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ON THE DIOPHANTINE EQUATION

x4 − q4 = py3

Diana Savin

Abstract

In this paper we study the Diophantine equation x4−q4 = py3, with
the following conditions: p and q are prime distincts natural numbers, x
is not divisible with p, p ≡ 11 (mod12), q ≡ 1 (mod3), p is a generator
of the group

(
Z∗

q , ·), 2 is a cubic residue mod q.

1 Introduction

In some previous papers, [3], [4], [5], we have solved Diophantine equations of
the form

x4 − y4 = pz2,

where p is a prime natural number taken from the set {3, 5, 7, 11, 13, 19, 29, 37}.
Here we try to solve an anlogous Diophantine equation, replacing the exponent
2 of z by 3 and considering y given, namely y being a prime number, q.
It is clear that it has been necessary to impose some additional conditions for
p and q. In the proofs of the statements, one can see why those conditions are
necessary.
But first we recall some results.

Proposition 1.1. ([7]). If p is a prime natural number, p ≡ 2 (mod 3)and ε
is a primitive root of unity of order p, then p is irreducible in the ring Z [ε].

Proposition 1.2. ( [7]). If p is a prime natural number and p ≡ 1 (mod
3), then its decomposition in irreducible factors in the ring Z [ε] is p = π1π2,
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where π1 is not associated to π2.

Proposition 1.3. ( [7]). Let π ∈ Z [ε] be an irreducible element in Z [ε]
withN(π) �= 3 and α ∈ Z [ε], α be not divisible with π.Then there exists a
unique m ∈ {0, 1, 2}, such that α

N(π)−1
3 ≡ εm (modπ).

Definition 1.4.( [7]). Let π ∈ Z [ε] be an irreducible element in Z [ε] with
N(π) �= 3 and α ∈ Z [ε]. We define the residual cubic symbol

(
α
π

)
3

in the
following manner :
i)

(
α
π

)
3

= 0 if π/α;

ii)
(

α
π

)
3

= εm, if α is not divisible with π where m ∈ {0, 1, 2} and α
N(π)−1

3 ≡ εm

(modπ).

Proposition 1.5.( [7]). Let π ∈ Z [ε] be an irreducible element in Z [ε] with
N(π) �= 3 and α, β ∈ Z [ε]. Then:
i)α ≡ β (mod π) implies

(
α
π

)
3

=
(

β
π

)
3
;

ii)
(

αβ
π

)
3
=

(
α
π

)
3

(
β
π

)
3
;

iii)
(

α
π

)
3

= 1 if and only if α is not divisible with π and the congruence x3 ≡ α
(mod π) has at least one solution x ∈ Z [ε].

Proposition 1.6.( [7]). Let π ∈ Z [ε] be an irreducible element in Z [ε] with
N(π) �= 3. Then, for any α ∈ Z [ε], we have:

(α

π

)
3

=
(

α2

π

)
3

=
(

α

π

)
3

.

Theorem 1.7.( [7]). Let π1 and π2 be two irreducible primary elements in
Z [ε] such that N(π1) �= 3 �= N(π2) and N(π1) �= N(π2). Then:

(
π1

π2

)
3

=
(

π2

π1

)
3

.

Theorem 1.8.( [2]). Let ξ be a primitive root of l-order, of unity, where l is
a prime natural number. Then a prime ideal P in the ring Z [ξ] is in one of
the cases :
(i)if

{
µ
P

}
= 0 then P is in the ring of integers A in the Kummer field Q (M ; ξ)

(where M = l
√

µ, µ∈Z) equal with the l-power of a prime ideal, or
(ii) if

{
µ
P

}
= 1 then P decomposes in l different prime ideals in the ring A,



ON THE DIOPHANTINE EQUATION x4 − q4 = py3 83

or
(iii) if

{
µ
P

}
is equal with a root of order l of unity, different from 1, then P is

a prime ideal in the ring A.

Proposition 1.9.( [6]).Let A be the ring of integers of the Kummer field
Q

(
l
√

p; ξ
)

where p is a prime natural number and ξ is a primitive root of
order l of unity. Let G be the Galois group of the Kummer field Q

(
l
√

p; ξ
)

over Q. Then for any σ∈G and for any P∈Spec (A) we have σ (P )∈Spec (A).

Proposition 1.10.( [1]). Let p be an odd prime natural number and ξ be
a primitive root of order p of the unity. Then 1 − ξk = uk (1 − ξ), k/∈pZ
and uk∈U (Z [ξ]).

