

ON SOME DIOPHANTINE EQUATIONS (III)

Diana Savin

Abstract

In this paper we study the Diophantine equations $c_k(f^4+42f^2g^2+49g^4)+28d_k(f^3g+7fg^3)=m^2,$

where (c_k, d_k) are solutions of the Pell equation $c^2 - 7d^2 = 1$.

1. Preliminaries.

We recall a classical result in [1], page 150 and our previous results in [7].

1.1. For the quadratic field $\mathbb{Q}(\sqrt{7})$, the ring of integers is Euclidian with respect to the norm.

1.2. The equation $m^4 - n^4 = 7y^2$ has an infinity of integer solutions.

1.3. The equations of the form

(1) $c_k(f^4 + 42f^2g^2 + 49g^4) + 28d_k(f^3g + 7fg^3) = m^2,$

where (c_k, d_k) is a solution of the Pell equation $u^2 - 7v^2 = 1$, has an infinity of integer solutions.

2. Studying the equation (1)

Let us fix y as a component of the solution of the equation $m^4 - n^4 = 7y^2$. Then we have the following result:

Key Words: Diophantine equations, Pell equation.

Proposition 2.1. The only cases for which, from an integer solution (m, n, y) of the equation $m^4 - n^4 = 7y^2$, we get integer solutions for the equations (1) is $k \equiv 3 \pmod{4}$.

Proof. In [7] we have proved that the equation $m^4 - n^4 = 7y^2$ has an infinity of integer solutions.

We know from 1.1. that the ring of algebraic integers $A = \mathbf{Z} \left[\sqrt{7} \right]$ of the quadratic field $\mathbf{Q}(\sqrt{7})$ is Euclidian with respect to the norm $N, N(a+b\sqrt{7}) :=$ $|a^2-7b^2|.$

We study the equation $m^4 - n^4 = 7y^2$ in the ring $\mathbf{Z}\left[\sqrt{7}\right]$. This equation has at least a solution: m = 463, n = 113, y = 80880. But then it has an infinity of integer solutions.

Consider $m^4 - n^4 = 7y^2$ written as $(m^2 - y\sqrt{7})(m^2 + y\sqrt{7}) = n^4$. In [7], we have proved that $m^2 + y\sqrt{7}$ and $m^2 - y\sqrt{7}$ are prime to each other in $\mathbf{Z}\left[\sqrt{7}\right]$.

This implies that there exists $f + g\sqrt{7} \in \mathbf{Z} \left[\sqrt{7}\right]$ and there exists $k \in \mathbf{Z}$ such that

$$m^{2} + y\sqrt{7} = (c_{k} + d_{k}\sqrt{7}) \cdot (f + g\sqrt{7})^{4}, \text{with} c_{k} + d_{k}\sqrt{7} \in \left\{ \pm (8 + 3\sqrt{7})^{k+1} / k \in \mathbf{Z} \right\},$$

(8,3) being the fundamental solution of the Pell equation $u^2 - 7v^2 = 1$. We obtain the equation:

$$m^2 + y\sqrt{7} = (c_k + d_k\sqrt{7}) \cdot (f^4 + 4f^3g\sqrt{7} + 42f^2g^2 + 28fg^3\sqrt{7} + 49g^4),$$

which is equivalent to the system:

$$\begin{cases} m^2 = c_k \left(f^4 + 42f^2g^2 + 49g^4 \right) + 28d_k \left(f^3g + 7fg^3 \right) \\ y = d_k \left(f^4 + 42f^2g^2 + 49g^4 \right) + 4c_k \left(f^3g + 7fg^3 \right). \end{cases}$$

By 1.2., the equation $m^4 - n^4 = 7y^2$ has an infinity of integer solutions. Hence, the system

$$\begin{cases} m^2 = c_k \left(f^4 + 42f^2g^2 + 49g^4 \right) + 28d_k \left(f^3g + 7fg^3 \right) \\ y = d_k \left(f^4 + 42f^2g^2 + 49g^4 \right) + 4c_k \left(f^3g + 7fg^3 \right) \end{cases}$$

has an infinity of integer solutions. Then, the equation

$$m^{2} = c_{k} \left(f^{4} + 42f^{2}g^{2} + 49g^{4} \right) + 28d_{k} \left(f^{3}g + 7fg^{3} \right)$$

has an infinity of integer solutions.

