An．Şt．Univ．Ovidius Constanţa
Vol．12（1），2004，73－80

ON SOME DIOPHANTINE EQUATIONS （III）

Diana Savin

Abstract

In this paper we study the Diophantine equations $$
c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right)=m^{2},
$$

where $\left(c_{k}, d_{k}\right)$ are solutions of the Pell equation $c^{2}-7 d^{2}=1$ ．

1．Preliminaries．

We recall a classical result in［1］，page 150 and our previous results in ［7］．

1．1．For the quadratic field $\mathbb{Q}(\sqrt{7})$ ，the ring of integers is Euclidian with respect to the norm．

1．2．The equation $m^{4}-n^{4}=7 y^{2}$ has an infinity of integer solutions．
1．3．The equations of the form
（1）$\quad c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right)=m^{2}$,
where $\left(c_{k}, d_{k}\right)$ is a solution of the Pell equation $u^{2}-7 v^{2}=1$ ，has an infinity of integer solutions．

2．Studying the equation（1）

Let us fix y as a component of the solution of the equation $m^{4}-n^{4}=7 y^{2}$ ． Then we have the following result：

[^0]Proposition 2.1. The only cases for which, from an integer solution (m, n, y) of the equation $m^{4}-n^{4}=7 y^{2}$, we get integer solutions for the equations (1) is $k \equiv 3(\bmod 4)$.

Proof. In [7] we have proved that the equation $m^{4}-n^{4}=7 y^{2}$ has an infinity of integer solutions.

We know from 1.1. that the ring of algebraic integers $A=\mathbf{Z}[\sqrt{7}]$ of the quadratic field $\mathbf{Q}(\sqrt{7})$ is Euclidian with respect to the norm $N, N(a+b \sqrt{7}):=$ $\left|a^{2}-7 b^{2}\right|$.

We study the equation $m^{4}-n^{4}=7 y^{2}$ in the ring $\mathbf{Z}[\sqrt{7}]$. This equation has at least a solution: $m=463, n=113, y=80880$. But then it has an infinity of integer solutions.

Consider $m^{4}-n^{4}=7 y^{2}$ written as $\left(m^{2}-y \sqrt{7}\right)\left(m^{2}+y \sqrt{7}\right)=n^{4}$.
In [7], we have proved that $m^{2}+y \sqrt{7}$ and $m^{2}-y \sqrt{7}$ are prime to each other in $\mathbf{Z}[\sqrt{7}]$.

This implies that there exists $f+g \sqrt{7} \in \mathbf{Z}[\sqrt{7}]$ and there exists $k \in \mathbf{Z}$ such that

$$
\begin{aligned}
& m^{2}+y \sqrt{7}=\left(c_{k}+d_{k} \sqrt{7}\right) \cdot(f+g \sqrt{7})^{4}, \text { with } \\
& c_{k}+d_{k} \sqrt{7} \in\left\{ \pm(8+3 \sqrt{7})^{k+1} / k \in \mathbf{Z}\right\}
\end{aligned}
$$

$(8,3)$ being the fundamental solution of the Pell equation $u^{2}-7 v^{2}=1$. We obtain the equation:

$$
m^{2}+y \sqrt{7}=\left(c_{k}+d_{k} \sqrt{7}\right) \cdot\left(f^{4}+4 f^{3} g \sqrt{7}+42 f^{2} g^{2}+28 f g^{3} \sqrt{7}+49 g^{4}\right)
$$

which is equivalent to the system:

$$
\left\{\begin{array}{c}
m^{2}=c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right) \\
y=d_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+4 c_{k}\left(f^{3} g+7 f g^{3}\right)
\end{array}\right.
$$

By 1.2., the equation $m^{4}-n^{4}=7 y^{2}$ has an infinity of integer solutions.
Hence, the system

$$
\left\{\begin{array}{c}
m^{2}=c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right) \\
y=d_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+4 c_{k}\left(f^{3} g+7 f g^{3}\right)
\end{array}\right.
$$

has an infinity of integer solutions. Then, the equation

$$
m^{2}=c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right)
$$

has an infinity of integer solutions.
We want to find those integers k, such that, from a solution of the equation $m^{4}-n^{4}=7 y^{2}$, we can get solutions for the system:

$$
\left\{\begin{array}{c}
m^{2}=c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right) \\
y=d_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+4 c_{k}\left(f^{3} g+7 f g^{3}\right)
\end{array}\right.
$$

The system has been obtained from: $m^{2}+y \sqrt{7}=\left(c_{k}+d_{k} \sqrt{7}\right) \cdot(f+g \sqrt{7})^{4}$, which is equivalent to the equation: $m^{2}+y \sqrt{7}=\left(c_{0}+d_{0} \sqrt{7}\right)^{k+1} \cdot(f+g \sqrt{7})^{4}$, $k \in \mathbf{Z}$.

