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ON SOME DIOPHANTINE EQUATIONS
(III)

Diana Savin

Abstract

In this paper we study the Diophantine equations

ck(f4+42f2g2+49g4) + 28dk(f3g + 7fg3) = m2,

where (ck, dk) are solutions of the Pell equation c2−7d2= 1.

1. Preliminaries.

We recall a classical result in [1] , page 150 and our previous results in
[7] .

1.1. For the quadratic field Q(
√

7), the ring of integers is Euclidian with
respect to the norm.

1.2. The equation m4 − n4 = 7y2 has an infinity of integer solutions.

1.3.The equations of the form

(1) ck(f4 + 42f2g2 + 49g4) + 28dk(f3g + 7fg3) = m2,

where (ck, dk) is a solution of the Pell equation u2−7v2 = 1, has an infinity
of integer solutions.

2. Studying the equation (1)

Let us fix y as a component of the solution of the equation m4−n4 = 7y2.
Then we have the following result:
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Proposition 2.1. The only cases for which, from an integer solution
(m, n, y) of the equation m4 − n4 = 7y2, we get integer solutions for the
equations (1) is k ≡ 3 (mod 4).

Proof. In [7] we have proved that the equation m4 − n4 = 7y2 has an
infinity of integer solutions.

We know from 1.1. that the ring of algebraic integers A = Z
[√

7
]

of the
quadratic field Q

(√
7
)

is Euclidian with respect to the norm N, N(a+b
√

7) :=∣∣ a2 − 7b2
∣∣ .

We study the equation m4 − n4 = 7y2 in the ring Z
[√

7
]
. This equation

has at least a solution: m = 463, n = 113, y = 80880. But then it has an
infinity of integer solutions.

Consider m4 − n4 = 7y2 written as (m2 − y
√

7)(m2 + y
√

7) = n4.
In [7] , we have proved that m2 + y

√
7 and m2 − y

√
7 are prime to each

other in Z
[√

7
]
.

This implies that there exists f + g
√

7 ∈ Z
[√

7
]

and there exists k ∈ Z
such that

m2 + y
√

7 = (ck + dk

√
7)·(f + g

√
7
)4

,with

ck + dk

√
7 ∈

{
± (

8 + 3
√

7
)k+1

/ k ∈ Z
}

,

(8, 3) being the fundamental solution of the Pell equation u2 − 7v2 = 1.
We obtain the equation:

m2 + y
√

7 = (ck + dk

√
7) · (f4 + 4f3g

√
7 + 42f2g2 + 28fg3

√
7 + 49g4),

which is equivalent to the system:{
m2 = ck

(
f4 + 42f2g2 + 49g4

)
+ 28dk

(
f3g + 7fg3

)
y = dk

(
f4 + 42f2g2 + 49g4

)
+ 4ck

(
f3g + 7fg3

)
.

By 1.2., the equation m4 − n4 = 7y2 has an infinity of integer solutions.

Hence, the system{
m2 = ck

(
f4 + 42f2g2 + 49g4

)
+ 28dk

(
f3g + 7fg3

)
y = dk

(
f4 + 42f2g2 + 49g4

)
+ 4ck

(
f3g + 7fg3

)
has an infinity of integer solutions. Then, the equation

m2 = ck

(
f4 + 42f2g2 + 49g4

)
+ 28dk

(
f3g + 7fg3

)
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has an infinity of integer solutions.
We want to find those integers k, such that, from a solution of the

equation m4 − n4 = 7y2, we can get solutions for the system:

{
m2 = ck

(
f4 + 42f2g2 + 49g4

)
+ 28dk

(
f3g + 7fg3

)
y = dk

(
f4 + 42f2g2 + 49g4

)
+ 4ck

(
f3g + 7fg3

)
.

The system has been obtained from: m2+y
√

7 = (ck+dk

√
7)·(f + g

√
7
)4

,

which is equivalent to the equation: m2 + y
√

7 = (c0 + d0

√
7)k+1·(f + g

√
7
)4

,

k ∈ Z.
First, we give an example. A solution of the equation m4 − n4 = 7y2 is

m = 463, y = 80880, n = 113.Using this solution, we can get a solution for
the equation: m2 + y

√
7 = (c0 +d0

√
7)k+1 · (f + g

√
7
)4

, k ∈ Z ( where c0 = 8,
d0 = 3 ), namely f = 15, g = 4, k = −1.

For k = 3, the equation m2 +y
√

7 = (c0 +d0

√
7)k+1 ·(f + g

√
7
)4

becomes:

m2 + y
√

7 =
[
(8f + 21g) + (8g + 3f)

√
7
]4

.

