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A NONLINEAR MODEL OF A
REGENERATIVE VIBRATING MACHINE
TOOL

Dumitru Bala

Abstract
We study the existence of Hopf bifurcations in a model of a

regenerative vibrating machine tool, by using the same methods as in
the Bifurcation Theorem and in the theory of central varieties.

In a paper published in 1984, H. M. Shi and S. A. Tobias [6] have studied
the theory of finite amplitude machine tool instability. They considered there
some experimental results and have shown that there exist unstable finite
amplitudes that are periodically unstable moments of the machine tool in the
neighborhood of its asymptotically stable states.

Following [2], we apply the subcritical Hopf bifurcation in the delay equa-
tion model for machine tool vibrations.

We have the mechanical model of a machine tool with regenerative vibra-
tions in Figure 1, which presents the orthogonal cuts of such a model taken
from [2]. Here f is the thickness of the splinter.

Consider the splinter given by:

Al:lfl()+lﬂ(t), (1)

where [ is the length of the initial cut, [y is the length of the cut made in
equilibrium state, x(t) characterizes the position of the knife and is depending
on the component F, of the cutting force.

Key Words: nonlinear model; regenerative vibrating machine tool.
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Figure 1:

The equation describing the machine’s movement is:
mi(t) = —sAl — F, — Ci(t). (2)

If we take:
Fx:Fx(fO)+AFw7 (3)

the Eq. (2) can be written as

B(t) + 2wy (t) + wia(t) = f%AFz, (4)

[s
where w, = 4/ — is the natural frequency of the oscillating system without
m

amortization and ¢ = is the relative term of the amortization. The

c
2mwn,
Equation (4) is exactly Equation (3.2) in [1], with @ = w,,. The cutting force
was obtained empirically, by using cutting test.

In [6], the cutting function is a polynomial function of third degree. We
know that the cutting force depends upon the thickness of the splinter and it
is given by
Fo(f) = KW %4, (5)

while its graph is given in Figure 2.
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Figure 2:

In (5), K is a parameter depending on the technological parameters and it

is considered constant. Developing f in Taylor series and keeping only terms
until the third degree, it results:

o

3 ,—9/4
o =0 £ ).

(6)

F) & KW (o) 13 (00 15

Denoting AF, = F.(f) — Fx(fo) and Af = f — fo, we get

3 ,._ 3 .- 5 .
aran =i (176 - S AR+ S IAR) .

The coefficient of Af in (7) is called the coefficient of the cutting force and
it is 5
ki = Zkagl/“. (8)

There the relation (7) becomes

AFL(Af) =k Af = é%AfQ +

The variation Af of the thickness of the splinter can be expressed as the
difference between the position of the maximum knife z(¢) and its deviation
x(t — 7) under the form

5k

3
56 A ©)

Af =x(t) —z(t — 1), (10)
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27
where the delay 7 = — is the time period of a rotation and €2 is the angular

speed of the rotation, moment of the piece.
The equation (4) is written as

Z(t) + 2qwi(t) + (wi + %) x(t) — %x(t —7)=

N 8f0m

5)
12f0m

(<:c<t> a1 — 2 (a(t) — alt r>>3) S

We introduce the notations ¢, &, 7 and p for the following expressions:

k
D F=war, P= L (12)
12 fo

t=wpt, &=

Replacing them in (11) and using ¢,z,7 instead of #,%,7 we obtain the
equation

. . 3
E(t) 42+ (1+p)a(t) —pr(t—7) = 1—8((96@)*SE(IFT))2 —(a(t) —a(t—7)%)).
(13)
The equation (13) is changed into a system of differential equations, by
putting x1(t) = z(t), z2(t) = #(t) and X (t) = (z1(t), 22(t))T. We get the
PDE system:

X(t) = L)X (t) + R(p)X (t —7) + F(X(¢), X(t = 7),p), (14)

L(p)Z( 7(10“0) 712§ ),R(p)=(g 8),

—rp =2 (0 :
’ 10\ (21(t) —21(t = 7))* = (@1(t) — 21 (t — 7))’
(15)
We are doing the investigation of the system (14), by considering p as a
bifurcation parameter and by applying the method used in [3].
More precisely, we use some steps (stages), which will be described bellow
together with the Maple program for getting the orbits of the system.

where

Step 1: Analyze of the linear part of the system (14).