Proposition 1.11.( [7]). Let p be an odd prime natural number. Then:
i) 2 is a cubic residue mod 3 (in the case p = 3);
ii) if p ≡ 2 (mod 3), then 2 is a cubic residue mod p;
iii) if p ≡ 1 (mod 3), then 2 is a cubic residue mod p if and only if there exist
c, d∈Z such that p = c2 + 27d2.

Proposition 1.12.( [6]). Let ε be a primitive root of 3-order of unity. Then
the extension of fields Q⊂Q

(
ε, 3
√

p
)
is a Galois extension and the Galois group

G ∼= (S3, ◦). G =
{

1Q(ε, 3√p), v1, v
2
1 , v2, v1 ◦ v2, v

2
1 ◦ v2

}
, where v1 (ε) = ε,

v1

(
3
√

p
)

= ε 3
√

p, v2 (ε) = ε2, v2

(
3
√

p
)

= 3
√

p.

2 Results

First, we state and prove two propositions that are necessary for solving the
equation

x4 − q4 = py3 (1)

in the conditions (2):
(i) p and q are different prime natural numbers;
(ii) x is not divisible with p;
(iii)p is a generator of the group (Z∗

q , ·);
(iv)p ≡ 11 ( mod 12 ), q ≡ 1 ( mod 3 );
(v) 2 is a cubic residue mod q.

Lema 2.1. Let p and q be prime integers satisfying the conditions (2) and
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take ε as a primitive root of order 3 of the unity. If Q
(
ε; 3
√

p
)

is the Kum-
mer field with the ring of integers A, y1 and y2 are integer numbers such that
gcd(y1, y2) = 1, p does not divide y2, then, taking m,n∈{0, 1, 2}, m �=n,

(y2 − εm 3
√

py1)A and (y2 − εn 3
√

py1)A

are comaximal ideals of A.

Proof. Let J be the ideal of A generated by y2− εm 3
√

py1 and y2− εn 3
√

py1. It
is sufficient to prove that J = A. We may suppose m < n. Using Proposition
1.10., we obtain:(
y2 − εm 3

√
py1

)−(
y2 − εn 3

√
py1

)
= εm 3

√
py1 (εn−m − 1) = εm 3

√
py1un−m (ε − 1),

where un−m and εm are units in Z [ε] and in A, since U (Z [ε]) ⊂U (A).
Therefore 3

√
py1 (ε − 1)∈J . But 3

√
p2∈A, hence it results that

py1 (ε − 1)∈J. (3)
(
y2 − εm 3

√
py1

)∈J and εn−m∈A implies
(
y2ε

n−m − εn 3
√

py1

)∈J .
But

(
y2 − εn 3

√
py1

)∈J , therefore y2 (εn−m − 1)∈J and, by using the Propo-
sition1.10.,
we gt

y2 (ε − 1)∈J . (4)

Since (y1, y2) = 1 and y2 is not divisible with p, we get (py1, y2) = 1,
therefore there exist k1,k2∈ Z such that py1k1 + y2k2 = 1. Multiplying the
last equality with ε − 1 and using the relations (3) and (4), we obtain that
ε − 1∈J.
But 3 = (ε − 1)2

(−ε2
)

and −ε2∈U (Z [ε])⊂U (A), therefore

3∈J. (5)
(
y2 − εm 3

√
py1

) (
y2 − εn 3

√
py1

)∈J. Let k∈{0, 1, 2} − {m, n}. Knowing that(
y2 − εk 3

√
py1

)∈A and that J is an ideal in A, we get:

(y2 − εm 3
√

py1) (y2 − εn 3
√

py1)
(
y2 − εk 3

√
py1

) ∈ J.

This relation is equivalent with

y3
2 − py3

1∈J. (6)
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But y3
2 − py3

1 ≡ 1 (mod 3), therefore
(
3, y3

2 − py3
1

)
= 1. We obtain that

there exists h1,h2∈Z such that 3h1 +
(
y3
2 − py3

1

)
h2 = 1. Using the relations

(5) and (6) we get that J = A.
In the same way we may prove the next lemma.

Lema 2.2. Let us consider p and q as in the above conditions (2) and take ε
as a primitive root of order 3 of the unity. If Q

(
ε; 3
√

2p
)

is the Kummer field
with the ring of integers A, y1 and y2 are integers numbers, gcd(y1, y2) = 1, p
does not divide y2, then, taking, m,n∈{0, 1, 2}, m �=n,

(
y2 − εm 3

√
2py1

)
A and

(
y2 − εn 3

√
2py1

)
A

are comaximal ideals of A.

Now we try to solve the equation x4 − q4 = py3.

Theorem 2.3. The equation x4 − q4 = py3 does not have nontrivial integer
solutions in the conditions (2).

