convolutions method

This is the straightforward method for evaluating Pr [S = s] .
We denote by Xij the r.v. claim amount for a policy belonging to the class

(i, j) . Then the distribution of Xij is given by

Xij

(
0 1 2 ... k ...
pj qjgi(1) qjgi(2) ... qjgi(k) ...

)
, i = 1, . . . , a, j = 1, . . . , b.

(1)
In order to obtain the probabilities of the aggregate claims S by simply

COMPARING CONVOLUTIONS 101

convolutions, we rewrite it as

S =
a∑

i=1

b∑
j=1

(Xij + ... + Xij)

︸ ︷︷ ︸
nij−times

= X1 + ... + Xn.

Then the probabilities of S can be obtained starting from

p∗1S (s) = pX1 (s) , s = 0, 1, ...

p∗k
S (s) =

s∑
y=0

p∗k−1
S (s − y) pXk

(y) , s = 0, 1, ..., k = 2, 3, ..., n, (2)

where pXk
(y) := P (Xk = y) , k = 1, ..., n. Then p (s) = p∗n

S (s) .

2.2 Dhaene-Vandebroek recursion

In [4], Dhaene & Vandebroek proposed the following exact recursive formula

p(s) =
1
s

a∑
i=1

b∑
j=1

nij vij(s), s = 1, 2, ... (3)

with the initial value given by

p(0) =
a∏

i=1

b∏
j=1

(pj)
nij (4)

and where the coefficients vij(s) are determined by

vij(s) =
qj

pj

s∑
x=1

gi(x) [x p(s − x) − vij(s − x)] , s = 1, 2, ... (5)

and vij(s) = 0 otherwise.
Notice the similarity between Panjer’s recursion (see [7]) and the recursions

in (3) and (5). Moreover, in the particular case when a = b = 1, Dhaene-
Vandebroek’s recursion can be reduced to Panjer’s recursion as follows: all
the indexes vanish and (3) becomes

p(s) =
n

s
v (s) , s = 1, 2, ..., (6)

102 Raluca VERNIC

while (5) reduces to

v(s) =
q

p

s∑
x=1

g(x) [x p(s-x)-v(s-x)] =
q

p

s∑
x=1

[
x p(s-x)-

s-x
n

p (s-x)
]
g(x)=

=
q

p

s∑
x=1

(n + 1)x − s

n
p (s − x) g(x), s = 1, 2, ...

Introducing this into (6), we obtain

p(s) =
q

ps

s∑
x=1

[(n + 1)x − s] g(x)p (s − x) , s = 1, 2, ...,

which is exactly Panjer’s recursion for this particular model (i.e. the frequency
distribution here is Binomial (q, n)).

2.3 De Pril’s approximation

An approximative recursive formula for the evaluation of the aggregate claims
distribution in the individual model was given by De Pril in [3] as

f (r)(s) =
1
s

a∑
i=1

min(r,s)∑
k=1

A(i, k)
s∑

x=k

x g∗k
i (x) f (r)(s − x) for s = 1, 2, (7)

with

A(i, k) =
(−1)k+1

k

b∑
j=1

nij

(
qj

pj

)k

, (8)

and the initial value p(0) from (4).
In this case, the convolutions g∗k

i are given by

g∗k
i (s) =

s−k+1∑
x=1

g
∗(k−1)
i (s − x)gi (x) , k = 2, ..., s, (9)

since gi (x) is defined for x ≥ 1, so we must have s − x ≥ k − 1.

3 Evaluating and comparing the number of multiplica-
tions

To begin, notice that a division can be seen as a multiplication with the inverse
element. Depending on gis support, the number of multiplications required by

COMPARING CONVOLUTIONS 103

the same algorithm can be significantly different. This is why in this section
we consider three situations.

In the first case we assume that all gi are well-defined (i.e. non-zero) for
all the values in their support. The support can be 1,2,... , i.e. unbounded
(infinite case); or it can be finite, upper-bounded by the value mi for gi, i.e.
1,...,mi (finite case).

In the second case we assume that each gi can be zero for some values in
its definition support.

The last case will include some other particular cases that might require
special attention.

