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MODULES WITH SLIDING DEPTH

Giancarlo Rinaldo

Abstract

Several bounds for the depth of quotients of the symmetric algebra of
a finitely generated module over a local C.M. ring are obtained, when its
maximal irrelevant ideal is generated by a proper sequence of 1-forms
and modulo conditions on the depth of the homology modules of the
Koszul complex associated to this ideal (sliding depth conditions).

1 INTRODUCTION

Let R be a commutative noetherian ring, and let F be a finitely generated

R-module with rank.
We denote by Symg(E) or S(E), the symmetric algebra of F over R, that
is the graded algebra over R:

S(E) = @) Sym.(B)
>0

and with S; the maximal irrelevant ideal of S(E).

In [2], J.Herzog, A.Simis, W.V.Vasconcelos, introduced the sliding depth
condition for a module that is precisely the following:

Let (R, m) be a C.M. local ring of dimension d. Let E be a finitely gener-
ated R-module, S(E) the symmetric algebra of E and Sy = (21,...,z,) = (X)
its maximal irrelevant ideal generated by the linear forms z; .

We say that E satisfies the sliding depth condition SDy, with k integer, if

depth(myHi(x,S(E)); >d—n+i+k 0<i<n-—k,

where H;(x,S(FE)); is the i-th graded component of the Koszul homology
module H;(x,S(F)), and the elements of the ring R have degree 0.
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If &k = rank(E) we shall say that E satisfies the sliding depth condition
SD.

When the R-module E satisfies the SD condition and E verifies Fy (for
every k, Fy is a condition on the Fitting ideals of a presentation of E, that is a
condition on the height of the ideal generated by the minors of the presentation
of E [see [2], Section 2]), this implies that S(E) is Cohen Macaulay and the
approximation complex Z(F) associated to E is acyclic (see [2], theorem 6.2).

The aciclicity of the Z(F)-complex can be obtained for modules for which
the ideal Sy of the symmetric algebra S(F) is generated by a proper sequence
(see [7]) or a proper sequence in E (see [6]).

Then an important way to obtain informations about theoretic properties
of S(F) is that S is generated by a proper sequence in E.

If F satisfies SDy and Sy is generated by a proper sequence in E, we are
able to obtain bounds for the depth of quotients of S(E) by ideals generated
by a subsequence of a system of generators of S,.

The idea arises from some results about ideals of J. Herzog, W.V. Vascon-
celos, R. Villarreal in [3].

Our results concern modules E finitely generated over a local C.M. ring
R and that are not necessarily ideals of R. Moreover, in the case F = I =
faithful ideal of R, we obtain the classical results on ideals.

More precisely, in section 2, we define the depth condition S Dy, for a module
FE and we prove some properties related to it.

In section 3, we study the Koszul complex associated to a sequence (z1, ..., z,)
generating the ideal Sy = @, S¢(E) of the symmetric algebra S(E) and
when this sequence is a proper sequence in E, we investigate the link between
the SDj, condition and the existence of bounds for quotients of S(E) by a sub-

sequence (z1,...,x;), i = 0,...,n of (z1,...,z,) (that is a proper sequence
again) and special quotients of ideals of S(E)/(x1, ..., ;) constructed starting
from (x1,...,2,).

The main theorem is the following: Let (R,m) be a C.M. local ring of

dimension d. Let x1,...,x, a proper sequence of the module F, under a
condition on the depth of the homology module of the Koszul complex (see
theorem 3.3), the following conditions are equivalent:

i) E satisfies SDy;
ii) depth(m,s,)S(E)/(x1,...,2;) >d—i+k, i=0,...,n
iii) depth(mﬁ_g”(xl,...,xi_,_l)/(xl,...,xi) >d—i+k,i=0,...,n— 1.

Finally we remark that in the case E = I, our results complete those
contained in [3].
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I thank Prof. Gaetana Restuccia for several useful suggestions and discus-
sions about this topic.

2 PRELIMINARIES

Let R be a commutative noetherian ring and let E be a finitely generated
R-module.

We denote with Sympg(E) or with S(E), the symmetric algebra of E over
R, that is the graded algebra over R:

S(E) = @ Sym(E)

t>0

and with S} the maximal irrelevant ideal of S(E).