Proof. We suppose that the equation (1)has nontrivial integer solutions
(x, y)∈Z2 satisfying the conditions (2). We consider two cases, wether x is
odd or even.
Case I: x is an odd number
Knowing that q is a prime natural number, q ≥ 3, we get x2, q2 ≡ 1 (mod 4)
and therefore x2 − q2 ≡ 0 (mod 4), x2 + q2 ≡ 2 (mod 4).
We denote d = gcd

(
x2 − q2, x2 + q2

)
. Then d/2x2 and d/2q2. But gcd (x, y) =

1 implies x is not divisible with q. Therefore d = 2. We get either that

x2 − q2 = 4py3
1, x2 + q2 = 2y3

2,

where y1, y2∈Z, 2y1y2 = y, y2 is an odd number, gcd (y1, y2) = 1, or that

x2 − q2 = 4y3
1, x2 + q2 = 2py3

2,

where y1, y2∈Z, 2y1y2 = y, y2 is an odd number, g.c.d. (y1, y2) = 1.
In the last case, we obtain that p/

(
x2 + q2

)
, in contradiction with the fact

that p ≡ 3 (mod4). It remains to study the case

x2 − q2 = 4py3
1, x2 + q2 = 2y3

2.
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By substracting the two equations, we obtain q2 = y3
2 − 2py3

1.
Let A be the ring of integers of the Kummer field Q

(
ε; 3
√

2p
)
, where ε is a

primitive root of order 3 of unity. In A, the last equality becomes:

q2 =
(
y2 − y1

3
√

2p
)(

y2 − y1ε
3
√

2p
) (

y2 − y1ε
2 3
√

2p
)

. (7)

But q ≡ 1 (mod 3) implies ( by using Proposition 1.2.) q = π1π2, where π1,
π2 are prime elements in the ring Z [ε], π1 is not associate in divisibility with
π2.
We get: q2 = N(q) = N(π1)N(π2), π1, π2 /∈U (Z [ε]), therefore N(π1) =
N(π2) = q. As p is a prime natural number, p ≡ 2 (mod 3) implies ( from
Proposition 1.1.) that p remains prime in the ring Z [ε] and N(p) = p2 �= 3.
We obtain N(p)�=N(πi), i = 1, 2. Using Theorem 1.7., we have that

(
p

πi

)
3

=
(

πi

p

)
3

, i = 1, 2. (8)

But 2 is a cubic residue mod q and this implies that there exists x∈Z such
that x3 ≡ 2 (mod q), therefore there exists x∈Z such that x3 ≡ 2 (mod πi),
for any i = 1, 2. Hence

(
2
πi

)
3

=
(

πi

2

)
3

= 1, for any i = 1, 2. Using Proposition

1.5., we obtain:
(

2p
πi

)
3

=
(

2
πi

)
3

(
p
πi

)
3

=
(

p
πi

)
3
.

From the proof of the Theorem 1.7. and from the fact that p, q are prime
natural numbers, p ≡ 2 (mod 3), q ≡ 1 (mod 3), we have that

(
p
q

)
3

= 1. This
is equivalent to (

π1

p

)
3

(
π2

p

)
3

= 1. (9)

From the relations (4) and (5), we have that
(

p
π1

)
3

=
(

p
π2

)
3

= 1 or
(

p
π1

)
3

= ε,(
p
π2

)
3

= ε2 or
(

p
π1

)
3

= ε2,
(

p
π2

)
3

= ε.

If
(

p
π1

)
3

=
(

p
π2

)
3

= 1, then p
N(πi)−1

3 ≡ 1 (mod πi), i = 1, 2.

Since N (πi) = q, i = 1, 2 and π1,π2 are irreducible elements in the rings Z [ε],
π1 is not associate in divisibility with π2, we get that p

q−1
3 ≡ 1 (mod q), in

contradiction with the fact that p is a generator of the group
(
Z∗

q , ·
)
.

