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A NONLINEAR MODEL OF A

REGENERATIVE VIBRATING MACHINE
TOOL

Dumitru Bălă

Abstract

We study the existence of Hopf bifurcations in a model of a
regenerative vibrating machine tool, by using the same methods as in
the Bifurcation Theorem and in the theory of central varieties.

In a paper published in 1984, H. M. Shi and S. A. Tobias [6] have studied
the theory of finite amplitude machine tool instability. They considered there
some experimental results and have shown that there exist unstable finite
amplitudes that are periodically unstable moments of the machine tool in the
neighborhood of its asymptotically stable states.

Following [2], we apply the subcritical Hopf bifurcation in the delay equa-
tion model for machine tool vibrations.

We have the mechanical model of a machine tool with regenerative vibra-
tions in Figure 1, which presents the orthogonal cuts of such a model taken
from [2]. Here f is the thickness of the splinter.
Consider the splinter given by:

∆l = l − l0 + x(t), (1)

where l is the length of the initial cut, l0 is the length of the cut made in
equilibrium state, x(t) characterizes the position of the knife and is depending
on the component Fx of the cutting force.

Key Words: nonlinear model; regenerative vibrating machine tool.
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Figure 1:

The equation describing the machine’s movement is:

mẍ(t) = −s∆l − Fx − Cẍ(t). (2)

If we take:
Fx = Fx(f0) + ∆Fx, (3)

the Eq. (2) can be written as

ẍ(t) + 2ςωvẋ(t) + ω2
nx(t) = − 1

m
∆Fx, (4)

where ωn =
√

s

m
is the natural frequency of the oscillating system without

amortization and ς =
c

2mωn
is the relative term of the amortization. The

Equation (4) is exactly Equation (3.2) in [1], with α = ωn. The cutting force
was obtained empirically, by using cutting test.

In [6], the cutting function is a polynomial function of third degree. We
know that the cutting force depends upon the thickness of the splinter and it
is given by

Fx(f) = KWf3/4, (5)

while its graph is given in Figure 2.
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Figure 2:

In (5), K is a parameter depending on the technological parameters and it

is considered constant. Developing f in Taylor series and keeping only terms
until the third degree, it results:

Fx(f) ∼= KW (f3/4
0 +

3
4

(f -f0) f
−1/4
0 -

3
32

(f -f0)
2
f
−5/4
0 +

5
128

(f -f0)
3
f
−9/4
0 ).

(6)
Denoting ∆Fx = Fx(f) − Fx(f0) and ∆f = f − f0, we get

∆Fx(∆f) ∼= kW

(
3
4
f
−1/4
0 ∆f − 3

32
f
−5/4
0 ∆f2 +

5
128

f
−9/4
0 ∆f3

)
. (7)

The coefficient of ∆f in (7) is called the coefficient of the cutting force and
it is

k1 =
3
4
kWf

−1/4
0 . (8)

There the relation (7) becomes

∆Fx(∆f) ∼= k1∆f =
1
8

k1

f0
∆f2 +

5
96

k1

f2
0

∆f3. (9)

The variation ∆f of the thickness of the splinter can be expressed as the
difference between the position of the maximum knife x(t) and its deviation
x(t − τ) under the form

∆f = x(t) − x(t − τ), (10)
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where the delay τ =
2π

Ω
is the time period of a rotation and Ω is the angular

speed of the rotation, moment of the piece.
The equation (4) is written as

ẍ(t) + 2ςωẋ(t) +
(

ω2
n +

k1

m

)
x(t) − k1

m
x(t − τ) =

=
k1

8f0m

(
(x(t) − x(t − τ))2 − 5

12f0m
(x(t) − x(t − τ))3

)
. (11)

We introduce the notations t̃, x̃, τ̃ and p for the following expressions:

t̃ = ωnt, x̃ =
5

12f0
x, τ̃ = ωnτ, P =

k1

mω2
n

. (12)

Replacing them in (11) and using t, x, τ instead of t̃, x̃, τ̃ we obtain the
equation

ẍ(t)+2ςẋ+(1+p)x(t)−px(t−τ) =
3p

10
((x(t)−x(t−τ))2 − (x(t)−x(t−τ)3)).