We want to find those integers k, such that, from a solution of the equation $m^4 - n^4 = 7y^2$, we can get solutions for the system:

$$\begin{cases} m^2 = c_k \left(f^4 + 42f^2g^2 + 49g^4 \right) + 28d_k \left(f^3g + 7fg^3 \right) \\ y = d_k \left(f^4 + 42f^2g^2 + 49g^4 \right) + 4c_k \left(f^3g + 7fg^3 \right). \end{cases}$$

The system has been obtained from: $m^2 + y\sqrt{7} = (c_k + d_k\sqrt{7}) \cdot (f + g\sqrt{7})^4$, which is equivalent to the equation: $m^2 + y\sqrt{7} = (c_0 + d_0\sqrt{7})^{k+1} \cdot (f + g\sqrt{7})^4$, $k \in \mathbb{Z}$.

First, we give an example. A solution of the equation $m^4 - n^4 = 7y^2$ is m = 463, y = 80880, n = 113. Using this solution, we can get a solution for the equation: $m^2 + y\sqrt{7} = (c_0 + d_0\sqrt{7})^{k+1} \cdot (f + g\sqrt{7})^4$, $k \in \mathbb{Z}$ (where $c_0 = 8$, $d_0 = 3$), namely f = 15, g = 4, k = -1.

For k = 3, the equation $m^2 + y\sqrt{7} = (c_0 + d_0\sqrt{7})^{k+1} \cdot (f + g\sqrt{7})^4$ becomes:

$$m^2 + y\sqrt{7} = \left[(8f + 21g) + (8g + 3f)\sqrt{7} \right]^4$$

We obtain: $\begin{cases} 8f + 21g = 15\\ 8g + 3f = 4 \end{cases}$, which implies f = 36, g = -13. Analogously, for k = 7, we obtain: f = 561, g = -212. We succeed to obtain a general result. The equation

$$m^2 + y\sqrt{7} = (c_0 + d_0\sqrt{7})^{4(k'+1)}(f + g\sqrt{7})^4$$

is equivalent to the equation:

$$m^2 + y\sqrt{7} = (c_{k'} + d_{k'}\sqrt{7})^4 (f + g\sqrt{7})^4,$$

and we obtain:

$$m^2 + y\sqrt{7} = \left[(fc_{k'} + 7gd_{k'}) + (gc_{k'} + fd_{k'})\sqrt{7} \right]^4.$$

We consider the same solution (463, 15, 4) and we get that the system:

$$\begin{cases} fc_{k'} + 7gd_{k'} = 15\\ fd_{k'} + gc_{k'} = 4 \end{cases}$$

has the integer solution: $g = 4c_{k'} - 15d_{k'}$; $f = 15c_{k'} - 28d_{k'}$.

In general, for $a, b \in \mathbf{Z}$, the system:

$$\begin{cases} fc_{k'} + 7gd_{k'} = a \\ fd_{k'} + gc_{k'} = b \end{cases}$$

has the solution: $f = -7bd_{k'} + ac_{k'}$, $g = bc_{k'} - ad_{k'}$ in **Z**.

In conclusion, in the case $k \equiv 3 \pmod{4}$, for each solution of the equation $m^4 - n^4 = 7y^2$, we get an infinity of integer solutions for the system:

$$\begin{cases} y = 4c_k \left(f^3 g + 7fg^3 \right) + d_k \left(f^4 + 42f^2 g^2 + 49g^4 \right) \\ m^2 = c_k \left(f^4 + 42f^2 g^2 + 49g^4 \right) + 28d_k \left(f^3 g + 7fg^3 \right), \end{cases}$$

therefore, an infinity of integer solutions for the equation

$$m^{2} = c_{k} \left(f^{4} + 42f^{2}g^{2} + 49g^{4} \right) + 28d_{k} \left(f^{3}g + 7fg^{3} \right).$$

Now we consider the cases $k \neq 3 \pmod{4}$.

