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MODULES WITH SLIDING DEPTH

Giancarlo Rinaldo

Abstract

Several bounds for the depth of quotients of the symmetric algebra of
a finitely generated module over a local C.M. ring are obtained, when its
maximal irrelevant ideal is generated by a proper sequence of 1-forms
and modulo conditions on the depth of the homology modules of the
Koszul complex associated to this ideal (sliding depth conditions).

1 INTRODUCTION

Let R be a commutative noetherian ring, and let E be a finitely generated
R-module with rank.

We denote by SymR(E) or S(E), the symmetric algebra of E over R, that
is the graded algebra over R:

S(E) =
⊕

t≥0

Symt(E)

and with S+ the maximal irrelevant ideal of S(E).
In [2], J.Herzog, A.Simis, W.V.Vasconcelos, introduced the sliding depth

condition for a module that is precisely the following:
Let (R, m) be a C.M. local ring of dimension d. Let E be a finitely gener-

ated R-module, S(E) the symmetric algebra of E and S+ = (x1, . . . , xn) = (x)
its maximal irrelevant ideal generated by the linear forms xi .

We say that E satisfies the sliding depth condition SDk, with k integer, if

depth(m)Hi(x, S(E))i ≥ d − n + i + k 0 ≤ i ≤ n − k,

where Hi(x, S(E))i is the i-th graded component of the Koszul homology
module Hi(x, S(E)), and the elements of the ring R have degree 0.

Key Words: Symmetric algebra, sliding depth.

59



60 Giancarlo Rinaldo

If k = rank(E) we shall say that E satisfies the sliding depth condition
SD.

When the R-module E satisfies the SD condition and E verifies F0 (for
every k, Fk is a condition on the Fitting ideals of a presentation of E, that is a
condition on the height of the ideal generated by the minors of the presentation
of E [see [2], Section 2]), this implies that S(E) is Cohen Macaulay and the
approximation complex Z(E) associated to E is acyclic (see [2], theorem 6.2).

The aciclicity of the Z(E)-complex can be obtained for modules for which
the ideal S+ of the symmetric algebra S(E) is generated by a proper sequence
(see [7]) or a proper sequence in E (see [6]).

Then an important way to obtain informations about theoretic properties
of S(E) is that S+ is generated by a proper sequence in E.

If E satisfies SDk and S+ is generated by a proper sequence in E, we are
able to obtain bounds for the depth of quotients of S(E) by ideals generated
by a subsequence of a system of generators of S+.

The idea arises from some results about ideals of J. Herzog, W.V. Vascon-
celos, R. Villarreal in [3].

Our results concern modules E finitely generated over a local C.M. ring
R and that are not necessarily ideals of R. Moreover, in the case E = I =
faithful ideal of R, we obtain the classical results on ideals.

More precisely, in section 2, we define the depth condition SDk for a module
E and we prove some properties related to it.

In section 3, we study the Koszul complex associated to a sequence (x1, . . . , xn)
generating the ideal S+ =

⊕
t>0 St(E) of the symmetric algebra S(E) and

when this sequence is a proper sequence in E, we investigate the link between
the SDk condition and the existence of bounds for quotients of S(E) by a sub-
sequence (x1, . . . , xi), i = 0, . . . , n of (x1, . . . , xn) (that is a proper sequence
again) and special quotients of ideals of S(E)/(x1, . . . , xi) constructed starting
from (x1, . . . , xn).

The main theorem is the following: Let (R, m) be a C.M. local ring of

dimension d. Let x1, . . . , xn a proper sequence of the module E, under a
condition on the depth of the homology module of the Koszul complex (see
theorem 3.3), the following conditions are equivalent:

i) E satisfies SDk;

ii) depth(m,S+)S(E)/(x1, . . . , xi) ≥ d − i + k, i = 0, . . . , n;

iii) depth(m,S+)(x1, . . . , xi+1)/(x1, . . . , xi) ≥ d − i + k, i = 0, . . . , n − 1.