3.1 A first case

3.1.1 Infinite case

We will now assume that all gi are defined for all 1,2,..., so their support
is upper unbounded, or its upper bound is very large (i.e. gi (x) > 0 for
x = 1, 2, ...). Since the upper bound is large enough, we can consider in the
following that s is also very large. Let’s now count the multiplications involved
in the three algorithms.

Convolutions method.
We notice that in order to evaluate the df of S up to value s, all the

formulas involved can be stopped at s. We start by counting the multiplications
required for the evaluation of the probability functions of all Xij . Since for all
i = 1, . . . , a, j = 1, . . . , b we need only the values pj , qjgi(1), ..., qjgi(s), this
means exactly abs multiplications.

We also need to calculate p∗k
S (x) for x = 0, ..., s, k being fixed for the

moment. From formula (2), each p∗k
S (x) involves x + 1 multiplications. For

x = 0, ..., s this gives a total of

1 + 2 + ... + (s + 1) =
(s + 1) (s + 2)

2
multiplications.

We see that this number does not depend on the convolution order k, so that
evaluating all p∗k

S (x) for x = 0, ..., s and k = 2, ..., n requires a number of
(n − 1) (s + 1) (s + 2)

2
multiplications, hence a total of

(n-1) (s+1) (s+2)
2

+abs =
n − 1

2
s2+

(
3 (n-1)

2
+ab

)
s+(n-1) multiplications.

(10)

104 Raluca VERNIC

Dhaene-Vandebroek recursion. Let’s now count the multiplications in-
volved:

- one p (s) needs (ab + 1) multiplications (see (3)), so that p (1) , ..., p (s) re-
quires (ab + 1) s multiplications;

- for fixed s, formula (5) needs (2s + 1) multiplications; we must perform
it for i = 1, ..., a, j = 1, ..., b, i.e. ab times, so we have ab (2s + 1)
multiplications; we also need to evaluate vij(1), ..., vij(s), which requires∑s

i=1 ab(2i + 1) = ab [s (s + 1) + s] multiplications.

Then the Dhaene-Vandebroek algorithm involves approximately

s (ab + 1) + ab [s (s + 1) + s] = abs2 + (3ab + 1) s (11)

multiplications.

De Pril’s approximation. We will now count the multiplications for this
algorithm. We will take r small (which is the usual case), such that r < s.

Starting with the convolutions (9), we see from (7) that we need all the
convolutions from g∗2i (2) till g∗r

i (s), i = 1, ..., a. We consider the following table
which gives the number of multiplications required by all the convolutions till
g∗r

i (s) :

g∗2i (2):1
g∗2i (3):2 g∗3i (3):1
...

... g
∗(r-1)
i (r): 2 g∗r

i (r):1
...
g∗2i (s-1):(s-2) g∗3i (s-1):((s-3) ... g

∗(r-1)
i (s-1):(s-r+1) g∗r

i (s-1):(s-r)
g∗2i (s):(s-1) g∗3i (s):(s-2) ... g

∗(r-1)
i (s):(s-r+2) g∗r

i (s):(s-r+1)

Total:
(s-1)s

2
(s-2)(s-1)

2
...

(s-r+2)(s-r+3)
2

(s-r+1)(s-r+2)
2

Therefore, for a fixed i, all the convolutions till g∗r
i (s) need

s∑
j=s-r+2

(j-1) j

2
=

r−1∑
j=1

(s-j) (s-j+1)
2

=

=
1
2

[(
s2+s

)
(r-1)+

(r-1) r (2r-1)
6

- (2s+1)
(r-1) r

2

]
=

=
r-1
2

[
s2- (r-1) s+

(r-2) r

3

]
multiplications.

COMPARING CONVOLUTIONS 105

Taking now i = 1, ..., a, we obtain a total of
a (r − 1)

2

[
s2 − (r − 1) s +

(r − 2) r

3

]
multiplications.

Since the evaluation of A(i, k) does not involve s, we neglect it for the
moment. We will now consider f (r)(x) from (7). We have two cases:

1. If x < r then it needs: one multiplication from
1
s
, ax from the multipli-

cations with A(i, k), and for the last sum 2a (x + ... + 1). This gives a
total of 1 + a(x2 + 2x) multiplications.

2. If x ≥ r then we have: one multiplication from
1
s
, ar from the multipli-

cations with A(i, k), and for the last sum 2a (x + ... + (x − r + 1)). This
gives a total of 1 + a(2xr − r2 + 2r) multiplications.