We use the following notations: $f^4 + 42f^2g^2 + 49g^4 = u$ and $f^3g + 7fg^3 = u$

v.

The system:

$$\begin{cases} y = 4c_k \left(f^3 g + 7fg^3 \right) + d_k \left(f^4 + 42f^2 g^2 + 49g^4 \right) \\ m^2 = c_k \left(f^4 + 42f^2 g^2 + 49g^4 \right) + 28d_k \left(f^3 g + 7fg^3 \right) \end{cases}$$

is equivalent to the system:

$$\begin{cases} 4c_kv + d_ku = y\\ 28d_kv + c_ku = m^2. \end{cases}$$

Then u being an integer number, we get $u = -7d_ky + c_km^2$ and $v = (c_ky - d_km^2) / 4$.

When is v an integer number?

We take $c_k + d_k \sqrt{7} = (c_0 + d_0 \sqrt{7})^{k+1}, k \in \mathbb{Z}, c_0 = 8, d_0 = 3$, and we obtain the

equalities:

$$\begin{cases} c_k = \frac{1}{2} \left[(c_0 + d_0 \sqrt{7})^{k+1} + (c_0 - d_0 \sqrt{7})^{k+1} \right] \\ d_k = \frac{1}{2\sqrt{7}} \left[(c_0 + d_0 \sqrt{7})^{k+1} - (c_0 - d_0 \sqrt{7})^{k+1} \right] , k \in \mathbf{Z}. \end{cases}$$

These are equivalent to the equalities:

$$\begin{cases} c_k = 8^{k+1} + C_{k+1}^2 \cdot 9 \cdot 7 \cdot 8^{k-1} + C_{k+1}^4 \cdot 9^2 \cdot 7^2 \cdot 8^{k-3} + \dots, \\ d_k = (k+1) \cdot 8^k \cdot 3 + C_{k+1}^3 \cdot 8^{k-2} \cdot 3^3 \cdot 7 + C_{k+1}^5 \cdot 8^{k-4} \cdot 3^5 \cdot 7^2 + \dots \end{cases}$$

By computing these values, we obtain the following result:

If k is an odd number, then c_k is an odd number too ($c_k \equiv \pm 1 \pmod{8}$) and d_k

is an even number $(d_k \equiv 0 \pmod{8})$.

If k is an even number, then c_k is an even number ($c_k \equiv 0 \ (\ {\rm mod} \ 8 \))$ and d_k is an

odd number ($d_k \equiv \pm 3 \pmod{8}$) and knowing that m is an odd number we obtain that $c_k y - d_k m^2$ is an odd number. This implies that v is not an integer number.

If k is an odd number, $k\equiv 1 \pmod{4},$ then $d_k\equiv 0 \pmod{4},$ $y\equiv 0 \pmod{4},$

therefore $c_k y - d_k m^2 \equiv 0 \pmod{4}$. This implies $v \in \mathbf{Z}$.

Then the system:

$$\left\{ \begin{array}{c} f^4 + 42 f^2 g^2 + 49 g^4 = u \\ f^3 g + 7 f g^3 = v \end{array} \right.$$

is equivalent to the system:

$$\begin{cases} f^4 + 42f^2g^2 + 49g^4 = -7d_ky + c_km^2 \\ f^3g + 7fg^3 = \frac{c_ky - d_km^2}{4}. \end{cases}$$

Let s be the least common divisor of u and v. We prove that s = 1. If s > 1, we take a prime divisor s_1 of s.Since s_1/u and s_1/v , we get that $s_1 / (4c_k \cdot v + d_k \cdot u)$ and $s_1 / (28d_k \cdot v + c_k \cdot u)$, hence s_1 / y and s_1 / m^2 , therefore s_1 / n^4 , in contradiction with the assumption (m, n) = 1. Therefore, s = 1.