(13)
The equation (13) is changed into a system of differential equations, by

putting x1(t) = x(t), x2(t) = ẋ(t) and X(t) = (x1(t), x2(t))T . We get the
PDE system:

Ẋ(t) = L(p)X(t) + R(p)X(t − τ) + F (X(t), X(t − τ), p), (14)

where

L(p) =
(

0 1
−(1 + p) −2ς

)
, R(p) =

(
0 0
p 0

)
,

F (X(t), X(t − τ), p) =
3p

10

(
0
(x1(t) − x1(t − τ))2 − (x1(t) − x1(t − τ))3

)
.

(15)
We are doing the investigation of the system (14), by considering p as a

bifurcation parameter and by applying the method used in [3].
More precisely, we use some steps (stages), which will be described bellow

together with the Maple program for getting the orbits of the system.

Step 1: Analyze of the linear part of the system (14).

We make the linearization of the system (14) in the equilibrium point 0 :
(0, 0)T :

Ẋ(t) = L(p)X(t) + R(p)X(t − τ), (16)
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where L(p) and R(p) were given in (15). The characteristic equation of (16)
is obtained by considering a solution of the form X(t) = eλtC, where C =
(C1, C2)

T ∈ R2, c �= 0 .
The characteristic function

D (λ, p) = det
(
λI − L(p) − e−λτR(p)

)
= λ2 + 2ςτ + (1 + p) − pe−λr,

with the condition c �= 0, leads us to the characteristic equation:

D (λ, p) = 0 (17)

For finding the boundary of the stability set of the solution 0 = (0, 0)T ,
we study the roots of the characteristic equation. For getting the D-curve, we
replace λ = iω, with ω > 0, in the characteristic equation (17):

1 + p − ω2 − p cosωτ + i (2ζω + p sinωτ) = 0.

This equation is equivalent to the following system of equations:

1 − ω2 + p (1 − cosωτ) = 0, 2ζω + p sin ωτ = 0. (18)

By eliminating the trigonometric functions in (18), we obtain:

p =

(
1 − ω2

)2 + 4ζ2ω2

2 (ω2 − 1)
. (19)

Since p > 0, it results ω > 1. From (18), we get also:

τ =
2
ω

(
jπ − arctan

ω2 − 1
2ζω

)
, j = 1, 2, ... . (20)

Using Ω =
π

τ
in (20), we have:

Ω =
ωπ

jπ − arctan
ω2 − 1
2ζω

, j = 1, 2, ... . (21)

The D-curve that characterizes the boundary separating the stability re-
gion from the instability one is given by:

p(ω) =

(
1 − ω2

)2 + 4ζ2ω2

2 (ω2 − 1)
, Ω(ω) =

ωπ

jπ − arctan ω2−1
2ζω

, j = 1, 2, ..., (22)

with ω > 1. Taking j = 1, the curve (22) has the graph as in Figure 3.
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Figure 3:

Between the initial thickness f0 of the splinter and the coefficient p there

is the relation: p =
3
4

kW

4mω2
n

f
−1/4
0 . From (22), it results that f0(ω) =(

3kW

4mω2
n

)4 1
p4(ω)

. The value of ω for which f0(ω) has a minimal value is

the solution of the equation
dp(ω)
dω

= 0. By using (22), we have

ω0 =
√

1 + 2ζ and p0 = p(ω0) = 2ζ (ζ + 1) .

For ω = ω0, from (20) and (21), we obtain

τ0 =
2
(

jπ − arctan
1√

1 + 2ζ

)
√

1 + 2ζ
, Ω0 =

√
1 + 2ζπ

jπ − arctan
1√

1 + 2ζ

, j = 1, 2, ... .

(23)
All these results show that there is a value ω0 such that

(p0 = p(ω0), Ω0 = Ω(ω0)) lies on the D-curve separating the stable region by
the unstable region and for which the initial thickness of the splinter has a
maximal value given by:

f0 = f(ω0) =
(

4kW

4mω2
n

)4 1
16ζ4 (ζ + 1)4

. (24)
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Step 2. Analyze of the characteristic equation D (λ, p) = 0 and the
Hopf bifurcation.