First, we give an example. A solution of the equation $m^{4}-n^{4}=7 y^{2}$ is $m=463, y=80880, n=113$.Using this solution, we can get a solution for the equation: $m^{2}+y \sqrt{7}=\left(c_{0}+d_{0} \sqrt{7}\right)^{k+1} \cdot(f+g \sqrt{7})^{4}, k \in \mathbf{Z}$ (where $c_{0}=8$, $d_{0}=3$), namely $f=15, g=4, k=-1$.

For $k=3$, the equation $m^{2}+y \sqrt{7}=\left(c_{0}+d_{0} \sqrt{7}\right)^{k+1} \cdot(f+g \sqrt{7})^{4}$ becomes:

$$
m^{2}+y \sqrt{7}=[(8 f+21 g)+(8 g+3 f) \sqrt{7}]^{4}
$$

We obtain: $\left\{\begin{array}{c}8 f+21 g=15 \\ 8 g+3 f=4\end{array}\right.$, which implies $f=36, g=-13$.
Analogously, for $k=7$, we obtain: $f=561, g=-212$.
We succeed to obtain a general result.
The equation

$$
m^{2}+y \sqrt{7}=\left(c_{0}+d_{0} \sqrt{7}\right)^{4\left(k^{\prime}+1\right)}(f+g \sqrt{7})^{4}
$$

is equivalent to the equation:

$$
m^{2}+y \sqrt{7}=\left(c_{k^{\prime}}+d_{k^{\prime}} \sqrt{7}\right)^{4}(f+g \sqrt{7})^{4}
$$

and we obtain:

$$
m^{2}+y \sqrt{7}=\left[\left(f c_{k^{\prime}}+7 g d_{k^{\prime}}\right)+\left(g c_{k^{\prime}}+f d_{k^{\prime}}\right) \sqrt{7}\right]^{4}
$$

We consider the same solution $(463,15,4)$ and we get that the system:

$$
\left\{\begin{aligned}
f c_{k^{\prime}}+7 g d_{k^{\prime}} & =15 \\
f d_{k^{\prime}}+g c_{k^{\prime}} & =4
\end{aligned}\right.
$$

has the integer solution: $g=4 c_{k^{\prime}}-15 d_{k^{\prime}} ; f=15 c_{k^{\prime}}-28 d_{k^{\prime}}$.
In general, for $a, b \in \mathbf{Z}$, the system:

$$
\left\{\begin{array}{c}
f c_{k^{\prime}}+7 g d_{k^{\prime}}=a \\
f d_{k^{\prime}}+g c_{k^{\prime}}=b
\end{array}\right.
$$

has the solution: $f=-7 b d_{k^{\prime}}+a c_{k^{\prime}}, g=b c_{k^{\prime}}-a d_{k^{\prime}}$ in \mathbf{Z}.
In conclusion, in the case $k \equiv 3(\bmod 4)$, for each solution of the equation $m^{4}-n^{4}=7 y^{2}$, we get an infinity of integer solutions for the system:

$$
\left\{\begin{array}{c}
y=4 c_{k}\left(f^{3} g+7 f g^{3}\right)+d_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right) \\
m^{2}=c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right),
\end{array}\right.
$$

therefore, an infinity of integer solutions for the equation

$$
m^{2}=c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right) .
$$

Now we consider the cases $k \neq 3(\bmod 4)$.
We use the following notations: $f^{4}+42 f^{2} g^{2}+49 g^{4}=u$ and $f^{3} g+7 f g^{3}=$ v.