S = @ Symy(E).

>0
Let Sy = (z1,...,2n) = (x), where z; are elements of degree 1. We can
consider the Koszul complex on the generating set {x1,...,2,} of S;

K(xSE): 0—K, & 2K % Ky—0

where
P

K,(x: S(B)) = \(S(E)" = \ R © S(E)

K is a graded complex and in degree ¢t > 0 we have

0 A"R*® S, n(E) 2 N R @ 8)_pina (E) 57 -
dy

N R*® S5 _2(E) B R"® 5,_1(E) & 5,(E) — 0
with differential d,, defined as follows:
dplei, Ao Nei, ® f(x)) =
2’:1(—1)”_361-1 N-sNeg_y Neggy N Nei, @y, f(X).
where e1, ..., e, is a standard basis of R", f(x) € Si—p(E).
We also denote by Z,(x; S(E)) and by B,(x; S(E)) the cycles and bound-
aries of this complex, i.e.

Zp = ker(Kp(x; S(E)) — Kp-1(x; S(E))

B, = im(K i (x: S(E)) — K,(x: S(E)).

Finally we denote by Hy(x;S(E));, j > p , the j—th graded component of
the Koszul homology H,(x; S(E)) = Z,/B,.
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‘We observe that:

Hy(x; S(E)) = D Hy(x; S(E));

Jjzp

Since the ring S(F) is positively graded, if (R,m) is a local ring we can
consider the ring S(F) as a *local ring with *maximal ideal mg = m® Sy (see
[1] Chapter 1.5 for details).

Consequently, for any finitely generated S(FE)-graded module we will cal-
culate the depth of its graded components, that are R-modules, with respect
to the maximal ideal m, and for any S(E)-module its depth with respect to
the *maximal ideal mg =m & S;.

Definition 2.1 ([2], section 6) Let (R, m) be a C.M. local ring of dimension
d. Let E be a finitely generated R-module, S(E) the symmetric algebra of E,
St = (z1,...,2n) = () its mazimal irrelevant ideal generated by the linear
forms x; .

We say that E satisfies the sliding depth condition SDy, with k integer, if

depth(myHi(z, S(E)); > d—n+i+k 0<i<n-—k
If k = rank(FE) we shall say that E satisfies the sliding depth condition SD.

Remark 2.2 By definition Z;(E) = H;(x,S(E)); and since that (B;); = 0
we have

Zi = (Zi)i = ker(Ki(2; S(E)) — Ki—1(2; S(E))i
Therefore

i—1

Z; = ker(/\R” ®S(E) =2 R— N\ R"® 5 (E) 2 E)

and
Zy = ker(R" — E)

that is the first syzygy module of E.

Since Z;, Vi, is an R-module, in the definition 2.1, we have to calculate
depth(myHi(x,S(E));. The module Z;(E) appears in the Z(E)-complex of
the module E. We can find more information about S(E) in [6]. We remem-
ber that, if E is torsion-free and with rank e > 1, Z,_.(E) & R, and the

complex is the following;:

Z(E):0— Z,0S[-n] B 2,10 S[-n+1"5 . Z 081D

— S =S[ER")% SE)-0
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with the related maps d; induced from the Koszul complex.

Z;(E) =0 for i > n — e, and the cokernel of d; is the symmetric algebra
of E. When the Z(F)-complex is acyclic, we can obtain the depth of the
symmetric algebra S(F) of E, by the acyclicity lemma of Peskine-Szpyro ([5]).

Proposition 2.3 SDy(E) does not depend on the generating set of E.

Proof: See [2] section 6, remark 1.

We recall the following

Proposition 2.4 ([7], chapter 3.3) Let R be a C.M. local ring of dimension
d with canonical module wr and E a finitely generated R-module. Then we
have:

1) depth(E) = dim(R) — sup{j| Ext},(E;wg) # 0}

2) depth(Ep) = ht(P) — sup{j|Extlh(Ep;wp) # 0}, where wp = wr @ Rp, is
a canonical module for Rp for all P € Spec(R),

Proposition 2.5 Let (R,m) be a C.M. local ring of dimension d, and let E a
finitely generated R-module of rank e that verifies SDy. Then, VP € Spec(R),
FEp wverifies SDy,.