The roots of the characteristic equation (17) are functions of the parameter
p. Let λ = λ(p) be such a root. We call the Hopf bifurcation point the value

p = pcr for which Reλ (pcr) = 0 and Re
dλ (pcr)

dp
�= 0. From Step 1, for

pcr = p0, we find Reλ(p0) = 0. By derivation in D (λ (p) , p) = 0 with respect
to p, it results

dλ(p)
dp

=
e−λ(p)τ − 1

2λ(p) + 2ζ + pe−λ(p)τ
.

For p = p0 and λ = ±iω0, we obtain:

M =
dλ(p0)

dp
=

e−ω0τ0 − 1
2iω0 + 2ζ + p0e−iω0τ0

. (25)

From (25) and (23), it results

γ = Re
dλ(p0)

dp
> 0. (26)

The relation (26) shows us that p0 is a Hopf bifurcation point. For p ∈
(0, p0), the roots of the characteristic equation have their real parts negative.
By the stability theorem of PDE systems. It results that the equilibrium point
0 = (0, 0)T of the system (14) hence of the equation (13) is asymptotically
stable.

We are going on to analyze the solution of the system (14), in the neigh-
borhood of the point 0 = (0, 0)T , for p = p0 = 2ζ(ζ + 1).

τ = τ0 =
2
(

πj − a arctan
1√

1 + 2ζ

)
√

1 + 2ζ
, ω = ω0 =

√
1 + 2ζ,

with j ∈ {1, 2, ...} fixed.

Step 3. The generalized eingensubspaces associated to the system
(14) in the Hopf bifurcation point p = p0.

The PDE system (14) with p = p0 becomes:

X(t) = L(p0)X(t) + R(p0)X(t − τ0), t ≥ 0. (27)
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The linear operator A and its adjoint A∗ associated to (27) are

AΦ(θ) =

⎧⎪⎨⎪⎩
dΦ(θ)

dθ
, θ ∈ [−τ0, 0)

L(p0)Φ(0) + R(p0)Φ(−τ0), θ = 0

(28)

A∗Φ∗(θ) =

⎧⎪⎨⎪⎩
−dΦ∗(s)

ds
, s ∈ [0, τ0)

L(p0)T Φ∗(0) + R(p0)T Φ(τ0), s = 0

(29)

where Φ : [−τ0, 0] → C2, Φ∗ : [0, τ0] → R2.

The generalized eigensubspaces of (28) and (29) are given by

AΦ(θ) = ±iω0Φ(θ), θ ∈ [−τ0, 0], (30)

A∗Φ∗(s) = ±iω0Φ∗(s), s ∈ [0, τ0]. (31)

From (28), (29) and (30), (31), it results that Φ(θ) and Φ∗(s) are given by
Φ(θ) = eiω0θC, Φ∗(s) = eiω0θC∗, where C, C ∈ C2 are the solutions of the
linear equation systems:

A1C = 0, A2C
∗ = 0, (32)

where

A1 =
(

iω0 −1
1 + p0 − p0e

−iω0τ0 iω0 + 2ζ

)
, A2 =

(
iω0 1 + p0 − p0e

−iω0τ0

−1 iω0 + 2ζ

)
(33)

From (32), (33), it results that the generalized eigensubspaces of A and
A∗ corresponding to the eigenvalues ±iω0 are:

Φ(θ) =
(

1
iω0

)
eiω0θ, Φ(θ) =

(
1

−iω0

)
eiω0θ, θ ∈ [−τ0, 0], (34)

Φ(s) =
(

iω0 + 2ζ
1

)
eiω0s, Φ∗(s) =

( −iω0 + 2ζ
1

)
e−iω0s, s ∈ [0, τ0]. (35)

Let H = {ϕ : [−τ, 0] → C2} and H∗ = {ϕ : [0, τ0] → C2} be the spaces of
the differentiable functions on [−τ0, 0] and [0, τ0] with values in C2, endowed
with the uniform convergence topology.

We define the bilinear form (·, ·) : H∗ ×H → C,

(ϕ∗(s), ϕ(θ)) := ϕ̄∗T (0)ϕ(0) −
∫ 0

−τ0

(∫ θ

0

ϕ̄∗ (ξ − θ) R(p0)ϕ(ξ)dξ

)
dθ, (36)
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s ∈ [0, τ0], θ ∈ [−τ0, 0].