We make the linearization of the system (14) in the equilibrium point 0 :
(0,0)": ,
X(t) = L(p)X(t) + R(p) X (t — 7), (16)
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where L(p) and R(p) were given in (15). The characteristic equation of (1
is obtained by considering a solution of the form X (t) = e*C, where C
(C1,C0)" € R2, ¢ #0.

The characteristic function

6)

D (\,p) =det (\I — L(p) — e *R(p)) = N> + 27 + (1L +p) — pe ",
with the condition ¢ # 0, leads us to the characteristic equation:
D(Ap)=0 (17)

For finding the boundary of the stability set of the solution 0 = (0, O)T,
we study the roots of the characteristic equation. For getting the D-curve, we
replace A = iw, with w > 0, in the characteristic equation (17):

1+p—w?—peoswr +i (2w + psinwr) = 0.
This equation is equivalent to the following system of equations:
1—w?+p(1—coswr) =0, 2w+ psinwr = 0. (18)
By eliminating the trigonometric functions in (18), we obtain:

(1- w2)2 +4¢%w?

= 19
P 2(w? 1) (19)
Since p > 0, it results w > 1. From (18), we get also:
2 w?—1
= — | jm — arctan ——— =1,2,... . 20
T w(jﬂ' arctan Q(w)’j ,2, (20)
. .
Using 2 = — in (20), we have:
T
wm
Q= i =1,2,... . 21
- . w2_17 J ) 4y ( )
7 — arctan
J 2¢w

The D-curve that characterizes the boundary separating the stability re-
gion from the instability one is given by:

. 2\2 2 2
(1 w)+4§w Q B wm

, — Cj=1,2,..., (22
2(w?-1) jﬂ—arctan"gc;l J (22)

pw) =

with w > 1. Taking j = 1, the curve (22) has the graph as in Figure 3.
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Between the initial thickness fy of the splinter and the coefficient p there

3 kW
4 4mw?

is the relation: p = f51/4 . From (22), it results that fo(w) =

kW O\ 1 . iy :
el ) @) The value of w for which fo(w) has a minimal value is
mw? ) p*(w

d
the solution of the equation pw)

= 0. By using (22), we have

wo = V/1+2¢ and po = p(wo) =2¢ (¢ +1).

For w = wy, from (20) and (21), we obtain

1
2| gm — arctan ——
. <j 1+2<) g VITXx i1
= , = i ,j=1,2,...
1+2C j’/T*&I'Ct&HTQC
(23)

All these results show that there is a value wg such that
(po = p(wo), Qo = Q(wo)) lies on the D-curve separating the stable region by
the unstable region and for which the initial thickness of the splinter has a
maximal value given by:

AW )4 1
dmey; ) 1664 (C+ 1)

hf@@( (24)
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Step 2. Analyze of the characteristic equation D (\,p) = 0 and the
Hopf bifurcation.

The roots of the characteristic equation (17) are functions of the parameter
p. Let A = A(p) be such a root. We call the Hopf bifurcation point the value
d\ (per
p = per for which ReA (p.r) = 0 and Re ép”) # 0. From Step 1, for
P
Der = Po, we find ReA(po) = 0. By derivation in D (A (p),p) = 0 with respect
to p, it results

d\(p) e~ AP 1
dp  2\(p) +2¢ + pe=2@)T’

For p = pp and A\ = tiwy, we obtain:

_ d)\(p()) . e~ woTo 1

M = - . 25
dp 2iwg + 2¢ + pge~ oo (25)
From (25) and (23), it results
d)\(po)
=R 0. 26
V= Re=g = > (26)

The relation (26) shows us that pg is a Hopf bifurcation point. For p €
(0,po), the roots of the characteristic equation have their real parts negative.
By the stability theorem of PDE systems. It results that the equilibrium point
0 = (0,0)T of the system (14) hence of the equation (13) is asymptotically
stable.

We are going on to analyze the solution of the system (14), in the neigh-
borhood of the point 0 = (0,0)%, for p = pg = 2¢(¢ + 1).

2 (wj — aarctan

77) -
ml+2€ , w=wo = 1+2¢,

T=1T0 =

with j € {1,2,...} fixed.