Proof: This is clear if R admits a canonical module w, since wp is the

canonical module for Rp and we can apply proposition 2.4 to the module
When R does not have a canonical module, we reach the same result by

applying the m-adic completion of R, obtaining a quotient of a regular ring.

We recall the definition of a proper sequence for any ring

Definition 2.6 Let x = z1,...,z, a sequence of elements in a ring R. The
sequence x is called a proper sequence if:

Ii+1Hj(x1,...,£L‘i;R) =0

fori=1,....n, j >0, where H;j(z1,...,2;; R) denotes the Koszul homology
associated to the initial subsequence x1,...,x;.

If we consider the symmetric algebra S(FE) of a finitely generated R-module
E, for the ring S(F), the definition of proper sequence applied to a sequence
of 1-forms generating the maximal irrelevant ideal of S(F), is the following



64 GIANCARLO RINALDO

Definition 2.7 A sequence x = x1,...,x, of 1-forms generating the mazximal
irrelevant ideal Sy of S(E) is called a proper sequence if:

Ii+1Hj($1,...,Jli;S(E))[ =0
fori=0,....n—1,j>1,1>3j.

We give the following

Definition 2.8 Let * = x1,...,x, be a sequence of 1-form generating the
mazximal irrelevant ideal Sy of S(E). Then  is called a proper sequence in E

Ii+1Zj($1,.. .,xi;S(E))j/Bj(xl,.. .,.Z'i;S(E))j+1 =0
fori=0,....n—1,5>0.

Remark 2.9 The definition of proper sequence in E, where E is a finitely
generated R-module, is introduced and discussed in [6].

In [6] is also proved the aciclicity of the complex Z(E), when Sy is gener-
ated by a proper sequence in E .

This definition will be used in the rest of this work.

Definition 2.10 (/3], Introduction) Let I be an ideal of the local ring (R, m)
of dimension d. Let K be the Koszul complex on a set € = x1,...,x, of
generators of I, and let k be a positive integer.

We say that I satisfies the sliding depth condition SDy, if

depthmyHi(z, R) > d—n+i+k Vi>0
If k = 0 we shall say that I satisfies the sliding depth condition SD.

Let x = {x1,...,z,} a sequence of elements in I, where [ is an ideal of R.
We call x; = {x1,...,x;} the initial subsequence of x.
An easy extension of lemma 3.7 in [3] is the following:

Theorem 2.11 Let I be an ideal of local ring (R, m) of dimension d. Suppose
I is generated by a proper sequence = X1,...,Ty.
The following conditions are equivalent:

1) I satisfies SDy;
2) depthmyR/(xz;) > d—i+k,i=0,...,n;
3) depthpmy(xiy1)/(x;) >d—i+k,i=0,...,n—1.
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Proof: The proof follows directly from lemma 3.7 [3] and by depth lemma
(see [1] proposition 1.2.9) applied on the following exact sequence

0 — Hj(x;, R) — Hj(xi1+1, R) — Hj(x;, R)[-1] — 0
Vi>10<i<n—1;

0— Qi — R/(x;) = R/(xi+1) — 0,
with Q’i = (Xi-l—l)/(xi); 0 < ) <n-— 1,

0 — M; — R/(x;) "' Qi — 0,
with Mz = ((Xz) : SL'iJrl)/(Xi), 0 S ) § n — ].,

0 — Hi(x;) — Hi(xi41) — M; — 0,

with 0 <7< n—1.

3 THE MAIN RESULT

In this section we look at the symmetric algebra S(E) of a finitely gener-
ated module E on a C.M. local ring (R, m), and a proper sequence in F, x,
generating the maximal irrelevant ideal Sy .

The depth of each Sg(F)-modules, is calculated with respect to the *maximal
ideal m @ S.

In the following, for any graded R-module M, if a is an integer, M (—a) is
a graded R-module such that M (—a); = M_,4;, Vi > a.

