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SOME EXAMPLES OF REAL DIVISION

ALGEBRAS

Cristina Flaut

Abstract

It is known, by Frobenius Theorem, that the only division associative
algebras over R are R, C, H. In 1958 Bott and Milnor showed that the
finite-dimensional real division algebra can have only dimensions 1, 2, 4,
8. The algebras R, C , H and O, first, second and third are associative
and the fourth is non-associative, are the only finite-dimensional alter-
native real division algebras. In [Ok, My; 80] is given a construction of
division non-unitary non-alternative algebras over an arbitrary field K
with charK �= 2. In this paper we analyse a case when these algebras
are isomorphic.

The algebras R, C, H and O are flexible (i.e. (xy) x = x (yx) , for all
x, y) and every element of these algebras satisfies the quadratic equation:
x2 − t(x)x + n (x) e = 0, where t is a linear and n is a quadratic form.

Each of these algebras is a composition algebras, i.e. has an associated
symmetric non-degenerate bilinear form (x, y) = 1

2 [n (x + y) − n (x) − n (y)],
permitting composition:

(xy, xy) = (x, y) (y, y) . (1)

Let A be an arbitrary algebra. A vector spaces morphism f : A → A is an
involution if f (xy) = f (y) f (x) and f (f (x)) = x, ∀x ∈ A.

Proposition 1.[Ok, My; 80] Let A be a finite dimensional composition al-
gebra over a field K with charK �= 2 and let (x, y) be its associated symmetric
non-degenerate bilinear form defined on A. If we have the relations:

x(yx) = (xy)x = (x, x) y, (2)
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then A has the dimension 1, 2, 4 or 8.�
Proposition 2. [Ok, My; 80] Let A be an algebra over the field K with

charK �= 2 , and (x, y) the associated symmetric non-degenerate bilinear
form. Then A satisfies the relation (2) if and only if (x, y) is associative, that
means:

(xy, z) = (x, yz) , x, y, z ∈ A, (3)

and (x, y) permits composition.�
Proposition 3. [Ok, My; 80]Let A be a finite-dimensional composition

algebra over the field K, with charK �= 2 and (x, y) a symmetric bilinear
form on A. Then A is a division algebra if and only if (x, x) �= 0 for x �= 0,
x ∈ A.

Let sl (3, C) be the Lie algebra of the complex matrices of order three with
the zero trace.

We define the multiplication x ∗ y in sl (3, C) :

x ∗ y = µxy + (1 − µ) yx − 1
3
Tr (xy) I, (4)

where xy is the multiplcation of the matrices x and y, µ ∈ C , µ �= 1
2 and I

is the identity matrix.
Since, for x, y ∈ sl (3, C) , T r(xy) = 0, sl (3, C) becomes an algebra over

C with the multiplication defined by the relation (4) .
Suppose that µ ∈ C satisfies the equation:

3µ (1 − µ) = 1. (5)

We define the non-degenerate symmetric bilinear form:

(x, y) =
1
6
Tr (xy) , x, y ∈ sl (3, C) , (6)

and the associated quadratic form:

N (x) = (x, x) =
1
6
Trx2. (7)

Obviously, this bilinear form is associative and permits composition:

N (x ∗ y) = N (x) N (y) . (8)

Using the Cayley-Hamilton Theorem, the relation (8) gives us the equation:

x3 − 1
2

(
Trx2

)
x − 1

3
(
Trx2

)
I = 0, for x ∈ sl (3, C) (9)
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and
Trx4 =

1
2

(
Trx2

)2
. (10)

The algebra sl (3, C) ,with the multiplication given by the relations (4) and (5) ,
is called the pseudo-octonions algebra. This algebra is a simple flexible
non-associative algebra without unity element.

Let Ā = {x ∈ (sl (3, C) , ∗) / x̄t = x}. Since µ̄ = 1 − µ is the conjugate of
µ, it follows from (4) that (x ∗ y)t = x ∗ y, for all x, y ∈ Ā. Therefore,

(
Ā, ∗)

becomes an algebra over R, called the real pseudo-octononion algebra.
So that, this algebra gives us a new example of real division algebra without
unity element, with dimension 8.

Let A be a composition algebra over the field K with e the unit element.
We have the relation:

x2 − 2 (e, x)x + (x, x) e = 0, ∀x ∈ A, (11)

with (x, y) the associated nondegenerated bilinear form. Then the algebra A
has the dimensions 1, 2, 4 or 8 and it is a quaternion or octonion algebra when
dimA = 4 or dimA = 8. Let x ∈ A. We denoted by x̄ = 2 (e, x) e − x, and it
is called the conjugate of x.