The system:

$$
\left\{\begin{aligned}
y & =4 c_{k}\left(f^{3} g+7 f g^{3}\right)+d_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right) \\
m^{2} & =c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right)
\end{aligned}\right.
$$

is equivalent to the system:

$$
\left\{\begin{array}{c}
4 c_{k} v+d_{k} u=y \\
28 d_{k} v+c_{k} u=m^{2}
\end{array}\right.
$$

Then u being an integer number, we get $u=-7 d_{k} y+c_{k} m^{2}$ and $v=$ $\left(c_{k} y-d_{k} m^{2}\right) / 4$.

When is v an integer number?
We take $c_{k}+d_{k} \sqrt{7}=\left(c_{0}+d_{0} \sqrt{7}\right)^{k+1}, k \in \mathbf{Z}, c_{0}=8, d_{0}=3$, and we obtain the
equalities:

$$
\left\{\begin{array}{c}
c_{k}=\frac{1}{2}\left[\left(c_{0}+d_{0} \sqrt{7}\right)^{k+1}+\left(c_{0}-d_{0} \sqrt{7}\right)^{k+1}\right] \\
d_{k}=\frac{1}{2 \sqrt{7}}\left[\left(c_{0}+d_{0} \sqrt{7}\right)^{k+1}-\left(c_{0}-d_{0} \sqrt{7}\right)^{k+1}\right]
\end{array}, k \in \mathbf{Z} .\right.
$$

These are equivalent to the equalities:

$$
\left\{\begin{array}{c}
c_{k}=8^{k+1}+C_{k+1}^{2} \cdot 9 \cdot 7 \cdot 8^{k-1}+C_{k+1}^{4} \cdot 9^{2} \cdot 7^{2} \cdot 8^{k-3}+\ldots \ldots \\
d_{k}=(k+1) \cdot 8^{k} \cdot 3+C_{k+1}^{3} \cdot 8^{k-2} \cdot 3^{3} \cdot 7+C_{k+1}^{5} \cdot 8^{k-4} \cdot 3^{5} \cdot 7^{2}+\ldots
\end{array}\right.
$$

By computing these values, we obtain the following result:
If k is an odd number, then c_{k} is an odd number too $\left(c_{k} \equiv \pm 1(\bmod \right.$ 8)) and d_{k}
is an even number $\left(d_{k} \equiv 0(\bmod 8)\right)$.
If k is an even number, then c_{k} is an even number $\left(c_{k} \equiv 0(\bmod 8)\right)$ and d_{k} is an
odd number $\left(d_{k} \equiv \pm 3(\bmod 8)\right)$ and knowing that m is an odd number we obtain that $c_{k} y-d_{k} m^{2}$ is an odd number. This implies that v is not an integer number.

If k is an odd number, $k \equiv 1(\bmod 4)$, then $d_{k} \equiv 0(\bmod 4), y \equiv 0($ $\bmod 4)$,
therefore $c_{k} y-d_{k} m^{2} \equiv 0(\bmod 4)$. This implies $v \in \mathbf{Z}$.
Then the system:

$$
\left\{\begin{array}{c}
f^{4}+42 f^{2} g^{2}+49 g^{4}=u \\
f^{3} g+7 f g^{3}=v
\end{array}\right.
$$

is equivalent to the system:

$$
\left\{\begin{array}{c}
f^{4}+42 f^{2} g^{2}+49 g^{4}=-7 d_{k} y+c_{k} m^{2} \\
f^{3} g+7 f g^{3}=\frac{c_{k} y-d_{k} m^{2}}{4}
\end{array} .\right.
$$

Let s be the least common divisor of u and v. We prove that $s=1$. If $s>1$, we take a prime divisor s_{1} of s.Since s_{1} / u and s_{1} / v, we get that $s_{1} /$ $\left(4 c_{k} \cdot v+d_{k} \cdot u\right)$ and $s_{1} /\left(28 d_{k} \cdot v+c_{k} \cdot u\right)$, hence s_{1} / y and s_{1} / m^{2}, therefore $s_{1} /$ n^{4}, in contradiction with the assumption $(m, n)=1$. Therefore, $s=1$.