Let x = {x1,...,2,} a proper sequence in the R-module E. We call
x; = {x1,...,2;} the initial subsequence of x, and H;(x;); = H;(x;; S(E)).
We have the following :

Lemma 3.1 Let (R,m) be a C.M. local ring of dimension d, E a finitely
generated R-module and © = {x1,...,2,} a proper sequence in E.
The following sequences are exact for 0 <i<mn—1:

1) 0 — Hj(zi); — Hj(@it1); — Hj—1(2:);[-1] — 0, Vj > 1;
2) 0 — QW — S(E)/(z:) — S(E)/(miy1) — 0, with QW) = (miy1)/(mi);
3)0— MO — S(BE)/(z;) "5 QW — 0, with MD = ((2;) : wir1)/(;);

4) 0 — Hi(z;) — Hi(zig1) — MO — 0.
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Proof:
1) There exists an exact sequence of complexes:

0 — K(xi;8(E)) 5 K(xi41; S(E)) 5 K(xi; S(E))[~1] — 0
where 7 is the natural inclusion and ¢ is defined as follows:
Given a € Kj(xi41;S(E));+p, then

a:b+c/\ei+1,

with b € Kj(xi;S(E))j+p7 cE Kj—l(xi; S(E))j_1+p and 6(@) = (—1)“‘10.
It is clear that

ela) =e(b+cAeirr) =eb) +e(cheirr) =0+ (=1)"¢,

is an epimorhism on K;_1(x;; S(E));j—1+4, and its kernel is K;(x;; S(E))j+p-
We obtain the long exact sequence
i € o
= Hj(xi) = Hj(xip1) = Hj—1(xq)[-1] =
4 € o
Hj1(xi) = Hj1(xi1) = Hj—o(xi)[-1] = Hj_2(xi) - -
We consider the degree j + p
)
o Hy(Xi)jp[—1] = Hjj(%i)j4p — Hj(Xig1)j4p —

)
Hj1(%i)jp[—1] = Hj1(Xi)jrp — Hj—1(Xig1)j4p — -+
In particular when p = 0 we have for the Koszul complex

a €< Kj($i+1;S(E))j = (/\RH_1 ® S(E))J o /\Ri-i-l

J J
b€ Kj(x;S(E)); = (\R' @ S(E)); = \ R
¢ € Kj1(xi;S(E));[-1] = Kj—1(zi; S(E)) ;-1 = 4
(N7 R @ S(E))j- =2 N7 R
and in the Koszul homology

j—1

a € Hj(xip1;S(E)); = Ker(/]\ R — /\ R @ 51(E))
b€ Hj(zi; S(E)); = Ker(/\ R* — /_\ R'® S1(E))
¢ € Hj (2 S(E));[=1] = Hj 1 (i3 S(E))j—1 =

Ker(N"'R' — N2 R' @ S(E))
The assertion follows from the following sequence
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Hj(xi);[-1] — Hj(xi); % Hj(xis1); 2 Hyoa(xi);[-1] 2

Hj1(x:); = Hj1(xit1);
In fact, by consideration on the degree H;(x;);[—1] = (0) and since x is a
proper sequence in F, the homomorphism 5 is injective.
In fact, we have:

Tip1 Hjo1(xi3 S(B));[=1] = 2i11Z;-1(xi3 S(E)) -1

l‘iJrlZ]’,l(Xi; S(E))j—l - ijl(xi; S(E))]

2) Obvious.
3) It is sufficient to observe that

0— ((x1,...,2:) : #ip1) — S(BE) 5" (21, ... 2ip1)/(x1, ..., 21) — 0

is exact and (x;) C ((z1,...,2;) : Tig1), (xi) C S(E).
4) This sequence follows directly from the Koszul homology. In fact we
have

0 — Hy(xi)1 — Hi(xi1)1 — S(E)/(xi) '
4 S(E)/(xi) = S(E)/(%it1) — 0
and substituting Q) in the tail of the sequence by 2), we have

0 — Hy(xi)1 — Hi(xi41)1 — S(B)/(x;) =% QW — 0
At the end, replacing M® by 3) we have the assertion.
Proposition 3.2 Let (R,m) be a C.M. local ring of dimension d. Let x =
{z1,...,2n} a proper subsequence of the module E. We call Hj(z;); = Hj(x;; S(E))i,

and let i € N.
We have the following properties:

