\mathcal{F}-MULTIPLIERS AND THE LOCALIZATION OF $M V$-ALGEBRAS

Dumitru Buşneag and Dana Piciu

Abstract

The aim of the present paper is to define the localisation of MValgebra of an MV-algebra A with respect to a topology F on A. In the last part of the paper it is proved that the maximal MV-algebra of quotients (defined in [6]) and the MV-algebra of fractions relative to an $\wedge-$ closed system (defined in [5]) are $M V$ - algebra of localisation.

The concept of multiplier for distributive lattices was defined by W. H. Cornish in [9]. J. Schmid used the multipliers in order to give a non-standard construction of the maximal lattice of quotients for a distributive lattice (see [14]). A direct treatment of the lattices of quotients can be found in [15]. In [11], G. Georgescu exhibited the localization lattice $L_{\mathcal{F}}$ of a distributive lattice L with respect to a topology \mathcal{F} on L in a similar way as for rings (see [13]) or monoids (see [16]). For the case of Hilbert and Heyting algebras, see [1], [2] and respectively [10].

The concepts of $M V$-algebra of fractions relative to an $\wedge-$ closed system of $M V$-algebra of fractions and of maximal $M V$-algebra of quotients were defined by the authors ([5], [6]).

1 Definitions and preliminaries

Definition 1.1 ([7], [8]) An MV-algebra is an algebra $\left(A,+,{ }^{*}, 0\right)$ of type $(2,1,0)$ satisfying the following equations:
$\left(a_{1}\right) x+(y+z)=(x+y)+z$,
$\left(a_{2}\right) x+y=y+x$,
$\left(a_{3}\right) x+0=x$,
$\left(a_{4}\right) x^{* *}=x$,
$\left(a_{5}\right) x+0^{*}=0^{*}$,
$\left(a_{6}\right)\left(x^{*}+y\right)^{*}+y=\left(y^{*}+x\right)^{*}+x$.
$M V$ - algebras were originally introduced by Chang in [7] in order to give an algebraic counterpart of the Lukasiewicz many valued logic ($M V=$ many valued). Note that axioms $a_{1}-a_{3}$ state that $(A,+, 0)$ is an abelian monoid; following tradition, we denote an $M V$-algebra $\left(A,+,{ }^{*}, 0\right)$ by its universe A.

Remark 1.1 If in a_{6} we put $y=0$ we obtain $x^{* *}=0^{* *}+x$, so, if $0^{* *}=0$, then $x^{* *}=x$ for each $x \in A$. Hence, the axiom a_{4} is equivalent with $\left(a_{4}^{\prime}\right)$ $0^{* *}=0$.

Examples:

$\left.E_{1}\right)$ A singleton $\{0\}$ is a trivial example of an $M V$-algebra; an $M V$-algebra is said nontrivial provided its universe has more that one element.
$\left.E_{2}\right)$ Let $(G, \oplus,-, 0, \leq)$ be an l-group. For each $u \in G, u>0$, let

$$
[0, u]=\{x \in G: 0 \leq x \leq u\}
$$

and for each $x, y \in[0, u]$, let $x+y=u \wedge(x \oplus y)$ and $x^{*}=u-x$. Then ($\left.[0, u],+,{ }^{*}, 0\right)$ is an $M V$ - algebra. In particular, if we consider the real unit interval $[0,1]$ and, for all $x, y \in[0,1]$, we define $x+y=\min \{1, x+y\}$ and $x^{*}=1-x$, then $\left([0,1],+,{ }^{*}, 0\right)$ is an $M V$-algebra.
$\left.E_{3}\right)$ If $\left(A, \vee, \wedge,{ }^{*}, 0,1\right)$ is a Boolean lattice, then $\left(A, \vee,{ }^{*}, 0\right)$ is an $M V$ algebra.
E_{4}) The rational numbers in $[0,1]$, and, for each integer $n \geq 2$, the n element set $L_{n}=\left\{0, \frac{1}{(n-1)}, \ldots, \frac{(n-2)}{(n-1)}, 1\right\}$ yield examples of subalgebras of $[0,1]$.
E_{5}) Given an $M V$-algebra A and a set X, the set A^{X} of all functions $f: X \longrightarrow A$ becomes an $M V$-algebra if the operations + and ${ }^{*}$ and the element 0 are defined pointwise. The continuous functions from $[0,1]$ into $[0,1]$ form a subalgebra of the $M V$-algebra $[0,1]^{[0,1]}$.