We come back to the system:

$$
\left\{\begin{array}{c}
f^{4}+42 f^{2} g^{2}+49 g^{4}=u \\
f^{3} g+7 f g^{3}=v
\end{array}\right.
$$

We have the equation

$$
v f^{4}-u f^{3} g+42 v f^{2} g^{2}-7 u f g^{3}+49 v g^{4}=0
$$

This is equivalent to:

$$
v \cdot\left(\frac{f}{g}\right)^{4}-u \cdot\left(\frac{f}{g}\right)^{3}+42 v \cdot\left(\frac{f}{g}\right)^{2}-7 u \cdot \frac{f}{g}+49 v=0 .
$$

We denote $\frac{f}{g}=t$ and we get the equation $v t^{4}-u t^{3}+42 v t^{2}-7 u t+49 v=0$.
Let $\varphi=v t^{4}-u t^{3}+42 v t^{2}-7 u t+49 v$ be a polynomial in $\mathbf{Z}[t]$. We may take a
monic polynomial φ_{1} deduced from φ :

$$
\begin{aligned}
\varphi_{1}(t)=v^{3} \cdot \varphi\left(\frac{t}{v}\right) & =v^{3} \cdot\left[v \cdot\left(\frac{t}{v}\right)^{4}-u \cdot\left(\frac{t}{v}\right)^{3}+42 v \cdot\left(\frac{t}{v}\right)^{2}-7 v \cdot \frac{t}{v}+49 v\right], \text { hence } \\
\varphi_{1} & =t^{4}-u t^{3}+42 v^{2} t^{2}-7 u v^{2} t+49 v^{4} \in \mathbf{Z}[t]
\end{aligned}
$$

We consider $\overline{\varphi_{1}}=t^{4}-\bar{u} t^{3} \in \mathbf{Z}_{7}[t]$. The only divisor of degree $1 \leq 2$ of $\overline{\varphi_{1}} \in \mathbf{Z}_{7}[t]$
is $\bar{g}=t-\bar{u}$.
We search for a representative of \bar{u} (in \mathbf{Z}_{7}) found in the interval $\left(-\frac{7}{2} ; \frac{7}{2}\right]$, therefore in $[-3,3]$.
But $u=-7 d_{k} y+c_{k} m^{2}$. This implies $u \equiv c_{k} m^{2}(\bmod 7)$. As $c_{k} \equiv 1(\bmod$ 7), we have
$u \equiv m^{2}(\bmod 7)$. Knowing that, for any $m \in \mathbf{Z}, m^{2} \equiv 1,2$ or $4(\bmod 7)$, we obtain that $u \equiv 1,2$ or $-3(\bmod 7)$, hence $g=t-1$ or $g=t-2$ or $g=t+3$ is a divisor of φ_{1}.

Case I: $g=t-1$ implies that $\varphi_{1}=(t-1) \cdot \varphi_{2}$, with $\varphi_{2} \in \mathbf{Z}[t]$, hence $\varphi=\frac{1}{v^{3}} \cdot \varphi_{1}(v t)=\frac{1}{v^{3}}(v t-1) \cdot \varphi_{2}(v t)$. Therefore $\frac{1}{v} \in \mathbf{Q}$ is a root of φ.

We come back at the notation established and we get $g=v f$. But $\left\{\begin{array}{c}f^{4}+42 f^{2} g^{2}+49 g^{4}=u \\ f^{3} g+7 f g^{3}=v\end{array}\right.$, therefore, we obtain :

$$
\left\{\begin{array}{c}
f^{4}\left(1+42 v^{2}+49 v^{4}\right)=u \\
f^{4}\left(1+7 v^{2}\right)=1
\end{array}\right.
$$

The only integer solutions of this system are $f \in\{-1,1\}, v=0$, $g=0, u=1$.

Case II: $g=t-2$ implies that $\varphi_{1}=(t-2) \cdot \varphi_{2}$, with $\varphi_{2} \in \mathbf{Z}[t]$, hence $\varphi=\frac{1}{v^{3}} \cdot \varphi_{1}(v t)=\frac{1}{v^{3}}(v t-2) \cdot \varphi_{2}(v t)$. Therefore $\frac{2}{v} \in \mathbf{Q}$ is a root of φ.

We obtain $g=\frac{f v}{2}$.
If $g \in \mathbf{Z}$, knowing that $f^{3} g+7 f g^{3}=v$, we get $f^{4}\left(4+7 v^{2}\right)=8$. The equation does not have integer solutions.