Using this bilinear form for (Φ(θ), Φ(θ)) and (Φ∗(s), Φ∗(s))given by (34)
and (35), we get:

(Φ∗(s), Φ(θ)) = (2ζ − iω0, 1)
(

1
iω0

)
−

−
∫ 0

−τ0

(∫ θ

0

e−iω0(ξ−θ)(2ζ − iω0, 1)
(

0 0
p0 0

)
eiω0ξdξ

)
dθ =

= 2ζ + τ0e
−iω0τ0p0 = e11.(

Φ
∗
(s), Φ(θ)

)
= (2ζ − iω0, 1)

(
1
iω0

)
−

−
∫ 0

−τ0

(∫ θ

0

eiω0(ξ−θ)(2ζ − iω0, 1)
(

0 0
p0 0

)(
1
iω0

)
eiω0ξdξ

)
dθ =

= 2ζ + 2iω0 − p0

2iω0

(
e−iω0τ0 − eiω0τ0

)
= e12. (37)

(
Φ∗(s), Φ(θ)

)
= e12,

(
Φ

∗
(s), Φ(θ)

)
= e11.

Let E = (eij), i, j = 1, 2, be the matrix formed with the coefficients in
(37) and F = (fij), the inverse matrix of E. The vectors

Ψ∗(s) = f11Φ∗(s) + f12Ψ
∗
(s), Ψ

∗
(s) = f12Φ

∗(s) + f11Ψ
∗
(s), s ∈ [0, τ0] (38)

are eigenvectors of the operators A and and A∗, by introducing them into the
bilinear form (36), we obtain:

(Ψ∗(s), Φ(θ)) = 1,
(
Ψ

∗
(s), Φ(θ)

)
= 0,

(
Ψ∗(s), Φ(θ)

)
=

(
Ψ

∗
(s), Φ(θ)

)
= 1, s ∈ [0, τ0], θ ∈ [−τ0, 0], (39)

hence the relations are satisfied.

Step 4. The central variety in bifurcation point and the limit cycle
associated to it.
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The orbit of the PDE system (14) can be described by using the usual
Poincare form associated to the system (14) on the central variety in the
point p = p0. The central variety in p = p0 is a subvariety in the space
H = {u : [−τ0, 0] → C2}, which is tangent to the eigensubspace generated by
{Φ(θ), Φ(θ)} in (34). The central variety has the form

WC(p0) =
{
zΦ(θ) + zΦ(θ) + W (θ, z, z), z = x + iy, (x, y)V (0), θ ∈ [−τ0, 0]

}
,

(40)
where V (0) ⊂ R2 is a neighborhood of the origin in R2 and

w(θ, z, z) =
1
2
w20(θ)z2 + w11(θ)zz +

1
2
w02(θ)z2,

with

w20, w11 : [−τ0, 0] → C2, w02(θ) = w20(θ), w11(θ) ∈ R, θ ∈ [−τ0, 0].

The orbit of the PDE system (14) is given by the mapping Xt : [−τ0, 0] →
R, where Xt(θ) = X(t + θ), θ ∈ [−τ0, 0], and defines a pseudogroup of oper-
ators T (t), namely T (t) : H → H, given by Xt(θ) = T (t)X(θ). The central
variety WC(p0) associated to the differential system with (14) has the property
of remaining unchanged with respect to the pseudogroup of operators T (t).
From the invariance, it results that w20(θ), w11(θ), w02(θ) satisfy a system of
differential equations. The complete description of the central variety WC(p0)
utilizes the method from [3]. In order to obtain the formula which are used
to describing the orbit of the differential system, we use the nonlinear part
F(X(t), X(t − τ), p0) given by (15) of the system (14), where we replace

X1(t) with z(t)+z(t)+
1
2
w1

20(0)z2(t)+w1
11(0)zz+

1
2
w1

02(0)z2 and x1(t−τ) with

z(t)e−ω0τ0 +z(t)eiω0τ0 +
1
2
w1

20(−τ0)z2(t)+w1
11(−τ0)z(t)z(t)+

1
2
w1

02(−τ0)z2(t).