Step 3. The generalized eingensubspaces associated to the system
(14) in the Hopf bifurcation point p = py.

The PDE system (14) with p = pg becomes:

X (t) = L(po) X (t) + R(po) X (t — 70), t > 0. (27)
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The linear operator A and its adjoint A* associated to (27) are

—d(I)(G) 0 € |—7,0
Av(g)={ 0 o) (28)
L(po)®(0) + R(po)®(—70), € =0
ﬂ*(s)7 s €10,79)
AT (0) = ds (29)

L(po)T®*(0) + R(po)T ®(10), s =0
where ® : [—79,0] — C?, ®* : [0, 79] — R%.
The generalized eigensubspaces of (28) and (29) are given by
AD(B) = +iwo®(8), 6 € [—70,0], (30)
A*P*(s) = Liwe®*(s), s € [0, 7o) (31)

From (28), (29) and (30), (31), it results that ®(#) and ®*(s) are given by
() = 0, d*(s) = e0?C*, where C,C € C? are the solutions of the
linear equation systems:

A1C =0, A,C* =0, (32)
where
A — wo -1 A, — iwg 14+ po— poefiwm—o
7\ T4 po —poem 0™ dwg+2¢ ) 2T\ =1 dwo +2¢

(33)
From (32), (33), it results that the generalized eigensubspaces of A and
A* corresponding to the eigenvalues t+iwg are:

() = ( 1 >e“09, () = < ! >e“09, 0 c[-7,0], (34)

iwo —iwo

w(s) = (405 Y e, arge) = (OFEH et s . (35)
Let H = {¢: [-7,0] — C?} and H* = {p : [0,70] — C?} be the spaces of
the differentiable functions on [—7p,0] and [0, 70] with values in C?, endowed
with the uniform convergence topology.
We define the bilinear form (-,-) : H* x H — C,

0

(6"(5). (8)) = T (0)p(0) — /

—70

0
( /0 o (€ ) R(po)</?(§)d€> a8, (36)
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s €10,70], 6 € [—70,0].

Using this bilinear form for (®(6), ®(0)) and (®*(s), P*(s))given by (34)
and (35), we get:

(@7 (s), B(0)) = (2¢ — iwo, 1) < 2w0 > -

0 o 00 4
—/ (/ 6_1“0(5_‘9)(2C — iwp, 1) ( ) e’““%lf) df =
— \Jo po 0

— WO T
= 2¢ + 19" " py = ey11.

(), 2(0)) = (2 — o, 1) ( 3‘*’0 ) )

’ " (£-9) 00 1 iwod
_ wwol&— _ wwo _
/_7-0 </0 ‘ (2< o 1) ( Do 0 ) ( iWO ) ‘ df) 0=

= 2C + 22@)() - (e_ionO - ei“‘m’) = €12. (37)

Dbo
2in
(*(s), B(0)) = 21, (6*(5),6(9)) .

Let E = (ei;), ¢,7 = 1,2, be the matrix formed with the coefficients in
(37) and F' = (f;;), the inverse matrix of E. The vectors

W (s) = f1®"(s) + 120 (5), ¥ (5) = F12@" () + [1a ¥ (s), 5 € [0,70] (38)

are eigenvectors of the operators A and and A*, by introducing them into the
bilinear form (36), we obtain:

v (8),<1>(9)) =0, (T*(s),2(0)) =
(@*(S);E(G)) =1,s¢€ [0,’7’()], 0 e [77'0,0]’ (39)

hence the relations are satisfied.

Step 4. The central variety in bifurcation point and the limit cycle
associated to it.
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The orbit of the PDE system (14) can be described by using the usual
Poincare form associated to the system (14) on the central variety in the
point p = pg. The central variety in p = pg is a subvariety in the space
H = {u: [~70,0] — C?}, which is tangent to the eigensubspace generated by
{®(),®(0)} in (34). The central variety has the form

WC (po) = {22(0) +28(0) + W(0,2,%),2 =z +iy, (,y)V(0), § € [-70,0]},
(40)
where V(0) C R? is a neighborhood of the origin in R? and
2

1 1
w(b,2,Zz) = §w20(9)z2 +w1(0)2Zz + §w02(9)2 ,

with
Wap, W11 - [77‘0,0] — CQ, wog(o) = Ego(e), w11(9) c R, 0 e [*T(),O].