1) If x satisfies SDy, then depth(Hi(x;)1) >d—i+k+1
2) If depth(H1(z;)1) > d—i+ k + 1 then depth(H;(x);) >d+k—n+j

Proof:
1) Since x is a proper sequence, by lemma 3.1 1) we have

0— Hj(x;); — Hj(xit1); — Hj—1(xi);[—1] = Hj—1(x;)j—1 — 0

for all j > 1.
In particular for ¢ =n — 1 and j = n, the exact sequence is
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0— Hn(xnfl)n =0— Hn(xn)n - nfl(xnfl)nfl —0

and depth,, Hy—1(Xn-1)n-1 > d+ k.
Now it is possible to compute an estimation for the depth of Hy,_2(X5,—1)n—2

0— anl(xnfl)nfl i anl(xn)nfl - Hn72(xn71)n72 —0

that is depthpy, Hy—o(Xpn—1)n—2 > d+ k — 1.

At the end we will have depth,,H1(xp-1)1 > d+k—n+2.

We can continue with the same argument and we have the assertion.

2) Let x is a proper sequence in E and depth(Hi(x;)1) > d—i+k+1,
then by the exact sequence

0— HQ(Il)Q = (O) — HQ(XQ)Q — Hl(Il)Q[—l] — 0

we obtain depth(Ha(X2)2) > d + k.
Now, considering the exact sequence

0 — HQ(XQ)Q — H2(X3)2 — Hl(XQ)Q[*].] — 0

we obtain depth(Ha(x3)2) > d+ k — 1.

At the end we will have depth(Hs(x,)2) > d+k —n+ 2.

With the same technique we can calculate depth(Hs(xy,)3) > d+k—n—+3,
and so on. Finally we have depth(H,;(x,);) > d+k—n+j.

Theorem 3.3 Let (R,m) be a C.M. local ring of dimension d. Let x1,...,x,
a proper sequence of the module E, and let M@ the S(E)-module ((x;) :

xiv1)/(x), Ml(i) the component of degree 1 of M. Suppose that for every
0<i1<n—-1

depthp s /MY >d—i+k
implies
depthmy M) > d —i+ k.
Then the following conditions are equivalent:
1) E satisfies SDy;
2) depth(m s \S(E)/(21,...,2;) >d—i+k, i=0,...,n;
3) depth(m, s, y(w1,. .., wiy1)/ (21, ..., 2i) >d—i+k, i=0,...,n—1.
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Proof:
1) = 2). We prove by induction on 4 (the length of the subsequence x;).
For i = 0 we have to calculate depth,, s.)S(E). As we already observed
in remark 2.2 we can use the Z(F)-complex that is acyclic since x is a proper
sequence ([6],theorem 2).
The complex is
dn—l
Z(E): 0> Z,@8[-n % 2, 1085-n+1"5" - 2, 05-1]%
— 8 =8{E" S S(E) -0,
where S = S(R") = R[T1,...,T,).
It is possible to calculate a depth estimation, with respect to the ideal

(m, S4+) (where S; is the maximal irrelevant ideal of S), of every Z; ® S[—j] =
I{j(X7 S(E))J ® S[—j] That is

depthm,s, ) Hj(x,S(E)); @ S[=jl =2d—n+j+k+n
In particular we have
0 — kerd,, — Z, ® S[-n] — kerd,,—1 — 0
and since kerd,, = 0, depth(y, s,)kerd,—1 > d+n+ k, hence

0—kerd,—1 — Z,-1®S[-n+1] — kerd,—2 — 0
with depth(p, s, kerd,—2 > d+n+k—1, and so on.
Therefore, considering the tail of the sequence

0—kerdy — S — S(E)—0

since depth(y,,s,kerdy > d +k + 1 and depth(;,,s,)S = d + n, by depth
lemma we have depth(,, s,)S(E) > d+ k.
Observing that

depth(m,s,)S(E)/ (w1, ..., 2i) > depth(m,s,)S(E)/ (21, .., Tit1)

the assertion follows.
2) = 3). We consider the exact sequence of S(E)-modules

0— QW — S(E)/(x1,...,2;) — S(E)/(x1,...,2i41) — 0

and by the depth lemma we have
depth(m,s,)QY >
> min{depthy, s,)S(E)/(x1,...,7;),
depth(m7s+)S(E)/(l‘1, - ,IL’iJrl) + ].} =d+k—1i.