We obtain

F(z(t), z(t), p0)=
1
2
F20z(t)2+F11z(t)z(t)+

1
2
F02z(t)2+

1
2
F21z(t)2z(t)+O(|z(t)|3),

(41)
where

F20 = (0, F 2
20)

T , F11 = (0, F 2
11)

T , F02 = (0, F 2
02)

T , F21 = (0, F 2
21)

T , (42)

F 2
20 =

3p0

5
(1−e−ω0τ0)2, F 2

11 =
3p0

5
(1−e−iω0τ0)(1−eiω0τ0), F 2

02 =
3p0

5
(1−eiω0τ0)2
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and

F 2
21 =

3p0

5
[(1 − eiω0τ0)(w1

20(o) − w1
20(−τ0) + 2(1 − e−iω0τ0)(w1

11(o)−

−w1
11(−τ0) − 3(1 − e−iω0τ0)

2(1−eiω0τ0)], (43)

w1
20(θ) = − g20

iω0
eiω0θ − g02

3iω0
e−iω0θ + E1e

ziω0θ, θ ∈ [−τ0, 0] (44)

w1
11(θ) =

g11

iω0
eiω0θ − g11

iω0
e−iω0θ + E2,

E1 = − (L(p0) + e−iω0τ0R(p0) − 2iω0I
)−1

F20,

E2 = −(L(p0) + R(p0)−1F11, (45)

and
g20 = Ψ(0)F20, g11 = Ψ(0)F11, g02 = Ψ(0)F02, g21 = Ψ(0)F21. (46)

The limit cycle is the orbit on the central variety WC(p0) of the solution
of the differential equation:

z(t) = iω0z(t) +
1
2
g20z(t)2 + g11z(t)z(t) +

1
2
g02z(t)2 +

1
2
g21z(t)2z(t),

with the initial condition:

z(0) = (Ψ∗(s), ϕ(θ)) , s ∈ [0, τ0], θ ∈ [−τ0, 0],

where Ψ∗(s) is given by (38) and ϕ(θ) is the initial condition for the system
(14).

Step 5. The orbit of the system (14).

The orbit (t, x̃(t)) of the equation (13) is given by

x̃(t) = 2x1(t)+r111(x2
1(t)+y1(t)2)+r120(x1(t)2−y1(t)2)−2i120x1(t)y1(t) (47)

where r120 = Re(w1
20), r111 = Re(w1

11), i120 = Im(w1
20) and (x1(t), y1(t)) is

the solution of the system of differential equations:

x1(t) = −ω0y1(t)+
1
2

(R20 + 2R11 + R02)x1(t)2−1
2

(R20 − 2R11 + R02) y1(t)2+
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+ (I02 − I20)x1(t)y1(t)+
1
2
R21x1(t)(x1(t)2+y1(t)2)−1

2
I21y1(t)(x1(t)2+y1(t)2),

(48)

y1(t) = −ω0x1(t) +
1
2

(I20 + 2I11 + I02) y1(t)2 − 1
2

(I20 − 2I11 + I02)x1(t)2+

+ (R02 − R20)x1(t)y1(t)+
1
2
R21y1(t)(x1(t)2+y1(t)2)−1

2
I21x1(t)(x1(t)2+y1(t)2),

with the initial condition

x1(0) = Re(Ψ, ϕ), y1(0) = Im(Ψ, ϕ) (49)

and

R20 = Re(g20), R11 = Re(g11), R02 = Re(g02), R21 = Re(g21)

I20 = Im(g20), I11 = Im(g11), I02 = Im(g02), I21 = Im(g21).

ϕ : [−τ0, 0] → R is the initial condition of the system (13) given by ϕ(θ) =
5

12f0
ϕ(θ), ϕ(θ) is the initial condition of the system (3.7) from [1] with

f0 =
(

3kW

4mω2
n

)4 1
p4
0

, p0 = 2ς(ς + 1).

The orbit (t, x(t)) of the equation (11) is given by

x(t) =
12
5

(
4mω2

n

3Kw

)4

p4
0x̃(t). (50)

The invariants of the limit cycle given by (48) are:

µ2 = −ReC1

ReM
, T2 = −ImC1 + µ2ImM

ω0
, β2 = 2ReC1,

where M is given by (25) and

C1 =
i

ω0

(
g20g11 − 2 |g11|2 − 1

3
|g02|2

)
+

g21

2
.

We reproduce here the program realized by using Maple 9 soft, and then
we give the graphs that we obtained this way.
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Figure 4:
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