The orbit of the PDE system (14) is given by the mapping X; : [—79,0] —
R, where X(0) = X(t+6),0 € [—79,0], and defines a pseudogroup of oper-
ators T'(t), namely T'(t) : H — H, given by X;(0) = T'(¢t)X (#). The central
variety W (pg) associated to the differential system with (14) has the property
of remaining unchanged with respect to the pseudogroup of operators T'(t).
From the invariance, it results that wao(6),w11(0), wo2(f) satisfy a system of
differential equations. The complete description of the central variety W (po)
utilizes the method from [3]. In order to obtain the formula which are used
to describing the orbit of the differential system, we use the nonlinear part
F(X(t),X(t—7),po) given by (15) of the system (14), where we replace

1 1
X1(t) with z(t)+§(t)+iw%O(O)ZQ(t)erh(0)z§+ §w32(0)22 and x1(t—7) with

(0)e™ ™ H(0) T + by (1) (1) +why (~0) 270+ s (~70)2(0).

‘We obtain

F(=(0), 2(0), 7o) =5 Fao=(t) +Fir 2(03(1) b Fon=(6)*+ 3 P 2(YZ(0)+0(|0)]"),
(a1)
where

Foo = (0, F3)", Fin = (0, F)", Foa = (0, Fgp) ", For = (0, F3))",  (42)

3 3 ; ; 3 ,
Fiy = TR0, By = 2R (1o ) (L0, By = S (g2
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Fy = —=[(1 = €™ (w3(0) — wyo(~70) +2(1 — e~"*™) (wy; (0)

—why (—7p) — 3(1 — e~womo) (I=etworo ] (43)

920 w g —iw 21w
wio(0) = —Ee’ 0 _ 31_—2]206 wol  Bre*@o? g ¢ [—19,0] (44)

g1 11—
wiy () = T—eto? — Tl 4 By,
1wWo 1wWo

— WO T . —1
E, = — (L(po) + e 0T R(pg) — 2szI) Fy,

Ey = —(L(po) + R(po) ' Fi1, (45)

and

g20 = V(0)Fa, g11 = ¥(0)Fi1, go2 = ¥(0)Foz, g21 = V(0)Fy. (46)

The limit cycle is the orbit on the central variety W (po) of the solution
of the differential equation:

2(t) = iwoz(t) + 39021 + gn=(0F0) + 390971 + 3o 2(1Z(0),

with the initial condition:

Z(O) = (\P*(S)a 50(9)) y S € [OaTO]a e [*7—0;0];
where U*(s) is given by (38) and ¢(f) is the initial condition for the system
(14).

Step 5. The orbit of the system (14).

The orbit (¢, Z(t)) of the equation (13) is given by
&(t) = 221 () +ri (@ () 491 (D)) +rizo0 (21 () — 1 (1))~ 2in2021 (D1 () (47)

where 1120 = Re(wdg), r111 = Re(wiy), i120 = Im(wd,) and (z1(t),y1(t)) is
the solution of the system of differential equations:

1 1
z1(t) = —woy1(t)+§ (R20 + 2R11 + Ro2) $1(t)2—§ (Roo — 2R11 + Roo) y1(t)*+
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+ (Toz = Too) 21 ()1 (63 Rasae ()01 (0% +1 ()~ Toay () (0 + (0°),
(43)

1 1
y1(t) = —woxy (t) + = (I2o + 2111 + To2) y1(t)? — 3 (Ino — 2111 + Ioo) 1 (t)*+

5
+ (Roa = Ran) 21 (001 8+ 5 Reag (1)1 (03 (0) 5 v (6 (0431 (1),
with the initial condition
£1(0) = Re(W,9), 11(0) = In(¥,9) (49)
and
Ry = Re(g20), Ri1 = Re(g11), Ro2 = Re(goz2), Ra1 = Re(ga1)

Io = Im(g20), I11 = Im(g11), Loz = Im(go2), I21 = Im(ga1).
@ : [-70,0] — R is the initial condition of the system (13) given by $(0) =
©(0), ¢(0) is the initial condition of the system (3.7) from [1] with