For f (r)(x), x = 1, ..., s, we finally get a number of multiplications equal to

r−1∑
x=1

[
1+a(x2+2x)

]
+

s∑
x=r

[
1+a(2xr-r2+2r)

]
=ars2+

(
1-ar2+3ar

)
s+

ar (r-1) (2r-7)
6

.

So, for the De Pril approximation, we need a total amount of multiplications
equal to

a (r-1)
2

[
s2- (r-1) s+

(r-2) r

3

]
+ars2+

(
1-ar2+3ar

)
s+

ar (r-1) (2r-7)
6

=

= a
3r − 1

2
s2 − 3ar2 − 8ar + a − 2

2
s +

ar (r − 1) (r − 3)
2

. (12)

Here we can add about abr multiplications for the evaluation of A(i, k), i =
1, ..., a, k = 1, ..., r.

Conclusions. From the arguments above, we can see that the evaluation of
the df of S up to value s requires a number of multiplications depending on s2

for all three algorithms. We will now compare them separately, based mainly
on the coefficients of s2.

1. Convolutions versus Dhaene-Vandebroek. We take into considera-
tion (10) and (11). It is easy to see that for fixed ab, Dhaene-Vandebroek
requires less multiplications when n ≥ 2ab + 1, while convolutions are
better when n < 2ab + 1. This is clear since (11) does not depend on n,
while (10) increases with n.

106 Raluca VERNIC

2. Convolutions versus De Pril. From (10) and (12) we can see that
De Pril is better when n ≥ a (3r − 1)+1. Intuitively, one could say that
if n < a (3r − 1)+1 convolutions seems better, but numerical evaluation
shows that the difference between the number of multiplications of the
two algorithms depends in this case also on b: when b increases, the max-
imum value of n for which convolutions are better than De Pril decreases
under a (3r − 1)+1. For example, taking a = 10 and r = 3, the maximum

n for which convolutions give less multiplications is

⎧⎨
⎩

79 for b = 5
78 for b = 10
77 for b = 20

etc.

3. Dhaene-Vandebroek versus De Pril. Looking at (11) and (12) we

see that De Pril performs better when b ≥ 3r − 1
2

(i.e. there are more

classes with different claim probabilities). Dhaene-Vandebroek will need

less multiplications than De Pril when b <
3r − 1

2
.

In conclusion, under reasonable assumptions (i.e. when n is large enough),
when evaluating the df, the convolutions method will require a larger number
of multiplications than the other two methods.

3.1.2 Finite case

We will now assume that all gi are defined on a finite support, say on 1, 2, ..., mi, i =

1, ..., a. Then s can take only the values 0, 1, 2, ..., m+, where m+ =
a∑

i=1

nimi.

Here ni =
b∑

j=1

nij is the number of policies in class i. Hence, the number of

multiplications will be smaller than in the infinite case. Because the sums
involved will now have some supplementary restrictions which complicate the
counting, we will restrict to the case when s = m+, so we count the multipli-
cations needed to evaluate the entire distribution of S.

Convolutions method. Counting first the multiplications in (1) gives
a∑

i=1

mi.

Because of the finite support of each gi, formula (2) becomes

p∗k
S (s) =

min{s,m′
k}∑

y=max{0,s−m′
1−...−m′

k−1}
p∗k−1

S (s-y) pXk
(y) , s=0, 1, ..., m′

1+...+m′
k,

(13)

COMPARING CONVOLUTIONS 107

k=2, 3, ..., n, where m′
k = max {y |pXk

(y) > 0} . Therefore, it is clear that

m+ =
n∑

i=1

m′
i.

For simplicity, we will now assume that m′
1 ≥ ... ≥ m′

n. Counting the
multiplications involved in (13), for fixed k, gives:

- for a fixed s ∈ {0, ..., m′
k − 1}, we need s + 1 multiplications;

- for a fixed s ∈ {m′
k, ..., m′

1 + ... + m′
k−1}, we need m′

k + 1 multiplications;

- for s ∈ {m′
1 + ... + m′

k−1 + 1, ..., m′
1 + ... + m′

k}, we need m′
k, m′

k − 1, ..., and
respectively 1 multiplications.