We obtain:
{

8f + 21g = 15
8g + 3f = 4 , which implies f = 36, g = −13.

Analogously, for k = 7, we obtain: f = 561, g = −212.

We succeed to obtain a general result.
The equation

m2 + y
√

7 = (c0 + d0

√
7)4(k

�+1)(f + g
√

7)4

is equivalent to the equation:

m2 + y
√

7 = (ck� + dk�

√
7)4(f + g

√
7)4,

and we obtain:

m2 + y
√

7 =
[
(fck� + 7gdk�) + (gck� + fdk�)

√
7
]4

.

We consider the same solution (463, 15, 4) and we get that the system:{
fck� + 7gdk� = 15
fdk� + gck� = 4

has the integer solution: g = 4ck� − 15dk� ; f = 15ck� − 28dk� .
In general, for a, b ∈ Z, the system:
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{
fck� + 7gdk� = a
fdk� + gck� = b

has the solution: f = −7bdk� + ack� , g = bck� − adk� in Z.

In conclusion, in the case k ≡ 3 ( mod 4 ), for each solution of the
equation m4−n4 = 7y2, we get an infinity of integer solutions for the system:

{
y = 4ck

(
f3g + 7fg3

)
+ dk

(
f4 + 42f2g2 + 49g4

)
m2 = ck

(
f4 + 42f2g2 + 49g4

)
+ 28dk

(
f3g + 7fg3

)
,

therefore, an infinity of integer solutions for the equation

m2 = ck

(
f4 + 42f2g2 + 49g4

)
+ 28dk

(
f3g + 7fg3

)
.

Now we consider the cases k �= 3 ( mod 4 ).
We use the following notations: f4+42f2g2+49g4 = u and f3g+7fg3 =

v.
The system:{

y = 4ck

(
f3g + 7fg3

)
+ dk

(
f4 + 42f2g2 + 49g4

)
m2 = ck

(
f4 + 42f2g2 + 49g4

)
+ 28dk

(
f3g + 7fg3

)
is equivalent to the system:{

4ckv + dku = y
28dkv + cku = m2.

Then u being an integer number, we get u = −7dky + ckm2 and v =
(cky − dkm2) / 4.

When is v an integer number?
We take ck + dk

√
7 = (c0 + d0

√
7)k+1, k ∈ Z, c0 = 8, d0 = 3, and we

obtain the
equalities:{

ck = 1
2

[
(c0 + d0

√
7)k+1 + (c0 − d0

√
7)k+1

]
dk = 1

2
√

7

[
(c0 + d0

√
7)k+1 − (c0 − d0

√
7)k+1

] , k ∈ Z.

These are equivalent to the equalities:{
ck = 8k+1 + C2

k+1·9·7·8k−1 + C4
k+1·92·72·8k−3 + .....

dk = (k + 1)·8k·3 + C3
k+1·8k−2·33·7 + C5

k+1·8k−4·35·72 + ....
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By computing these values, we obtain the following result:
If k is an odd number, then ck is an odd number too ( ck ≡ ±1 ( mod

8 )) and dk

is an even number (dk ≡ 0 ( mod 8 )).
If k is an even number, then ck is an even number ( ck ≡ 0 ( mod 8 ))

and dk is an
odd number ( dk ≡ ±3 ( mod 8 )) and knowing that m is an odd number

we obtain that cky − dkm2 is an odd number. This implies that v is not an

integer number.
If k is an odd number, k ≡ 1( mod 4), then dk ≡ 0 ( mod 4 ), y ≡ 0 (

mod 4 ),
therefore cky − dkm2 ≡ 0 ( mod 4 ). This implies v ∈ Z.

Then the system:

{
f4 + 42f2g2 + 49g4 = u

f3g + 7fg3 = v

is equivalent to the system:

{
f4 + 42f2g2 + 49g4 = −7dky + ckm2

f3g + 7fg3 = cky−dkm2

4 .
.

Let s be the least common divisor of u and v. We prove that s = 1. If

s > 1, we take a prime divisor s1 of s.Since s1/u and s1/v, we get that s1 /
(4ck·v + dk·u) and s1/ (28dk·v + ck·u) , hence s1/ y and s1/ m2, therefore s1/

n4, in contradiction with the assumption (m, n) = 1. Therefore, s = 1.

We come back to the system:

{
f4 + 42f2g2 + 49g4 = u

f3g + 7fg3 = v.

We have the equation

vf4 − uf3g + 42vf2g2 − 7ufg3 + 49vg4 = 0.