In the rest of this paper, by A we denote an $M V$-algebra.
On A we define the constant 1 and the operations ,," and ,,-" as follows $1=0^{*}, x \cdot y=\left(x^{*}+y^{*}\right)^{*}$ and $x-y=x \cdot y^{*}=\left(x^{*}+y\right)^{*}\left(\right.$ we consider the,${ }^{*}$ " operation more binding that any other operation, and the ,." more binding that + and - .

Lemma 1.1 ([3]-[8], [12]) For $x, y \in A$, the following conditions are equivalent:
(i) $x^{*}+y=1$.
(ii) $x \cdot y^{*}=0$.
(iii) $y=x+(y-x)$.
(iv) There is an element $z \in A$ such that $x+z=y$.

For any two elements $x, y \in A$ let us agree to write $x \leq y$ iff x and y satisfy the equivalent conditions $(i)-(i v)$ in the above lemma. So, \leq is a partial order relation on A (which is called the natural order on A).

Theorem 1.1 ([3]-[8], [12]) If $x, y, z \in A$, then the following hold:
$\left(c_{1}\right) 1^{*}=0$,
$\left(c_{2}\right) x+y=\left(x^{*} \cdot y^{*}\right)^{*}$,
$\left(c_{3}\right) x+1=1$,
$\left(c_{4}\right)(x-y)+y=(y-x)+x$,
$\left(c_{5}\right) x+x^{*}=1, x \cdot x^{*}=0$,
$\left(c_{6}\right) x-0=x, 0-x=0, x-x=0,1-x=x^{*}, x-1=0$,
$\left(c_{7}\right) x+x=x$ iff $x \cdot x=x$,
(c8) $x \leq y$ iff $y^{*} \leq x^{*}$,
(c_{9}) If $x \leq y$, then $x+z \leq y+z$ and $x \cdot z \leq y \cdot z$,
(c_{10}) If $x \leq y$, then $x-z \leq y-z$ and $z-y \leq z-x$,
$\left(c_{11}\right) x-y \leq x, x-y \leq y^{*}$,
$\left(c_{12}\right)(x+y)-x \leq y$,
$\left(c_{13}\right) x \cdot z \leq y$ iff $z \leq x^{*}+y$,
$\left(c_{14}\right) x+y+x \cdot y=x+y$.
Remark 1.2 ([3]-[8], [12]) On A, the natural order determines a bounded distributive lattice structure. Specifically, the join $x \vee y$ and the meet $x \wedge y$ of the elements x and y are given by:

$$
\begin{gathered}
x \vee y=(x-y)+y=(y-x)+x=x \cdot y^{*}+y=y \cdot x^{*}+x \\
x \wedge y=\left(x^{*} \vee y^{*}\right)^{*}=x \cdot\left(x^{*}+y\right)=y \cdot\left(y^{*}+x\right) .
\end{gathered}
$$

Clearly, $x \cdot y \leq x \wedge y \leq x, y \leq x \vee y \leq x+y$.

We shall denote this distributive lattice with 0 and 1 by $L(A)$ (see [7], [8]). For any $M V$ - algebra A we shall write $B(A)$ as an abbreviation of set of all complemented elements of $L(A)$. Elements of $B(A)$ are called the boolean elements of A.

Theorem 1.2 ([y]) For every element x in an $M V$ - algebra A, the following conditions are equivalent:
(i) $x \in B(A)$.
(ii) $x \vee x^{*}=1$.
(iii) $x \wedge x^{*}=0$.
(iv) $x+x=x$.
(v) $x \cdot x=x$.
(vi) $x+y=x \vee y$, for all $y \in A$.
(vii) $x \cdot y=x \wedge y$, for all $y \in A$.