Therefore
(

2p
π1

)
3

=
(

p
π1

)
3

= εi and
(

2p
π2

)
3

=
(

p
π2

)
3

= εj , with i, j∈{1, 2},
i �=j.
According to Theorem 1.8., we get that π1A and π2A are prime ideals in the
ring A.
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Passing to ideals in the relation (7), we obtain:

(π1A)2 (π2A)2 =
(
y2 − y1

3
√

2p
)

A
(
y2 − y1ε

3
√

2p
)

A
(
y2 − y1ε

2 3
√

2p
)

A. (10)

According to Lema 2.2., the ideals
(
y2 − y1

3
√

2p
)
A,

(
y2 − y1ε 3

√
2p

)
A,

(
y2 − y1ε

2 3
√

2p
)
A

are comaximal in pair, therefore the equality (10) is impossible. We get that
the equation (1) does not have nontrivial integer solutions, in the case when
x is an odd number.
Case II: x is an even number.
In this case, x2 − q2 and x2 + q2 are odd numbers.
We prove that gcd

(
x2 − q2, x2 + q2

)
= 1. Suppose that there exists an odd

prime natural number d such that d/
(
x2 − q2

)
and d/

(
x2 + q2

)
. Hence d/x

and d/q. Using the hypothesis we obtain that d/y, in contradiction with the
fact (x, y) = 1. Therefore gcd

(
x2 − q2, x2 + q2

)
= 1. Then (1) becomes either

the system:
x2 − q2 = py3

1, x2 + q2 = y3
2 , with y1, y2∈Z, y1y2 = y, gcd (y1, y2) = 1

or the system:
x2 − q2 = y3

1 , x2 + q2 = py3
2, with y1, y2∈Z, y1y2 = y, gcd (y1, y2) = 1.

In the last case, we obtain that p/
(
x2 + q2

)
, in contradiction with the fact

that p ≡ 3 (mod4). It remains to study the case

x2 − q2 = py3
1 , x2 + q2 = y3

2 .

Substracting the two equations, we get 2q2 = y3
2 − py3

1 .
Let A be the ring of integers of the Kummer field Q

(
ε; 3
√

p
)
, where ε is a

primitive root of order 3 of the unity. In A, the last equality becomes:

(y2 − y1
3
√

p) (y2 − y1ε 3
√

p)
(
y2 − y1ε

2 3
√

p
)

= 2q2. (11)

Similarly with the case when x is an odd number, we obtain qA = π1A · π2A,
where π1,π2 are ireduccible elements in the rings Z [ε], π1 is not associate in
divisibility with π2.
Since p ≡ 2 (mod 3) and using Proposition 1.5. and Proposition 1.11., we get
that

(
2
p

)
3

= 1.
Using Theorem 1.8., we get that, in the ring A, 2A = P1P2P3, where Pk,
k = 1, 2, 3 are prime ideals in the ring A.
Considering the corresponding ideals in the relation (11), we obtain:

(y2 − y1
3
√

p) A (y2 − y1ε 3
√

p)A
(
y2 − y1ε

2 3
√

p
)
A = P1P2P3 (π1A)2 (π2A)2 . (12)

According to Proposition 1.12., Q⊂Q
(
ε, 3
√

p
)

and the Galois group G ∼=
(S3, ◦). Hence G =

{
1Q(ε, 3√p), v1, v

2
1 , v2, v1 ◦ v2, v

2
1 ◦ v2

}
, where v1 (ε) = ε,
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v1

(
3
√

p
)

= ε 3
√

p, v2
1 (ε) = ε, v2

1

(
3
√

p
)

= ε2 3
√

p.

Case (i): if there exists k∈{1, 2, 3} such that
(
y2 − y1

3
√

p
)
A = Pk∈Spec(A),

we use Proposition 1.9., and we obtain that

v2 ((y2 − y1
3
√

p)A) = (y2 − y1ε 3
√

p)A ∈ Spec(A)

and
v2
2 ((y2 − y1

3
√

p)A) =
(
y2 − y1ε

2 3
√

p
)
A ∈ Spec(A),

therefore the equality (12) is impossible.
Case (ii): if there exist k and h in {1, 2, 3}, k �= h such that

(
y2 − y1

3
√

p
)
A =

PkPh, where Pk,Ph∈Spec(A), we use Proposition 1.9. obtaining that(
y2 − y1ε 3

√
p
)
A = v2

((
y2 − y1

3
√

p
)
A

)
= (π1A)P3 and(

y2 − y1ε
2 3
√

p
)
A = v2

2

((
y2 − y1

3
√

p
)
A

)
= (π1A) (π2A)

or similar equalities. This fact implies that the ideals
(
y2 − y1

3
√

p
)
A,

(
y2 − y1ε 3

√
p
)
A,(

y2 − y1ε
2 3
√

p
)
A are comaximal to each other.

Case (iii): if
(
y2 − y1

3
√

p
)
A = (π1A)2, then

(
y2 − y1ε 3

√
p
)
A = (π2A)2,(

y2 − y1ε
2 3
√

p
)
A = P 2, P∈Spec(A), in contradiction with (12).

From the cases (i), (ii), (iii), it results that the equality (12) is impossible. We
get that the equation (1) does not have nontrivial integer solutions satisfying
the conditions (2).
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