We come back to the system:

$$\left\{ \begin{array}{c} f^4 + 42 f^2 g^2 + 49 g^4 = u \\ f^3 g + 7 f g^3 = v. \end{array} \right.$$

We have the equation

$$vf^4 - uf^3g + 42vf^2g^2 - 7ufg^3 + 49vg^4 = 0.$$

This is equivalent to:

$$v \cdot \left(\frac{f}{g}\right)^4 - u \cdot \left(\frac{f}{g}\right)^3 + 42v \cdot \left(\frac{f}{g}\right)^2 - 7u \cdot \frac{f}{g} + 49v = 0.$$

We denote $\frac{f}{g} = t$ and we get the equation $vt^4 - ut^3 + 42vt^2 - 7ut + 49v = 0$. Let $\varphi = vt^4 - ut^3 + 42vt^2 - 7ut + 49v$ be a polynomial in $\mathbb{Z}[t]$. We may take a

monic polynomial φ_1 deduced from φ :

$$\varphi_1(t) = v^3 \cdot \varphi\left(\frac{t}{v}\right) = v^3 \cdot \left[v \cdot \left(\frac{t}{v}\right)^4 - u \cdot \left(\frac{t}{v}\right)^3 + 42v \cdot \left(\frac{t}{v}\right)^2 - 7v \cdot \frac{t}{v} + 49v\right], \text{hence}$$
$$\varphi_1 = t^4 - ut^3 + 42v^2t^2 - 7uv^2t + 49v^4 \in \mathbf{Z}[t].$$

We consider $\overline{\varphi_1} = t^4 - \overline{u}t^3 \in \mathbb{Z}_7[t]$. The only divisor of degree $1 \leq 2$ of $\overline{\varphi_1} \in \mathbb{Z}_7[t]$.

is
$$\overline{g} = t - \overline{u}$$

We search for a representative of \overline{u} (in \mathbb{Z}_7) found in the interval $\left(-\frac{7}{2}; \frac{7}{2}\right]$, therefore in [-3, 3].

But $u = -7d_ky + c_km^2$. This implies $u \equiv c_km^2 \pmod{7}$. As $c_k \equiv 1 \pmod{7}$, we have

 $u \equiv m^2 \pmod{7}$. Knowing that, for any $m \in \mathbb{Z}$, $m^2 \equiv 1, 2$ or $4 \pmod{7}$, we obtain that $u \equiv 1, 2$ or $-3 \pmod{7}$, hence g = t - 1 or g = t - 2 or g = t + 3 is a divisor of φ_1 .

Case I: g = t - 1 implies that $\varphi_1 = (t - 1) \cdot \varphi_2$, with $\varphi_2 \in \mathbb{Z}[t]$, hence $\varphi = \frac{1}{v^3} \cdot \varphi_1(vt) = \frac{1}{v^3}(vt - 1) \cdot \varphi_2(vt)$. Therefore $\frac{1}{v} \in \mathbb{Q}$ is a root of φ .

We come back at the notation established and we get g = vf. But $\begin{cases} f^4 + 42f^2g^2 + 49g^4 = u\\ f^3g + 7fg^3 = v \end{cases}$, therefore, we obtain :

$$\begin{cases} f^4(1+42v^2+49v^4)=u\\ f^4(1+7v^2)=1. \end{cases}$$

The only integer solutions of this system are $f \in \{-1, 1\}, v = 0, g = 0, u = 1.$

Case II: g = t - 2 implies that $\varphi_1 = (t - 2) \cdot \varphi_2$, with $\varphi_2 \in \mathbf{Z}[t]$, hence $\varphi = \frac{1}{v^3} \cdot \varphi_1(vt) = \frac{1}{v^3}(vt - 2) \cdot \varphi_2(vt)$. Therefore $\frac{2}{v} \in \mathbf{Q}$ is a root of φ .

We obtain
$$q = \frac{fv}{2}$$
.

If $g \in \mathbb{Z}$, knowing that $f^3g + 7fg^3 = v$, we get $f^4(4 + 7v^2) = 8$. The equation does not have integer solutions.