Finally we remark that in the case E = I, our results complete those
contained in [3].
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I thank Prof. Gaetana Restuccia for several useful suggestions and discus-
sions about this topic.

2 PRELIMINARIES

Let R be a commutative noetherian ring and let E be a finitely generated
R-module.

We denote with SymR(E) or with S(E), the symmetric algebra of E over
R, that is the graded algebra over R:

S(E) =
⊕

t≥0

Symt(E)

and with S+ the maximal irrelevant ideal of S(E).

S+ =
⊕

t>0

Symt(E).

Let S+ = (x1, . . . , xn) = (x), where xi are elements of degree 1. We can
consider the Koszul complex on the generating set {x1, . . . , xn} of S+

K.(x; S(E)) : 0 → Kn
dn→ · · · d2→ K1

d1→ K0 → 0

where

Kp(x; S(E)) =
p∧

(S(E))n ∼=
p∧

Rn ⊗ S(E)

K is a graded complex and in degree t > 0 we have

0 → ∧n
Rn ⊗ St−n(E) dn→ ∧n−1

Rn ⊗ St−n+1(E)
dn−1→ · · ·

· · ·∧2
Rn ⊗ St−2(E) d2→ Rn ⊗ St−1(E) d1→ St(E) → 0

with differential dp defined as follows:
dp(ei1 ∧ · · · ∧ eip ⊗ f(x)) =∑p

j=1(−1)p−jei1 ∧ · · · ∧ eij−1 ∧ eij+1 ∧ · · · ∧ eip ⊗ xij f(x).
where e1, . . . , en is a standard basis of Rn, f(x) ∈ St−p(E).
We also denote by Zp(x; S(E)) and by Bp(x; S(E)) the cycles and bound-

aries of this complex, i.e.

Zp = ker(Kp(x; S(E)) → Kp−1(x; S(E))

Bp = im(Kp+1(x; S(E)) → Kp(x; S(E)).

Finally we denote by Hp(x; S(E))j , j ≥ p , the j−th graded component of
the Koszul homology Hp(x; S(E)) = Zp/Bp.
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We observe that:

Hp(x; S(E)) =
⊕

j≥p

Hp(x; S(E))j

Since the ring S(E) is positively graded, if (R, m) is a local ring we can
consider the ring S(E) as a ∗local ring with ∗maximal ideal m0 = m⊕S+ (see
[1] Chapter 1.5 for details).

Consequently, for any finitely generated S(E)-graded module we will cal-
culate the depth of its graded components, that are R-modules, with respect
to the maximal ideal m, and for any S(E)-module its depth with respect to
the ∗maximal ideal m0 = m ⊕ S+.

Definition 2.1 ([2], section 6) Let (R, m) be a C.M. local ring of dimension
d. Let E be a finitely generated R-module, S(E) the symmetric algebra of E,
S+ = (x1, . . . , xn) = (x) its maximal irrelevant ideal generated by the linear
forms xi .

We say that E satisfies the sliding depth condition SDk, with k integer, if

depth(m)Hi(x, S(E))i ≥ d − n + i + k 0 ≤ i ≤ n − k

If k = rank(E) we shall say that E satisfies the sliding depth condition SD.

Remark 2.2 By definition Zi(E) = Hi(x, S(E))i and since that (Bi)i = 0
we have

Zi = (Zi)i = ker(Ki(x; S(E)) → Ki−1(x; S(E))i

Therefore

Zi = ker(
i∧

Rn ⊗ S0(E) ∼= R →
i−1∧

Rn ⊗ S1(E) ∼= E)

and
Z1 = ker(Rn → E)

that is the first syzygy module of E.