Case III: $g=t+3$ implies that $\varphi_{1}=(t+3) \cdot \varphi_{2}$, with $\varphi_{2} \in \mathbf{Z}[t]$, hence
$\varphi=\frac{1}{v^{3}} \cdot \varphi_{1}(v t)=\frac{1}{v^{3}}(v t+3) \cdot \varphi_{2}(v t)$. Therefore $t_{0}=-\frac{3}{v}$ is a root of φ. Then we get $g=-\frac{f v}{3}$.

If $g \in \mathbf{Z}$, from $f^{3} g+7 f g^{3}=v$, we get $f^{4}\left(9+7 v^{2}\right)=-9$. This equation
does not have integer solutions.
We come back to the cases I and II and we obtain $f \in\{-1,1\}, v=0$, $g=0$,
$u=1$.This implies $y=d_{k}, m^{2}=c_{k}, n \in\{-1,1\}$.
We look for $m \in \mathbf{Z}$ such that $m^{2}=c_{k}$.
Knowing that $k \equiv 1(\bmod 4)$, we obtain:
$c_{k}=\frac{1}{2}\left[\left(c_{0}+d_{0} \sqrt{7}\right)^{k+1}+\left(c_{0}-d_{0} \sqrt{7}\right)^{k+1}\right]$. This implies:
$c_{k}=8^{k+1}+C_{k+1}^{2} \cdot 8^{k-1} \cdot 9 \cdot 7+C_{k+1}^{4} \cdot 8^{k-3} \cdot 9^{2} \cdot 7^{2}+\ldots+(9 \cdot 7)^{\frac{k+1}{2}}$, therefore
$c_{k} \equiv 63^{\frac{k+1}{2}}(\bmod 8)$, hence $c_{k} \equiv 7(\bmod 8)$. Then there is not an integer m such that $m^{2}=c_{k}$.

From the previously proved, we got that φ_{1} does not have divisors of degree 1 ,
therefore φ_{1} does not have integer roots. This implies that φ does not have rational
roots. Hence, the system:

$$
\left\{\begin{array}{c}
f^{4}+42 f^{2} g^{2}+49 g^{4}=u \\
f^{3} g+7 f g^{3}=v
\end{array}\right.
$$

does not have nontrivial integer solutions.
In conclusion, in the case $k \equiv 1(\bmod 4)$, for each solution of the equation
$m^{4}-n^{4}=7 y^{2}$, we do not get integer solutions for the equation:

$$
m^{2}=c_{k}\left(f^{4}+42 f^{2} g^{2}+49 g^{4}\right)+28 d_{k}\left(f^{3} g+7 f g^{3}\right) .
$$

References

[1] T. Albu, I.D.Ion, Chapters of the Algebraic Theory of Numbers (in Romanian), Ed.Academiei, Bucureşti, 1984.
[2] V. Alexandru, N.M. Goşoniu, Elements of the Theory of Numbers (in Romanian), Ed.Universităţii Bucureşti, 1999.
[3] T. Andreescu, D. Andrica, An Introduction in the Study of Diophantine Equations (in Romanian), Ed. Gil, Zalău, 2002.
[4] L.J. Mordell, Diophantine Equations, Academic Press, New York,1969.
[5] L. Panaitopol, A. Gica, An Introduction to Arithmetics and Numbers Theory (in Romanian),Ed. Universităţii Bucureşti, 2001.
[6] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, SpringerVerlag, 1992.
[7] D. Savin, On Some Diophantine Equations (I), An. Şt.Univ. "Ovidius", Ser. Mat., 11 (2002),fasc.1, p. 121-134.
[8] W.Sierpinski, What we know and what we do not know about prime numbers? (in Romanian), (transl. from Polish Edition), Bucureşti, 1964.
[9] C. Vraciu, M. Vraciu, Elements of Arithmetic (in Romanian), Ed. All, Bucureşti,1998.
"Ovidius" University of Constanta
Department of Mathematics and Informatics, 900527 Constanta, Bd. Mamaia 124
Romania
e-mail: Savin.Diana@univ-ovidius.ro

[^0]: Key Words：Diophantine equations，Pell equation．