Corollary 1.1 ([7], [8], [12])
(i) $B(A)$ is subalgebra of the $M V$ - algebra A. A subalgebra B of A is a boolean algebra iff $B \subseteq B(A)$.
(ii) An MV - algebra A is a boolean algebra iff the operation + is idempotent, i.e., the equation $x+x=x$ is satisfied by A.

Theorem 1.3 ([7], [8], [12]) If $x, y, z,\left(x_{i}\right)_{i \in I}$ are elements of A, then the following hold:

$$
\begin{aligned}
& \left(c_{15}\right) x+y=(x \vee y)+(x \wedge y) \\
& \left(c_{16}\right) x \cdot y=(x \vee y) \cdot(x \wedge y) \\
& \left(c_{17}\right) x+\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in I}\left(x+x_{i}\right) \\
& \left(c_{18}\right) x+\left(\bigwedge_{i \in I} x_{i}\right)=\bigwedge_{i \in I}\left(x+x_{i}\right) \\
& \left(c_{19}\right) x \cdot\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in I}\left(x \cdot x_{i}\right) \\
& \left(c_{20}\right) x \cdot\left(\bigwedge_{i \in I} x_{i}\right)=\bigwedge_{i \in I}\left(x \cdot x_{i}\right) \\
& \left(c_{21}\right) x \wedge\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in I}\left(x \wedge x_{i}\right)
\end{aligned}
$$

$\left(c_{22}\right) x \vee\left(\bigwedge_{i \in I} x_{i}\right)=\bigwedge_{i \in I}\left(x \vee x_{i}\right)$ (if all suprema and infima exist).
Lemma 1.2 If a, b, x are elements of A, then:
$\left(c_{23}\right)[(a \wedge x)+(b \wedge x)] \wedge x=(a+b) \wedge x$,
$\left(c_{24}\right) a^{*} \wedge x \geq x \cdot(a \wedge x)^{*}$.
Proof. $\left(c_{23}\right)$. By c_{18} we have $[(a \wedge x)+(b \wedge x)] \wedge x=((a \wedge x)+b) \wedge((a \wedge$ $x)+x) \wedge x=((a \wedge x)+b) \wedge x=(a+b) \wedge(x+b) \wedge x=(a+b) \wedge x$.
$\left(c_{24}\right)$. We have $x \cdot(a \wedge x)^{*}=x \cdot\left(a^{*} \vee x^{*}\right) \stackrel{c_{19}}{=}\left(x \cdot a^{*}\right) \vee\left(x \cdot x^{*}\right) \stackrel{c_{5}}{=}\left(x \cdot a^{*}\right) \vee 0=$ $x \cdot a^{*} \leq a^{*} \wedge x$.

Corollary 1.2 If $a \in B(A)$ and $x, y \in A$, then:
$\left(c_{25}\right) a^{*} \wedge x=x \cdot(a \wedge x)^{*}$,
$\left(c_{26}\right) a \wedge(x+y)=(a \wedge x)+(a \wedge y)$,
$\left(c_{27}\right) a \vee(x+y)=(a \vee x)+(a \vee y)$.
Proof. $\left(c_{25}\right)$. See the proof of c_{24}.
$\left(c_{26}\right)$. We have: $(a \wedge x)+(a \wedge y) \stackrel{c_{18}}{=}[(a \wedge x)+a] \wedge[(a \wedge x)+y]=[(a \wedge x) \vee$ $a] \wedge[(a+y) \wedge(x+y)]=a \wedge(a+y) \wedge(x+y)=a \wedge(x+y)$.
$\left(c_{27}\right)$. We have $(a \vee x)+(a \vee y)=(a+x)+(a+y)=(a+a)+(x+y)=$ $a+(x+y)=a \vee(x+y)$.