12/,
3kW
=2(c+1
<4mw2> b P s(¢+1).
The orbit (¢, z(t)) of the equation (11) is given by

12 [ 4mw? ! e
o) = 2 () wito (50)
The invariants of the limit cycle given by (48) are:

ReC ImC ImM
o=t = Lt e » B2 = 2ReCh,
ReM wo

where M is given by (25) and

) 1 g
Cr=— (920911 — 2 |911|2 -3 |902|2 + 2
wo 3 2
We reproduce here the program realized by using Maple 9 soft, and then
we give the graphs that we obtained this way.
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#Bala? carul neliniar masini unelte regenerative;Stepan G:

>

m:=1.;:5:=2.,;c:=0.02;a:=sqrt{s/m) ;zeta:=cf({2*m*a) ;j:=H. ;omeqg
a:=sygrt{l+2*zeta) ;p:=2%zetav*{l+zeta)  tan:=2*{jrevalf{Pi) -
arctan{lfomega)) fomega M:={exp{-I*omega*rtau) -

1) f(2*%omega*I+2%zetatprexp( -

omega*tau*I)) ;A:=Re(M) ;0mega:=omega*evalf(Pi) f{j*evalf(Pi)-
arctan{1lfomega)) ;K:=0.2;¥W:=0.5;:£0:=(4*mra" 2/ (I~K*W) ) "d4*p-4;
= ell:=2%zetat+taunrexp(-
omega*tau*Ili*p:el2:=2%zetat+t2*omega*Il-p*{exp{-—omega*tau*I})-
exp({omega*tau*I))f(2%omega*I):e2l:=conjugate(el?) :e22:=conj
ugate{ell):

> with{Linear&lgebra):

E:=

<<ell ,e21>|<el? , e22:>:F:=MatrixInrerse{E):dl1:=<1]0>.F.<1,0
Fi1d12:=<1]|0>.F.<0 , 1>:

> d:=<omega*I*{conjugate{dl2)-
conjugate{dil))+2*zeta*{conjugate{dl2)+conjugate{dll)) |con]
ugate{dl2)+conjugate{dl11}>=:F20:=<0,3%p*{1l-exp{ -
omegartau*I)) “2f5-:F11:=<0,3*p*{l-exp{-I*omegartau))*{1l-
exp({I*omegar*taun) ) fH=:F02:=<0,3%p*({1-
exp(omega*tau*I) )" 2f5-:g20:=d.F20:¢g11:=d.F11:g02:=d.F02:

= L:i=<<0,-1-p>|<1,-
2%zetax>R:i=<<0,p>=|<0,0>>:6:=<<1 ,0>]|<0,1>=>:El:=MatrixInvers
e{—{L+exp{-I*omega*tau) *R-
2*omega*I*G) ) .F20:E2:=MatrixInverse( -
{L+R}}).F11:E11:=<1]|0>.E1:E12:=<1|0>-.E2:

> wl20:=-g20%exp{-I*omega*tau)f{I*omega) -
conjugate{g0? ) *exp(I*omega*tau) f(I*I*omega)+E1ll*exp( -

2%ome ga*tau*I):willl:=gli*exp({-I*omega*tau)/{I*omega) -
conjugate{gll)*exp(I*omega*tau) f(I*omega)+E12:v120:=-
420/ { T*omega) -

conjugate{g02) f{3*I*omega)+E11l:v111l:=gl1lf{I*omeqga)-
conjugate{gll)f{I*omega)+E12:F21:=<0,3%p*{{1-
exp{omega*taun*I) )& {vr120—-wl20)+2%{1-exp{ -

omega*tau*I) ) *(rvr11ll-wlll)-3*{1l-exp{-omega*tan*I)) 2% {1—
exp({omega*tau*I})) f5>=:g21l:=d.F21:

= Cl:={g20%gll-2*ah=s{gll)"2-
abs{g02)" 2/ *If(2%omega)+g21f2 :qmu2:=-Re({Cl) fRe (M) ;T2:=-
(Im{C1l)+mu2*Im{M} ) fomega ;heta2 :=2*Re(C1) ;