This gives a total of multiplications equal to

2
m′

k−1∑
s=0

(s+1)+ (m′
k+1)

(
m′

1+...+m′
k−1-m

′
k+1

)
=(m′

k+1)
(
m′

1+...+m′
k−1+1

)
.

Now we sum for k = 2, ..., n and we have

n∑
k=2

(m′
k + 1)

(
m′

1 + ... + m′
k−1 + 1

)
=

= (n-1)+
n∑

k=2

m′
k

(
m′

1+...+m′
k−1

)
+

n∑
k=2

(
m′

1+...+m′
k−1+m′

k

)
multiplications.

Hence, the total number of multiplications is

a∑
i=1

mi + (n − 1) +
n∑

k=2

m′
k

(
m′

1+...+m′
k−1

)
+

n∑
k=2

(m′
1 + ... + m′

k) . (14)

Dhaene-Vandebroek recursion. We start the counting with formula (3),
which must be performed for s = 1, 2, ..., m+. This means (1 + ab)m+ multi-
plications.

Because of the finite support of each gi, the sum in formula (5) will now

be
min{s,mi}∑

x=1

. Therefore, for fixed i, j this formula needs:

- when s ∈ {1, ..., mi} , 1 + 2s multiplications;

- when s ∈ {mi + 1, ..., m+} , 1 + 2mi multiplications for each s.

108 Raluca VERNIC

We obtain a total of

m+ + 2
[
mi (mi + 1)

2
+ mi (m+ − mi)

]
multiplications.

When i = 1, ..., a, j = 1, ..., b, this gives

abm+ + b

a∑
i=1

mi (2m+ − mi + 1) multiplications.

Then the total number of multiplications required in this finite case is(
2ab + 1 + 2b

a∑
i=1

mi

)
m+ + b

a∑
i=1

mi (1 − mi) . (15)

De Pril’s approximation. The number of multiplications required for this
approximation are more difficult to calculate.

We start with the convolutions (9), which will now be

g∗k
i (s) =

min{mi,s−k+1}∑
x=max{1,s−(k−1)mi}

g
∗(k−1)
i (s − x)gi (x) , s = k, ..., kmi, k = 2, ..., r.

We will use again a table that contains all the convolutions involved and the
corresponding number of multiplications.

g∗2i (2):1 g∗3i (3):1 ... g∗r
i (r):1

g∗2i (3):2
... g∗3i (mi+1):mi-1 ... g∗r

i (mi+r-2):mi-1
g∗2i (mi):mi-1 g∗3i (mi+2):mi ... g∗r

i (mi+r-1):mi

g∗2i (mi+1):mi
g∗2i (mi+2):mi − 1 g∗3i (2mi+1):mi ... g∗r

i ((r-1)mi+1):mi

... g∗3i (2mi+2):mi-1 ... g∗r
i ((r-1)mi+2):mi-1

g∗2i (2mi-1):2
g∗2i (2mi):1 g∗3i (3mi):1 ... g∗r

i (rmi):1
Total: m2

i mi (2mi-1) ... mi [(r-1)mi- (r-2)]

Therefore, for a fixed i, all the convolutions g∗k
i , k = 2, ..., r, need

r∑
k=2

mi [(k − 1)mi − (k − 2)] =
r − 1

2
mi (rmi − r + 2) multiplications.

COMPARING CONVOLUTIONS 109

For all i ∈ {1, ..., a}, this gives a total of

r − 1
2

a∑
i=1

mi (rmi − r + 2) (16)

multiplications for the convolutions involved.

We will now turn our attention to the multiplications from f (r) (s) , s =

1, ..., m+. First, we have the term
1
s
, that needs a total of m+ multiplications.

Second, the terms A (i, k) add a total of

a

r∑
s=1

s + ar

m+∑
s=r+1

1 =
ar

2
(2m+ − r + 1) multiplications. (17)

Now, the most difficult part is to count the multiplications that appears in
the third sum of (7). For this finite case, these sums will be

a∑
i=1

min(r,s)∑
k=1

A(i, k)
min{s,kmi}∑

x=k

x g∗k
i (x) f (r)(s − x).

Let’s start by fixing i and varying s. We assume that r is small enough, such
that r ≤ mi for any i. We then have four situations:

1. s ∈ {1, ..., r} ; this involves

r∑
s=1

2 [s + (s − 1)+...+1] =
r∑

s=1

s (s + 1) =
r (r + 1) (r + 2)

3
multiplications.