Definition 1.2 ([3]-[8], [12]) Let A and B be $M V$ - algebras. A function $f: A \rightarrow B$ is a morphism of $M V-$ algebras iff it satisfies the following conditions, for every $x, y \in A$:
$\left(a_{7}\right) f(0)=0$,
$\left(a_{8}\right) f(x+y)=f(x)+f(y)$,
$\left(a_{9}\right) f\left(x^{*}\right)=(f(x))^{*}$.
Remark 1.3 It follows that:
$f(1)=1, f(x \cdot y)=f(x) \cdot f(y), f(x \vee y)=f(x) \vee f(y), f(x \wedge y)=f(x) \wedge f(y)$,
for every $x, y \in A$.
Definition 1.3 ([3]-[8], [12]) An ideal of an MV - algebra A is a subset I of A satisfying the following conditions:
$\left(a_{10}\right)$ If $x \in I, y \in A$ and $y \leq x$, then $y \in I$,
(a_{11}) If $x, y \in I$, then $x+y \in I$.
We denote by $I d(A)$ the set of all ideals of A and by $I(A)$ the set

$$
I(A)=\{I \subseteq A: \text { if } x, y \in A, x \leq y \text { and } y \in I, \text { then } x \in I\}
$$

Remark 1.4 Clearly, $I d(A) \subseteq I(A)$ and if $I_{1}, I_{2} \in I(A)$, then $I_{1} \cap I_{2} \in I(A)$. Also, if $I \in I(A)$, then $0 \in I$.

For $M \subseteq A$ we denote by $(M]$ the ideal of A generated by M. If $M=\{a\}$ with $a \in A$, we denote by ($a]$ the ideal generated by $\{a\}((a]$ is called principal).

Proposition 1.1 ([7], [8]) If $M \subseteq A$, then

$$
(M]=\left\{x \in A: x \leq x_{1}+\ldots+x_{n} \text { for some } x_{1}, \ldots, x_{n} \in M\right\}
$$

In particular, for $a \in A,(a]=\{x \in A: x \leq$ na for some integer $n \geq 0\}$; if $e \in B(A)$, then $(e]=\{x \in A: x \leq e\}$.

2 Topologies on an MV-algebra

Definition 2.1 A non-empty set \mathcal{F} of elements of $I \in I(A)$ will be called a topology on A if the following properties hold:
$\left(a_{12}\right)$ If $I_{1} \in \mathcal{F}, I_{2} \in I(A)$ and $I_{1} \subseteq I_{2}$, then $I_{2} \in \mathcal{F}$ (hence $A \in \mathcal{F}$).
(a13) If $I_{1}, I_{2} \in \mathcal{F}$, then $I_{1} \cap I_{2} \in \mathcal{F}$.
Any intersection of topologies on A is a topology; hence the set $T(A)$ of all topologies of A is a complete lattice with respect to inclusion.

Examples

1. If $I \in I(A)$, then the set

$$
\mathcal{F}(I)=\left\{I^{\prime} \in I(A): I \subseteq I^{\prime}\right\}
$$

is clearly a topology on A.
2. A non-empty set $I \subseteq A$ will be called regular (see [6]) if for every $x, y \in A$ such that $e \wedge x=e \wedge y$ for every $e \in I \cap B(A)$, we have $x=y$. If we denote $R(A)=\{I \subseteq A: I$ is a regular subset of $A\}$, then $I(A) \cap R(A)$ is a topology on A (see [6]).
3. A subset $S \subseteq A$ is called $\wedge-$ closed if $1 \in S$ and if $x, y \in S$ implies $x \wedge y \in S$ (see [5]). For any $\wedge-$ closed subset S of A we set $\mathcal{F}_{S}=\{I \in I(A):$
$I \cap S \cap B(A) \neq \oslash\}$. Then \mathcal{F}_{S} is a topology on A. Clearly, if $I \in \mathcal{F}_{S}$ and $I \subseteq J$ (with $J \in I(A)$), then $I \cap S \cap B(A) \neq \oslash$, hence $J \cap S \cap B(A) \neq \oslash$, that is $J \in \mathcal{F}_{S}$.