>

>

r20:=Re{wl20) :120:=Im(wl20):r1l1:=Re{wlll):ill:=Imi{wlll):r22
0:=Re{v120):i220:=Im{v120) :r211:=Re{vi111}:i211:=Tm{vilil}:

>
R20:=Re{g20):R11:=Re{gll):R02:=Re{g02):I20:=Im{g20):I11:=Im
{gll) :T02:=Im{gD2) :R21 :=Re{g21):I121:=Im{g21):
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= Flixi{t),¥{t)):=—omegary{t)+ (R20/2+R11+RO2F2)*u(t)"2-( I20-
= F1{x(t),y(t)}:=—dmega*y{t)+(R2D[2+R11+RD2[2)*x{t)“2—{I2D—
TO2)*u{t)wy{t)—(R2072—
R11+BO2/2)y*y{t) "24R21*H (L) *{x{ t)"24p (L) "2} f2-

T21%y by d{x{t )" 24+y{t)y"2)/2:

F2{x{t) ,¥(t)) :=omega*x({t)+({I20/24+T11+I027/2)*x(t}"2-(120F2-
T11+TI02 /2y *y({t) "2+ ({R20-

RO2)*x{t)ay{t ) +R21Fy{ by d{x{ )" 24y {t)"2) f2+I20 %ty {x{t) "2+
¥ity"2)f2: F3(x{t) wi{ty) :=2%x{t)+r220%{H{t)"2-w(t)"2)-
2hi220% (L) Ay it r211 0 {R{t) 24y {t)"2)+0.1:

Fdix(t) ,vi{t)) :=2%x{t)*cos{omegartan)+2*y(t)*=zin{omega*tan)+
r20F{H{t) "2t} 2)-

2hi20F{ by ry{ L) +rldid{ (b)) 2+ Ly 23 FS{H{L) ,¥(Lt})):=

12% {4 dmbaf{ TN ) 4% (p 4 f5)*FI{x({t) ,¥{t))+0.1:
with{DEtools) :

= d=sys=s =
{Aiff{x(t) ,t)=F1{x(t) ,y(t)) Adiff(¥(t) ,t)=F2({x{t) ¥(t)) x{0}
=-0.001,¥{0)=0.002}:

> dgol := dsolve{dsys mummeric):

> plots[odeplot]{dsol, [

[L,F3{x{t) ,wviL)) ;color=red]],0..5%tau,title="Fig.3.0rbhita
(L,x{t)y) ");

plots [odeplot]{dsol, [

[F3{x{t) y{t)) Fa{=x(t) ¥(t))

;co0lor=red]] 0..tan,title="Fig.3.0rhita {x{t) ,x{t-taun))
)i

plots [odeplot]{dsol, [

[t FAH{x{t) , wviL)) ;,co0lor=red]] ,0..5%tau, title="Fig.3.0rbhita
{t,x{t)) a =sist init "y

> MUGyns := [

diff{x{t)  t) =—omegary{t)+ (R20/24+R1I1+RO2 72y %t} 2-{ I20-

TO2)*x(t)ay{t)—(R2072-

R114+BO2/2)y*y{ t) " 24R21* (L) *{x{ L) " 24 (L) "2} f2-

I21%y{t)F{x(t) 24y (L) 2} /2, diff{y(t) t) =

omegarx{ty+{I20/24+T11+T02 /2y % (L) 2-{I20/2-

T11+I02f2)*y({ t) "2+ ({R20-

RO2y*x(t)hy{ t ) +RI1IFy{ by d{n{ )" 2+ (b} 2) f2+T20 0ty w{{t) "2+

¥ty 2)/2

1:

> DEplot3d{MUGygns , {x{t),¥{t)}, t=0..5%taun,
[[ ®{0)=-0.05, y{0}=0.05]],
®x=-0.1..0.1,y=-0.1..0.1,scene=[x{t) ,vi{t) t],
stepsize=0.05, linecolour=t,
title="Figura3d.dinamica Sistemului pe Wc{O0)XR"):

>

DEs:=({ {diff{x(t) ,t)=Fl{x{t) ,y(t)) AifE{y (L) ,L)=F2{H(t) ,¥(t})
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Fig.3. Orbita (t,x{t)}

Fig.3. Orbita (x{f) x{t-fau))
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Figure 4:
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