Since Zi, ∀i, is an R-module, in the definition 2.1, we have to calculate
depth(m)Hi(x, S(E))i. The module Zi(E) appears in the Z(E)-complex of
the module E. We can find more information about S(E) in [6]. We remem-
ber that, if E is torsion-free and with rank e > 1, Zn−e(E) ∼= R, and the
complex is the following:

Z(E) : 0 → Zn ⊗ S[−n] dn→ Zn−1 ⊗ S[−n + 1]
dn−1→ · · · Z1 ⊗ S[−1] d1→

→ S = S(Rn) d0→ S(E) → 0



MODULES WITH SLIDING DEPTH 63

with the related maps di induced from the Koszul complex.
Zi(E) = 0 for i > n − e, and the cokernel of d1 is the symmetric algebra

of E. When the Z(E)-complex is acyclic, we can obtain the depth of the
symmetric algebra S(E) of E, by the acyclicity lemma of Peskine-Szpyro ([5]).

Proposition 2.3 SDk(E) does not depend on the generating set of E.

Proof: See [2] section 6, remark 1.

We recall the following

Proposition 2.4 ([7], chapter 3.3) Let R be a C.M. local ring of dimension
d with canonical module ωR and E a finitely generated R-module. Then we
have:

1) depth(E) = dim(R) − sup{j|ExtjR(E; ωR) 
= 0}
2) depth(EP ) = ht(P ) − sup{j|ExtjR(EP ; ωP ) 
= 0}, where ωP = ωR ⊗ RP , is
a canonical module for RP for all P ∈ Spec(R),

Proposition 2.5 Let (R, m) be a C.M. local ring of dimension d, and let E a
finitely generated R-module of rank e that verifies SDk. Then, ∀P ∈ Spec(R),
EP verifies SDk.

Proof: This is clear if R admits a canonical module ω, since ωP is the
canonical module for RP and we can apply proposition 2.4 to the module
Hi(x, S(E))i.

When R does not have a canonical module, we reach the same result by
applying the m-adic completion of R, obtaining a quotient of a regular ring.

We recall the definition of a proper sequence for any ring

Definition 2.6 Let x = x1, . . . , xn a sequence of elements in a ring R. The
sequence x is called a proper sequence if:

xi+1Hj(x1, . . . , xi; R) = 0

for i = 1, . . . , n, j > 0, where Hj(x1, . . . , xi; R) denotes the Koszul homology
associated to the initial subsequence x1, . . . , xi.

If we consider the symmetric algebra S(E) of a finitely generated R-module
E, for the ring S(E), the definition of proper sequence applied to a sequence
of 1-forms generating the maximal irrelevant ideal of S(E), is the following
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Definition 2.7 A sequence x = x1, . . . , xn of 1-forms generating the maximal
irrelevant ideal S+ of S(E) is called a proper sequence if:

xi+1Hj(x1, . . . , xi; S(E))l = 0

for i = 0, . . . , n − 1, j ≥ 1, l ≥ j.

We give the following

Definition 2.8 Let x = x1, . . . , xn be a sequence of 1-form generating the
maximal irrelevant ideal S+ of S(E). Then x is called a proper sequence in E
if:

xi+1Zj(x1, . . . , xi; S(E))j/Bj(x1, . . . , xi; S(E))j+1 = 0

for i = 0, . . . , n − 1, j > 0.

Remark 2.9 The definition of proper sequence in E, where E is a finitely
generated R-module, is introduced and discussed in [6].

In [6] is also proved the aciclicity of the complex Z(E), when S+ is gener-
ated by a proper sequence in E .

This definition will be used in the rest of this work.

Definition 2.10 ([3], Introduction) Let I be an ideal of the local ring (R, m)
of dimension d. Let K be the Koszul complex on a set x = x1, . . . , xn of
generators of I, and let k be a positive integer.

We say that I satisfies the sliding depth condition SDk, if

depth(m)Hi(x, R) ≥ d − n + i + k ∀i ≥ 0

If k = 0 we shall say that I satisfies the sliding depth condition SD.

Let x = {x1, . . . , xn} a sequence of elements in I, where I is an ideal of R.
We call xi = {x1, . . . , xi} the initial subsequence of x.