If $I_{1}, I_{2} \in \mathcal{F}_{S}$ then there exist $s_{i} \in I_{i} \cap S \cap B(A), i=1,2$. If we set $s=s_{1} \wedge s_{2}$, then $s \in\left(I_{1} \cap I_{2}\right) \cap S \cap B(A)$, hence $I_{1} \cap I_{2} \in \mathcal{F}_{S}$.

$3 \mathcal{F}$-multipliers and localization MV-algebras

Let \mathcal{F} be a topology on A. Let us consider the relation $\theta_{\mathcal{F}}$ of A defined in the following way:
$(x, y) \in \theta_{\mathcal{F}} \Leftrightarrow$ there exists $I \in \mathcal{F}$ such that $e \wedge x=e \wedge y$ for any $e \in I \cap B(A)$.
Lemma $3.1 \theta_{\mathcal{F}}$ is a congruence on A.
Proof. The reflexivity and the symmetry of $\theta_{\mathcal{F}}$ are immediate; to prove the transitivity of $\theta_{\mathcal{F}}$ let $(x, y),(y, z) \in \theta_{\mathcal{F}}$. Then there exists $I_{1}, I_{2} \in \mathcal{F}$ such that $e \wedge x=e \wedge y$ for every $e \in I_{1} \cap B(A)$, and $f \wedge y=f \wedge z$ for every $f \in I_{2} \cap B(A)$. If the set $I=I_{1} \cap I_{2} \in \mathcal{F}$, then for every $g \in I \cap B(A)$, $g \wedge x=g \wedge z$, hence $(x, z) \in \theta_{\mathcal{F}}$.

To prove the compatibility of $\theta_{\mathcal{F}}$ with the operations + and ${ }^{*}$, let (x, y) and $(z, t) \in \theta_{\mathcal{F}}$, that is there exists $I, J \in \mathcal{F}$ such that $e \wedge x=e \wedge y$ for every $e \in I \cap B(A)$, and $f \wedge z=f \wedge t$ for every $f \in J \cap B(A)$. If we denote $K=I \cap J$, then $K \in \mathcal{F}$ and for every $g \in K \cap B(A), g \wedge x=g \wedge y$ and $g \wedge z=g \wedge t$.

By c_{26} we deduce that for every $g \in K \cap B(A)$:

$$
g \wedge(x+z)=(g \wedge x)+(g \wedge z)=(g \wedge y)+(g \wedge t)=g \wedge(y+t)
$$

hence $(x+z, y+t) \in \theta_{\mathcal{F}}$, that is $\theta_{\mathcal{F}}$ is compatible with the operation + .
Also, since $x \wedge e=y \wedge e$ for every $e \in I \cap B(A)$, we deduce that $x^{*} \vee e^{*}=$ $y^{*} \vee e^{*}$, hence $e \cdot\left(x^{*} \vee e^{*}\right)=e \cdot\left(y^{*} \vee e^{*}\right) \Leftrightarrow e \cdot\left(e^{*}+x^{*}\right)=e \cdot\left(e^{*}+y^{*}\right)$ (since $\left.e^{*} \in B(A)\right) \Leftrightarrow e \wedge x^{*}=e \wedge y^{*}$ for every $e \in I \cap B(A)$, hence $\left(x^{*}, y^{*}\right) \in \theta_{\mathcal{F}}$, that is $\theta_{\mathcal{F}}$ is compatible with the operations ${ }^{*}$, so $\theta_{\mathcal{F}}$ is a congruence on A.

We shall denote by $x / \theta_{\mathcal{F}}$ the congruence class of an element $x \in A$ and by

$$
p_{\mathcal{F}}: A \rightarrow A / \theta_{\mathcal{F}}
$$

the canonical morphism of $M V$ - algebras.
Proposition 3.1 For $a \in A, a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$ iff there exists $I \in \mathcal{F}$ such that $a \wedge e \in B(A)$ for every $e \in I \cap B(A)$. So, if $a \in B(A)$, then $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$.