This is equivalent to:

v·
(

f
g

)4

− u·
(

f
g

)3

+ 42v·
(

f
g

)2

− 7u· fg +49v = 0.
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We denote f
g = t and we get the equation vt4−ut3+42vt2−7ut+49v = 0.

Let ϕ = vt4 −ut3 +42vt2− 7ut+49v be a polynomial in Z [t] . We may
take a

monic polynomial ϕ1deduced from ϕ :

ϕ1(t) = v3·ϕ (
t
v

)
= v3·

[
v· ( t

v

)4 − u· ( t
v

)3 + 42v· ( t
v

)2 − 7v· t
v + 49v

]
,hence

ϕ1 = t4 − ut3 + 42v2t2 − 7uv2t + 49v4 ∈ Z [t] .

We consider ϕ1 = t4 − ut3 ∈ Z7 [t] .The only divisor of degree 1 ≤ 2 of
ϕ1 ∈ Z7 [t]

is g =t − u.

We search for a representative of u ( in Z7) found in the interval
(− 7

2 ; 7
2

]
,

therefore in [−3, 3] .
But u = −7dky + ckm2. This implies u ≡ ckm2(mod 7). As ck ≡ 1(mod

7), we have
u ≡ m2(mod 7). Knowing that, for any m ∈ Z, m2 ≡ 1, 2 or 4(mod 7), we

obtain that u ≡ 1, 2 or −3(mod 7), hence g = t − 1 or g = t − 2 or g = t + 3
is a divisor of ϕ1.

Case I: g = t− 1 implies that ϕ1 = (t− 1)·ϕ2, with ϕ2 ∈ Z [t] , hence
ϕ = 1

v3 ·ϕ1(vt) = 1
v3 (vt − 1)·ϕ2(vt). Therefore 1

v ∈ Q is a root of ϕ.

We come back at the notation established and we get g = vf.

But
{

f4 + 42f2g2 + 49g4 = u
f3g + 7fg3 = v

, therefore, we obtain :

{
f4(1 + 42v2 + 49v4) = u

f4(1 + 7v2) = 1.

The only integer solutions of this system are f ∈ {−1, 1} , v = 0,
g = 0, u = 1.

Case II: g = t − 2 implies that ϕ1 = (t − 2)·ϕ2, with ϕ2 ∈ Z [t] , hence
ϕ = 1

v3 ·ϕ1(vt) = 1
v3 (vt − 2)·ϕ2(vt). Therefore 2

v ∈ Q is a root of ϕ.

We obtain g = fv
2 .

If g ∈ Z, knowing that f3g + 7fg3 = v, we get f4(4 + 7v2) = 8.The
equation does not have integer solutions.

Case III: g = t + 3 implies that ϕ1 = (t + 3)·ϕ2, with ϕ2 ∈ Z [t] ,
hence

ϕ = 1
v3 · ϕ1(vt) = 1

v3 (vt + 3) · ϕ2(vt). Therefore t0 = − 3
v is a root of ϕ.

Then we get g = − fv
3 .
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If g ∈ Z, from f3g + 7fg3 = v, we get f4(9 + 7v2) = −9. This
equation

does not have integer solutions.
We come back to the cases I and II and we obtain f ∈ {−1, 1} , v = 0,

g = 0,
u = 1.This implies y = dk, m2 = ck, n ∈ {−1, 1} .

We look for m ∈ Z such that m2 = ck.

Knowing that k ≡ 1 ( mod 4 ), we obtain:
ck = 1

2

[(
c0 + d0

√
7
)k+1

+
(
c0 − d0

√
7
)k+1

]
. This implies:

ck = 8k+1+C2
k+1·8k−1·9·7+C4

k+1·8k−3·92·72+ ....+(9·7)
k+1
2 , therefore

ck ≡ 63
k+1
2 ( mod 8 ), hence ck ≡ 7 ( mod 8 ). Then there is not an

integer m such that m2 = ck.
From the previously proved, we got that ϕ1does not have divisors

of degree 1,
therefore ϕ1does not have integer roots. This implies that ϕ does not have

rational
roots. Hence, the system:{

f4 + 42f2g2 + 49g4 = u
f3g + 7fg3 = v

does not have nontrivial integer solutions.
In conclusion, in the case k ≡ 1 ( mod 4 ), for each solution of

the equation
m4 − n4 = 7y2, we do not get integer solutions for the equation:

m2 = ck

(
f4 + 42f2g2 + 49g4

)
+ 28dk

(
f3g + 7fg3

)
.

References

[1] T. Albu, I.D.Ion, Chapters of the Algebraic Theory of Numbers ( in Romanian),
Ed.Academiei, Bucureşti, 1984.
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