We define a new multiplication on A:

x ◦ y = x̄ȳ = −yx + 2 (e, yx) e. (12)

The algebra A defined in (12) is denoted Ae. It satisfies the relation (2) and:

x ◦ e = e ◦ x = x̄. (13)

It is obvious that (e, e) = 1 and e ◦ e = e.
An element e ∈ A with the properties

x ◦ e = e ◦ x = x̄, (e, e) = 1 and e ◦ e = e (14)

is called the pseudo-unit or para-unit of the algebra A.
If O is a real octonion algebra with the unit element e, then the real algebra

Oe defined by (12) is called the para-octonion algebra and has the para-unit
e. The real pseudo-octonion algebra and para-octonion algebra are division
algebras.

Proposition 4.[Ok, My; 80] Let A be an algebra over the field K, with
charK �= 2, wich satisfies the condition of Proposition 2. Let γ ∈ K and
g ∈ A be arbitrary elements such that :

γ �= 1
(g, g)

. (15)
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Let A (γ, g)be an algebra defined on the vector space A with multiplication
x ∗ y given by:

x ∗ y = −yx + γ (g, yx) g. (16)

If (x, x) �= 0 for x �= 0, x ∈ A, then A (γ, g) is a division algebra.

Proof. [Ok, My; 80]For γ = 2 and g = e, we obtain the para-octonion
algebra. For a �= 0, b ∈ A (γ, g) the equations a ∗ x = b and y ∗ a = b become:

−xa + γ (g, xa) g = b. (17)

We multiply the relation (17) to the left side with a and we get:

− (a, a)x = γ (g, xa) ag + ab. (18)

We apply the (·, g)in the relation (17) and we obtain:

(g, xa) [−1 + γ (g, g)] = (g, b) . (19)

Since (a, a) �= 0, it results that the equation a ∗ x = b has a unique solution:

x = − 1
(a, a)

[
ab +

γ (b, g)
−1 + γ (g, g)

ag

]
.

Similarly, we get that the equation y ∗ a = b has the unique solution:

y = − 1
(a, a)

[
ba +

γ (b, g)
−1 + γ (g, g)

ga

]
.

Since (x, y) permits composition on A, it follows from (16) that (x, y)
permits composition on A (γ, g) if and only if we have:

γ (g, yx)2 [γ (g, g) − 2] = 0. (20)

Since (x, y) is nondegenerate if g �= 0, we get:

γ = 0 or γ =
2

(g, g)
� (21)

Proposition 5. Let (A, ·) be a unitary finite-dimensional algebra over the
field K, with charK �= 2, which satisfies the conditions in Proposition 4 and
A (γ, g) be the algebra defined by (16) .

a) In algebra A (γ, e), the map f (x) = x̄ is an involution.
b) If A′ is an unitary finite-dimensional algebra which satisfies the con-

ditions in Proposition 4, f : A → A′ is an algebra isomorphism and γ =
γ′, f (g) = g′, (x, y) = (f (x) , f (y)) , then (A (γ, g)) � (A′ (γ, g′)) .
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Proof. a) x̄ ∗ ȳ = −ȳx̄ + γ (e, ȳx̄) e and y ∗ x = −ȳx̄ + γ (e, xy) e. Since
(x, y) = (x̄, ȳ) , and the bilinear form (·, ·) is associative, we get that f is an
involution.

b) By calculation, we obtain f (x ∗ y) = −f (yx) + γ (g, yx) f (g) , and
f (x)∗f (y) = −f (y) f (x)+γ (g′, f (y) f (x)) g′ = −f (yx)+γ (f (g) , f (yx)) f (g) .
By hypothesis, we get that f (x ∗ y) = f (x) ∗ f (y) so that (A (γ, g)) �
(A′ (γ, g′)) , because f is a bijective map.�

The algebra A (γ, g) is not in general flexible and associative. The associa-
tivity law (x ∗ y) ∗ x = x ∗ (y ∗ x) is equivalent with

γ (g, xy) gx + γ (g, (x ∗ y)x) g = γ (g, yx)xg + γ (g, x (y ∗ x)) g.

Let O be a real division octonion algebra with the unit e. The associated
para-octonion algebra Oe, is a division algebra with the para-unit e and sat-
isfies the conditions on the Proposition 4. Then the multiplication x ∗ y in
Oe (γ, e) is

x ∗ y = −y ◦ x + γ (e, y ◦ x) e = xy − (2 − γ) (e, xy) e, (22)

with (e, e) = 1.
Using (22) we get then:

(x ∗ y) ∗ x − x ∗ (y ∗ x) = 0

since O is flexible and (e, xy) = (e, yx) . It results that Oe (γ, e) is flexibile, but
it doesn’t have the identity element only if γ = 2. Indeed, we suppose that f is
a unit element for Oe (γ, e) . Then, by (22), f = αe with α = 1+(2 − γ) (e, f) .
Since (e, e) = 1 it results α = 1 +(2 − γ)α . Hence we get that f is not a unit
element in Oe (γ, e) only if γ = 2.
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