(18)

2. s ∈ {r + 1, ..., mi} ; this involves the following number of multiplications

mi∑
s=r+1

2 [s+(s-1)+...+ (s − r+1)] =r

mi∑
s=r+1

(2s-r+1)=r (mi+2) (mi-r) .

(19)

3. We fix s ∈ {kmi + 1, ..., (k + 1)mi} , k ∈ {1, ..., r−1}. Then the last two
sums of f (r) (s) require

2 [mi+(2mi − 1)+...+ (kmi − k + 1)+ (s − k)+ (s − k − 1)+...+ (s − r + 1)] =

= mik
2 + mik + 2 (r − k) s − r2 + r multiplications.

110 Raluca VERNIC

We now have to sum this for s and k, and after some calculation we get

r−1∑
k=1

(k+1)mi∑
s=kmi+1

[
mik

2 + mik+2 (r-k) s-r2+r
]
=

mi

r−1∑
k=1

[−mik
2+ (2rmi-1)k+r (mi-r+2)

]
=

=
r (r − 1)mi

2

[
4r+7

3
mi − 2r+3

]
(20)

multiplications.

4. s ∈ {rmi + 1, ..., m+} ; this involves a number of multiplications

m+∑
s=rmi+1

2 [mi + (2mi − 1)+...+ (rmi − r + 1)] = (21)

r (m+ − rmi) [(r + 1)mi − r + 1] .

Now we must add all the values in (18)-(21) and let i vary, so, after some
calculation, we obtain a number of multiplications equal to

ar (r + 1) (r + 2)
3

+

+r

a∑
i=1

[
−m2

i

2r2 + 3r + 1
6

+
(

r + 1
2

+ (r + 1)m+

)
mi-2r- (r-1)m+

]
=

=r

{[
(r+1)

a∑
i=1

mi-a (r-1)

]
m+ − (r+1) (2r+1)

6

a∑
i=1

m2
i +

r+1
2

a∑
i=1

mi+
a (r-2) (r-1)

3

}
.

In conclusion, De Pril needs a total number of multiplications obtained adding
the last value to (16), (17) and m+. We get[

1+r (r+1)
a∑

i=1

mi-ar (r-2)

]
m+-

(
r2+2

)
r

3

a∑
i=1

m2
i + (2r-1)

a∑
i=1

mi+ (22)

+
ar (r-1) (2r-7)

6
.

Here we can add about abr multiplications for the evaluation of A(i, k), i =
1, ..., a, k = 1, ..., r.

COMPARING CONVOLUTIONS 111

Particular case: m1 = ... = ma = m. It is more easy to compare the
number of multiplications involved in the three algorithms in this particular
case. Besides, the assumption is not very restrictive.

For the convolutions method, (14) becomes in this case:

n (n − 1)
2

m2 +
n2 + n + 2 (a − 1)

2
m + (n − 1) , (23)

for Dhaene-Vandebroek (15) gives

ab(2n − 1)m2 + (ab + 2abn + n)m, (24)

while for De Pril (22) reduces to

ar

3
[
3n (r+1) -r2-2

]
m2+ [a (2r-1) -anr (r − 2)+n] m+ar

[
b+

(r-1) (2r-7)
6

]
.

(25)
Conclusions. The following limiting values are approximative, but one

can get a clear idea.

1. Convolutions versus Dhaene-Vandebroek. We compare the terms
in m2 from (23) and (24). Some calculations show that Dhaene-Vandebroek
requires less multiplications when n ≥ 4ab + 1, while convolutions are
better when n < 4ab + 1.

2. Convolutions versus De Pril. From the terms in m2 in (23) and (25)
we can see that De Pril is better than convolutions if n > 1+2ar (r + 1) .

3. Dhaene-Vandebroek versus De Pril. Looking again at the terms in
m2 in (24) and (25) we see that De Pril performs better than Dhaene-
Vandebroek when 2b > r (r + 1) (i.e. there are more classes with differ-
ent claim probabilities, like in the infinite case).

Hence, we have the same conclusion: when evaluating the df, if n is large
enough, the convolutions method will require a larger number of multiplica-
tions than the other two methods.