An easy extension of lemma 3.7 in [3] is the following:

Theorem 2.11 Let I be an ideal of local ring (R, m) of dimension d. Suppose
I is generated by a proper sequence x = x1, . . . , xn.

The following conditions are equivalent:

1) I satisfies SDk;

2) depth(m)R/(xi) ≥ d − i + k, i = 0, . . . , n;

3) depth(m)(xi+1)/(xi) ≥ d − i + k, i = 0, . . . , n − 1.
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Proof: The proof follows directly from lemma 3.7 [3] and by depth lemma
(see [1] proposition 1.2.9) applied on the following exact sequence

0 → Hj(xi, R) → Hj(xi+1, R) → Hj(xi, R)[−1] → 0

∀j > 1 ,0 ≤ i ≤ n − 1;

0 → Qi → R/(xi) → R/(xi+1) → 0,

with Qi = (xi+1)/(xi), 0 ≤ i ≤ n − 1;

0 → Mi → R/(xi)
xi+1→ Qi → 0,

with Mi = ((xi) : xi+1)/(xi), 0 ≤ i ≤ n − 1;

0 → H1(xi) → H1(xi+1) → Mi → 0,

with 0 ≤ i ≤ n − 1.

3 THE MAIN RESULT

In this section we look at the symmetric algebra S(E) of a finitely gener-
ated module E on a C.M. local ring (R, m), and a proper sequence in E, x,
generating the maximal irrelevant ideal S+.

The depth of each SR(E)-modules, is calculated with respect to the ∗maximal
ideal m ⊕ S+.

In the following, for any graded R-module M , if a is an integer, M(−a) is
a graded R-module such that M(−a)i = M−a+i, ∀i ≥ a.

Let x = {x1, . . . , xn} a proper sequence in the R-module E. We call
xi = {x1, . . . , xi} the initial subsequence of x, and Hj(xi)l = Hj(xi; S(E))l.
We have the following :

Lemma 3.1 Let (R, m) be a C.M. local ring of dimension d, E a finitely
generated R-module and x = {x1, . . . , xn} a proper sequence in E.

The following sequences are exact for 0 ≤ i ≤ n − 1:

1) 0 → Hj(xi)j → Hj(xi+1)j → Hj−1(xi)j [−1] → 0, ∀j > 1;

2) 0 → Q(i) → S(E)/(xi) → S(E)/(xi+1) → 0, with Q(i) = (xi+1)/(xi);

3) 0 → M (i) → S(E)/(xi)
xi+1→ Q(i) → 0, with M (i) = ((xi) : xi+1)/(xi);

4) 0 → H1(xi) → H1(xi+1) → M (i) → 0.
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Proof:
1) There exists an exact sequence of complexes:

0 → K(xi; S(E)) i→ K(xi+1; S(E)) ε→ K(xi; S(E))[−1] → 0

where i is the natural inclusion and ε is defined as follows:
Given a ∈ Kj(xi+1; S(E))j+ρ, then

a = b + c ∧ ei+1,

with b ∈ Kj(xi; S(E))j+ρ, c ∈ Kj−1(xi; S(E))j−1+ρ and ε(a) = (−1)i+1c.
It is clear that

ε(a) = ε(b + c ∧ ei+1) = ε(b) + ε(c ∧ ei+1) = 0 + (−1)i+1c,

is an epimorhism on Kj−1(xi; S(E))j−1+ρ and its kernel is Kj(xi; S(E))j+ρ.
We obtain the long exact sequence
· · · → Hj(xi)

i→ Hj(xi+1)
ε→ Hj−1(xi)[−1] ∂→

Hj−1(xi)
i→ Hj−1(xi+1)

ε→ Hj−2(xi)[−1] ∂→ Hj−2(xi) · · ·
We consider the degree j + ρ

· · · → Hj(xi)j+ρ[−1] ∂→ Hj(xi)j+ρ → Hj(xi+1)j+ρ →
Hj−1(xi)j+ρ[−1] ∂→ Hj−1(xi)j+ρ → Hj−1(xi+1)j+ρ → · · ·