70 GIANCARLO RINALDO

3) = 2). We consider the short exact sequence
0= (21) = S(E) = S(E)/(21) = 0

where by hypothesis depth(,, s,)(21) > d 4 k and depth(y, s,)S(E) > d +k
then for depth lemma, depth(y, s,.)S(E)/(x1) > d + k — 1. Watching the
sequence

0= QW = S(E)/(x1,...,2:) = S(BE)/(w1,...,%i41) = 0

we have the assertion by induction on 3.

2)=1).
By the exact sequence (lemma 3.1)

0—MD = S(E)/(x;) 5 QW -0

we have depth,, s, )M >d —i+k.

By the hypothesis depth(m)Ml(i) > d — i+ k, and if we consider the exact
sequence

0 — Hl(xi)l — Hl(xi+1)1 — Ml(z) — 0

for i = 0, then we have depth(,,)H1(x1)1 = depth(m75+)M1(0) >d+k.
For i = 1, depthy, s, )H1(x2)1 > d+k—1, and so on, for all i, depth,,) H1(x;)1 >
d+k—i+1

0— Hl(xi)l — Hl(xi-i-l)l — M(Z) — 0.

By the exact sequence
0— HQ(Il)Q = (O) — HQ(XQ)Q — Hl(Il)l — 0

we obtain depth(Ha(X2)2) > d + k.
Now, considering the exact sequence

0 — Ha(x2)2 — Ha(x3)2 — Hi(x2)1 — 0

we obtain depth(Ha(x3)2) > d+ k — 1.

At the end we will have depth(Ha(x,)2) > d+k —n+ 2.

With the same technique we can calculate depth(Hs(xy,)3) > d+k—n—+3,
and so on. Finally we have depth(H;(x,);) > d+k—n+j and 2) = 1) is
proved.
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Example 3.4 Let E = R"™, then E satisfies SD (that is k = e =n).

7 1—1
Hi(z,S(E)); = Z; = ker(\R" — \ R"® R") =0

with S(F) = R[X1,..., Xy, fori>n—e=0.
Fori=0, 202 R, for anyi=0,...,n, we have

d@pth(m7s+)S(E)/(X1, PN 7Xz) = d@pth(m,s+)R[Xi+1, N ,Xn] =d +n—1

Then 1) and 2) of theorem 3.3 are verified.
For 3), by the exact sequence
0— (x1,...,%ip1)/(x1, - mi) = Rlz1, ..., xn)/ (21, ... 2) —
— R[l‘iJrl, N ,lL’n] — 0
and by depth lemma 1, we have:

depth(m, s (21, .., zig1)/(T1, ... 25) > d+n —1, Vi=0,...,n—1.
Moreover M; = 0. In fact (z1,...,2;) : xip1 = (1,...,2;) and

(0).

Remark 3.5 By def. 5, given in [2], ideals of rank 1 or faithful ideals (i.e.

containing some regqular element of R), satisfy SDy. By definition 2.1, they
satisfy SD1. Therefore we obtain the following:

IR

(xl,...,xi)/(xl,...,xi)

Corollary 3.6 Let I be an ideal of a local ring (R,m) of dimension d, con-
taining some regular element (rank I = 1). Suppose I is generated by a proper
Sequence T = Ti,...,Tn.

The following conditions are equivalent:

1) I satisfies SDqy (for ideals);

2) depth(myR/(x1,...,2;) >d—1i,i=0,...,n;

3) depthpy(z1,. .., zip1)/(21,. .., 2) >d—i,i=0,...,n—1;

4) I satisfies SDy (for modules);

5) depth(m,s.)SUI)/(x1,...,2;) >d—i+1,i=0,...,n;

6) depth(m s,y (x1,. . xip1)/(1,. . w) >2d—i+1,i=0,...,n—1.

Proof: We use the results of theorem 2.11 and theorem 3.3 together.
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