Case III: g = t + 3 implies that $\varphi_1 = (t + 3) \cdot \varphi_2$, with $\varphi_2 \in \mathbf{Z}[t]$, hence

$$\varphi = \frac{1}{v^3} \cdot \varphi_1(vt) = \frac{1}{v^3}(vt+3) \cdot \varphi_2(vt).$$
 Therefore $t_0 = -\frac{3}{v}$ is a root of φ .
Then we get $g = -\frac{fv}{3}$.

If $g \in \mathbf{Z}$, from $f^3g + 7fg^3 = v$, we get $f^4(9 + 7v^2) = -9$. This equation

does not have integer solutions.

We come back to the cases I and II and we obtain $f \in \{-1, 1\}$, v = 0, g = 0, u = 1. This implies $y = d_k$, $m^2 = c_k$, $n \in \{-1, 1\}$.

We look for $m \in \mathbb{Z}$ such that $m^2 = c_k$. Knowing that $h \equiv 1 \pmod{4}$ we obtain

Knowing that
$$k \equiv 1 \pmod{4}$$
, we obtain:
 $c_k = \frac{1}{2} \left[\left(c_0 + d_0 \sqrt{7} \right)^{k+1} + \left(c_0 - d_0 \sqrt{7} \right)^{k+1} \right]$. This implies:
 $c_k = 8^{k+1} + C_{k+1}^2 \cdot 8^{k-1} \cdot 9 \cdot 7 + C_{k+1}^4 \cdot 8^{k-3} \cdot 9^2 \cdot 7^2 + \dots + (9 \cdot 7)^{\frac{k+1}{2}}$, therefore

 $c_k\equiv 63^{\frac{k+1}{2}}\ (\ {\rm mod}\ 8$), hence $c_k\equiv 7\ (\ {\rm mod}\ 8$). Then there is not an integer m such that $m^2=c_k.$

From the previously proved, we got that φ_1 does not have divisors of degree 1,

therefore φ_1 does not have integer roots. This implies that φ does not have rational

roots. Hence, the system:

$$\left\{ \begin{array}{c} f^4 + 42 f^2 g^2 + 49 g^4 = u \\ f^3 g + 7 f g^3 = v \end{array} \right.$$

does not have nontrivial integer solutions.

In conclusion, in the case $k\equiv 1\ (\ {\rm mod}\ 4\),$ for each solution of the equation

 $m^4 - n^4 = 7y^2$, we do not get integer solutions for the equation:

$$m^{2} = c_{k} \left(f^{4} + 42f^{2}g^{2} + 49g^{4} \right) + 28d_{k} \left(f^{3}g + 7fg^{3} \right).$$

References

- T. Albu, I.D.Ion, Chapters of the Algebraic Theory of Numbers (in Romanian), Ed.Academiei, Bucureşti, 1984.
- [2] V. Alexandru, N.M. Goşoniu, *Elements of the Theory of Numbers* (in Romanian), Ed.Universității Bucureşti, 1999.
- [3] T. Andreescu, D. Andrica, An Introduction in the Study of Diophantine Equations (in Romanian), Ed. Gil, Zalău, 2002.
- [4] L.J. Mordell, Diophantine Equations, Academic Press, New York, 1969.
- [5] L. Panaitopol, A. Gica, An Introduction to Arithmetics and Numbers Theory (in Romanian), Ed. Universității Bucureşti, 2001.

- [6] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1992.
- [7] D. Savin, On Some Diophantine Equations (I), An. Şt.Univ. "Ovidius", Ser. Mat., 11 (2002), fasc. 1, p. 121-134.
- [8] W.Sierpinski, What we know and what we do not know about prime numbers? (in Romanian), (transl. from Polish Edition), Bucureşti, 1964.
- [9] C. Vraciu, M. Vraciu, Elements of Arithmetic (in Romanian), Ed. All, București, 1998.

"Ovidius" University of Constanta Department of Mathematics and Informatics, 900527 Constanta, Bd. Mamaia 124 Romania e-mail: Savin.Diana@univ-ovidius.ro