In particular when ρ = 0 we have for the Koszul complex

a ∈ Kj(xi+1; S(E))j = (
j∧

Ri+1 ⊗ S(E))j
∼=

j∧
Ri+1

b ∈ Kj(xi; S(E))j = (
j∧

Ri ⊗ S(E))j
∼=

j∧
Ri

c ∈ Kj−1(xi; S(E))j [−1] = Kj−1(xi; S(E))j−1 =
(
∧j−1

Ri ⊗ S(E))j−1
∼= ∧j−1

Ri+1

and in the Koszul homology

a ∈ Hj(xi+1; S(E))j = Ker(
j∧

Ri+1 →
j−1∧

Ri+1 ⊗ S1(E))

b ∈ Hj(xi; S(E))j = Ker(
j∧

Ri →
j−1∧

Ri ⊗ S1(E))

c ∈ Hj−1(xi; S(E))j [−1] ∼= Hj−1(xi; S(E))j−1 =
Ker(

∧j−1 Ri → ∧j−2 Ri ⊗ S1(E))
The assertion follows from the following sequence
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Hj(xi)j [−1] → Hj(xi)j
i1→ Hj(xi+1)j

ε1→ Hj−1(xi)j [−1] ∂→
Hj−1(xi)j

i2→ Hj−1(xi+1)j

In fact, by consideration on the degree Hj(xi)j [−1] ∼= (0) and since x is a
proper sequence in E, the homomorphism i2 is injective.

In fact, we have:

xi+1Hj−1(xi; S(E))j [−1] ∼= xi+1Zj−1(xi; S(E))j−1

xi+1Zj−1(xi; S(E))j−1 ⊆ Bj−1(xi; S(E))j .

2) Obvious.
3) It is sufficient to observe that

0 → ((x1, . . . , xi) : xi+1) → S(E)
xi+1→ (x1, . . . , xi+1)/(x1, . . . , xi) → 0

is exact and (xi) ⊂ ((x1, . . . , xi) : xi+1), (xi) ⊂ S(E).
4) This sequence follows directly from the Koszul homology. In fact we

have
0 → H1(xi)1 → H1(xi+1)1 → S(E)/(xi)

xi+1→
S(E)/(xi) → S(E)/(xi+1) → 0

and substituting Q(i) in the tail of the sequence by 2), we have

0 → H1(xi)1 → H1(xi+1)1 → S(E)/(xi)
xi+1→ Q(i) → 0

At the end, replacing M (i) by 3) we have the assertion.

Proposition 3.2 Let (R, m) be a C.M. local ring of dimension d. Let x =
{x1, . . . , xn} a proper subsequence of the module E. We call Hj(xi)l = Hj(xi; S(E))l,
and let i ∈ N.

We have the following properties:

1) If x satisfies SDk then depth(H1(xi)1) ≥ d − i + k + 1

2) If depth(H1(xi)1) ≥ d − i + k + 1 then depth(Hj(x)j) ≥ d + k − n + j

Proof:
1) Since x is a proper sequence, by lemma 3.1 1) we have

0 → Hj(xi)j → Hj(xi+1)j → Hj−1(xi)j [−1] ∼= Hj−1(xi)j−1 → 0

for all j > 1.
In particular for i = n − 1 and j = n, the exact sequence is
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0 → Hn(xn−1)n = 0 → Hn(xn)n → Hn−1(xn−1)n−1 → 0

and depthmHn−1(xn−1)n−1 ≥ d + k.
Now it is possible to compute an estimation for the depth of Hn−2(xn−1)n−2