3.1.3 A special case

A very particular case often considered for its simplicity is when a = 1 and
g1 (x) = 1 for a certain x ∈ N∗, i.e. the r.v. claim amount for a policy in

class (1, j) is given by X1j

(
0 x
pj qj

)
. Usually, x = 1, but in the following

we consider a general x.

112 Raluca VERNIC

The number of multiplications for evaluating the entire distribution of S
by the convolutions method can be easy obtained as

n2 + n − 2. (26)

For Dhaene-Vandebroek, we have (b + 1)n multiplications from (3) and 2nb
from (5), hence a total of

(3b + 1)n. (27)

It is easy to see that when n > 3b + 1, Dhaene-Vandebroek needs less multi-
plications than the convolutions.

Back to De Pril, (8) requires br multiplications, and (7) requires (2r + 1)n−
r2 + r, while the convolutions in (9) vanish since g∗k

i (kx) = 1. Hence we have
a total of

(2r + 1)n − r2 + (b + 1) r.

Comparing De Pril with Dhaene-Vandebroek, we can see that the first one is
better when 2r < 3b.

In conclusion, for n and b large enough, we have the following order: De
Pril is better than Dhaene-Vandebroek, which is better than convolutions.

3.2 A second case

In this case we assume that any gi can be zero for some values in its definition
support. Then some multiplications will vanish and in this case it’s very
difficult to directly count the number of multiplications involved. So the best
way to do it is by programming the formulas involved and simultaneously
counting the multiplications. In the table below we present some numerical
examples. The general conclusion, that convolutions are better just for small
n, seems to hold in this case also.

In the following example we consider a = b = 3, n11 = n22 = n33, nij = 0
for i �= j, q1 = 0.4, q2 = 0.3, q3 = 0.2 and

g1

(
2 4

0.3 0.1

)
, g2

(
1 3

0.2 0.1

)
, g3

(
5

0.2

)
.

We denote by smax the maximum requested value of S, i.e. we must calcu-
late Pr [S = s] for s = 0, ..., smax. The following table contains the number of
multiplications required by convolutions (column 3), De Pril (column 4) and
Dhaene-Vandebroek (column 5). In the last column we have the algorithm
giving the smallest number of multiplications for a specific choice of nii and
smax.

COMPARING CONVOLUTIONS 113

nii smax Convolutions De Pril Dhaene-Vandebroek Minimum

2 24 123 1088 1164 Convolutions

5 50 868 2440 2438 Convolutions

10 50 2839 2440 2438 Dhaene-Vandebroek

10 100 4179 5040 4888 Convolutions

20 100 5895 5040 4888 Dhaene-Vandebroek

3.3 Conclusion

For all the cases considered, the conclusion is the same: under reasonable
assumptions (i.e. when the portfolio is large enough), the convolutions method
will require a larger number of multiplications than the other two methods.

Acknowledgment. This paper was realized with the financial support of
the Dutch Organization for Scientific Research (NWO no. 048.031.2003.001).

References

[1] Bruno, M.G. and Tomassetti, A., On the computation of convolution in actuar-

ial problems. IME (Insurance: Mathematics & Economics) Congress, Rome 2004

(www.ime2004rome.com).

[2] De Pril, N., Improved recursions for some compound Poisson distributions. Insurance:

Mathematics & Economics 5 (1986), 129-132.

[3] De Pril, N., The aggregate claims distribution in the individual life model with arbitrary

positive claims. ASTIN Bulletin 19 (1989), 9-24.

[4] Dhaene, J. and Vandebroek, M., Recursions for the individual model. Insurance: Math-

ematics & Economics 16 (1995), 31-38.

[5] Hipp, C., Speedy Panjer for phasetype claims. IME (Insurance: Mathematics & Eco-

nomics) Congress, Rome 2004 (www.ime2004rome.com).

[6] Kaas, R., How to (and how not to) compute stop-loss premiums in practice. Insurance:

Mathematics & Economics 13 (1994), 241-254.

[7] Panjer, H.H., Recursive evaluation of a family of compound distributions. ASTIN Bul-

letin 12 (1981), 22-26.

114 Raluca VERNIC

”Ovidius” University of Constanta
Department of Mathematics and Informatics,
900527 Constanta, Bd. Mamaia 124
Romania
e-mail: rvernic@univ-ovidius.ro