0 → Hn−1(xn−1)n−1 → Hn−1(xn)n−1 → Hn−2(xn−1)n−2 → 0

that is depthmHn−2(xn−1)n−2 ≥ d + k − 1.
At the end we will have depthmH1(xn−1)1 ≥ d + k − n + 2.
We can continue with the same argument and we have the assertion.
2) Let x is a proper sequence in E and depth(H1(xi)1) ≥ d − i + k + 1,

then by the exact sequence

0 → H2(x1)2 = (0) → H2(x2)2 → H1(x1)2[−1] → 0

we obtain depth(H2(x2)2) ≥ d + k.
Now, considering the exact sequence

0 → H2(x2)2 → H2(x3)2 → H1(x2)2[−1] → 0

we obtain depth(H2(x3)2) ≥ d + k − 1.
At the end we will have depth(H2(xn)2) ≥ d + k − n + 2.
With the same technique we can calculate depth(H3(xn)3) ≥ d+k−n+3,

and so on. Finally we have depth(Hj(xn)j) ≥ d + k − n + j.

Theorem 3.3 Let (R, m) be a C.M. local ring of dimension d. Let x1, . . . , xn

a proper sequence of the module E, and let M (i) the S(E)-module ((xi) :
xi+1)/(xi), M

(i)
1 the component of degree 1 of M (i). Suppose that for every

0 ≤ i ≤ n − 1
depth(m,S+)M

(i) ≥ d − i + k

implies

depth(m)M
(i)
1 ≥ d − i + k.

Then the following conditions are equivalent:

1) E satisfies SDk;

2) depth(m,S+)S(E)/(x1, . . . , xi) ≥ d − i + k, i = 0, . . . , n;

3) depth(m,S+)(x1, . . . , xi+1)/(x1, . . . , xi) ≥ d − i + k, i = 0, . . . , n − 1.
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Proof:
1) ⇒ 2). We prove by induction on i (the length of the subsequence xi).
For i = 0 we have to calculate depth(m,S+)S(E). As we already observed

in remark 2.2 we can use the Z(E)-complex that is acyclic since x is a proper
sequence ([6],theorem 2).

The complex is

Z(E) : 0 → Zn ⊗ S[−n] dn→ Zn−1 ⊗ S[−n + 1]
dn−1→ · · · Z1 ⊗ S[−1] d1→
→ S = S(Rn) d0→ S(E) → 0,

where S = S(Rn) = R[T1, . . . , Tn].
It is possible to calculate a depth estimation, with respect to the ideal

(m, S+) (where S+ is the maximal irrelevant ideal of S), of every Zj ⊗S[−j] ∼=
Hj(x, S(E))j ⊗ S[−j]. That is

depth(m,S+)Hj(x, S(E))j ⊗ S[−j] ≥ d − n + j + k + n

In particular we have

0 → ker dn → Zn ⊗ S[−n] → ker dn−1 → 0

and since ker dn = 0, depth(m,S+) kerdn−1 ≥ d + n + k, hence

0 → ker dn−1 → Zn−1 ⊗ S[−n + 1] → kerdn−2 → 0

with depth(m,S+) ker dn−2 ≥ d + n + k − 1, and so on.
Therefore, considering the tail of the sequence

0 → ker d0 → S → S(E) → 0

since depth(m,S+)ker d0 ≥ d + k + 1 and depth(m,S+)S = d + n, by depth
lemma we have depth(m,S+)S(E) ≥ d + k.

Observing that

depth(m,S+)S(E)/(x1, . . . , xi) ≥ depth(m,S+)S(E)/(x1, . . . , xi+1)

the assertion follows.
2) ⇒ 3). We consider the exact sequence of S(E)-modules

0 → Q(i) → S(E)/(x1, . . . , xi) → S(E)/(x1, . . . , xi+1) → 0

and by the depth lemma we have
depth(m,S+)Q

(i) ≥
≥ min{depth(m,S+)S(E)/(x1, . . . , xi),

depth(m,S+)S(E)/(x1, . . . , xi+1) + 1} = d + k − i.
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3) ⇒ 2). We consider the short exact sequence

0 → (x1) → S(E) → S(E)/(x1) → 0

where by hypothesis depth(m,S+)(x1) ≥ d + k and depth(m,S+)S(E) ≥ d + k
then for depth lemma, depth(m,S+)S(E)/(x1) ≥ d + k − 1. Watching the
sequence

0 → Q(i) → S(E)/(x1, . . . , xi) → S(E)/(x1, . . . , xi+1) → 0

we have the assertion by induction on i.

2) ⇒ 1).
By the exact sequence (lemma 3.1)

0 → M (i) → S(E)/(xi)
xi+1→ Q(i) → 0

we have depth(m,S+)M
(i) ≥ d − i + k.

By the hypothesis depth(m)M
(i)
1 ≥ d − i + k, and if we consider the exact

sequence
0 → H1(xi)1 → H1(xi+1)1 → M

(i)
1 → 0

for i = 0, then we have depth(m)H1(x1)1 = depth(m,S+)M
(0)
1 ≥ d + k.

For i = 1, depth(m,S+)H1(x2)1 ≥ d+k−1, and so on, for all i, depth(m)H1(xi)1 ≥
d + k − i + 1

0 → H1(xi)1 → H1(xi+1)1 → M (i) → 0.

By the exact sequence

0 → H2(x1)2 = (0) → H2(x2)2 → H1(x1)1 → 0

we obtain depth(H2(x2)2) ≥ d + k.
Now, considering the exact sequence

0 → H2(x2)2 → H2(x3)2 → H1(x2)1 → 0

we obtain depth(H2(x3)2) ≥ d + k − 1.
At the end we will have depth(H2(xn)2) ≥ d + k − n + 2.
With the same technique we can calculate depth(H3(xn)3) ≥ d+k−n+3,

and so on. Finally we have depth(Hj(xn)j) ≥ d + k − n + j and 2) ⇒ 1) is
proved.
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Example 3.4 Let E = Rn, then E satisfies SD (that is k = e = n).

Hi(x, S(E))i = Zi = ker(
i∧

Rn →
i−1∧

Rn ⊗ Rn) = 0

with S(E) = R[X1, . . . , Xn], for i > n − e = 0.
For i = 0, Z0

∼= R, for any i = 0, . . . , n, we have

depth(m,S+)S(E)/(X1, . . . , Xi) = depth(m,S+)R[Xi+1, . . . , Xn] = d + n − i

Then 1) and 2) of theorem 3.3 are verified.
For 3), by the exact sequence

0 → (x1, . . . , xi+1)/(x1, . . . , xi) → R[x1, . . . , xn]/(x1, . . . , xi) →
→ R[xi+1, . . . , xn] → 0

and by depth lemma 1, we have:

depth(m,S+)(x1, . . . , xi+1)/(x1, . . . , xi) ≥ d + n − i, ∀i = 0, . . . , n − 1.

Moreover Mi = 0. In fact (x1, . . . , xi) : xi+1 = (x1, . . . , xi) and

(x1, . . . , xi)/(x1, . . . , xi) ∼= (0).

Remark 3.5 By def. 5, given in [2], ideals of rank 1 or faithful ideals (i.e.
containing some regular element of R), satisfy SD0. By definition 2.1, they
satisfy SD1. Therefore we obtain the following:

Corollary 3.6 Let I be an ideal of a local ring (R, m) of dimension d, con-
taining some regular element (rank I = 1). Suppose I is generated by a proper
sequence x = x1, . . . , xn.

The following conditions are equivalent:

1) I satisfies SD0 (for ideals);

2) depth(m)R/(x1, . . . , xi) ≥ d − i, i = 0, . . . , n;

3) depth(m)(x1, . . . , xi+1)/(x1, . . . , xi) ≥ d − i, i = 0, . . . , n − 1;

4) I satisfies SD1 (for modules);

5) depth(m,S+)S(I)/(x1, . . . , xi) ≥ d − i + 1, i = 0, . . . , n;

6) depth(m,S+)(x1, . . . , xi+1)/(x1, . . . , xi) ≥ d − i + 1, i = 0, . . . , n − 1.

Proof: We use the results of theorem 2.11 and theorem 3.3 together.
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