Proof. For $a \in A$, we have $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right) \Leftrightarrow a / \theta_{\mathcal{F}}+a / \theta_{\mathcal{F}}=a / \theta_{\mathcal{F}} \Leftrightarrow$ $(a+a) / \theta_{\mathcal{F}}=a / \theta_{\mathcal{F}} \Leftrightarrow$ there exists $I \in \mathcal{F}$ such that $(a+a) \wedge e=a \wedge e$ for every $e \in I \cap B(A) \stackrel{c_{26}}{\Leftrightarrow}(a \wedge e)+(a \wedge e)=a \wedge e$ for every $e \in I \cap B(A) \Leftrightarrow a \wedge e \in B(A)$ for every $e \in I \cap B(A)$.

So, if $a \in B(A)$, then for every $I \in \mathcal{F}, a \wedge e \in B(A)$ for every $e \in I \cap B(A)$, hence $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$.

Corollary 3.1 If $\mathcal{F}=I(A) \cap R(A)$, then for $a \in A$, $a \in B(A)$ iff $a / \theta_{\mathcal{F}} \in$ $B\left(A / \theta_{\mathcal{F}}\right)$.

Definition 3.1 Let \mathcal{F} be a topology on A. An \mathcal{F} - multiplier is a mapping $f: I \rightarrow A / \theta_{\mathcal{F}}$ where $I \in \mathcal{F}$ and for every $x \in I$ and $e \in B(A)$ the following axioms are fulfilled:
$\left(a_{14}\right) f(e \cdot x)=e / \theta_{\mathcal{F}} \wedge f(x)=e / \theta_{\mathcal{F}} \cdot f(x)$.
$\left(a_{15}\right) f(x) \leq x / \theta_{\mathcal{F}}$.
$\left(a_{16}\right)$ If $e \in I \cap B(A)$, then $f(e) \in B\left(A / \theta_{\mathcal{F}}\right)$.
$\left(a_{17}\right)\left(x / \theta_{\mathcal{F}}\right) \wedge f(e)=\left(e / \theta_{\mathcal{F}}\right) \wedge f(x)$, for every $e \in I \cap B(A)$ and $x \in I$.
By $\operatorname{dom}(f) \in \mathcal{F}$ we denote the domain of f; if $\operatorname{dom}(f)=A$, we called f total.

To simplify the language, we will use multiplier instead of partial multiplier, using total to indicate that the domain of a certain multiplier is A.

If $\mathcal{F}=\{A\}$, then $\theta_{\mathcal{F}}$ is the identity congruence of A so an \mathcal{F} - multiplier is a total multiplier in the sense of [6].

The maps $\mathbf{0}, \mathbf{1}: A \rightarrow A / \theta_{\mathcal{F}}$ defined by $\mathbf{0}(x)=0 / \theta_{\mathcal{F}}$ and $\mathbf{1}(x)=x / \theta_{\mathcal{F}}$ for every $x \in A$ are multipliers in the sense of Definition 3.1 (see [6] for the case of multipliers).

Also, for $a \in B(A)$ and $I \in \mathcal{F}, f_{a}: I \rightarrow A / \theta_{\mathcal{F}}$ defined by $f_{a}(x)=$ $a / \theta_{\mathcal{F}} \wedge x / \theta_{\mathcal{F}}$ for every $x \in I$, is an $\mathcal{F}-$ multiplier (see [6] for the case of multipliers). If $\operatorname{dom}\left(f_{a}\right)=A$, we denote f_{a} by $\overline{f_{a}}$; clearly, $\overline{f_{0}}=\mathbf{0}$.

We shall denote by $M\left(I, A / \theta_{\mathcal{F}}\right)$ the set of all the \mathcal{F} - multipliers having the domain $I \in \mathcal{F}$ and

$$
M\left(A / \theta_{\mathcal{F}}\right)=\cup_{I \in \mathcal{F}} M\left(I, A / \theta_{\mathcal{F}}\right)
$$

If $I_{1}, I_{2} \in \mathcal{F}, I_{1} \subseteq I_{2}$, we have a canonical mapping

$$
\varphi_{I_{1}, I_{2}}: M\left(I_{2}, A / \theta_{\mathcal{F}}\right) \rightarrow M\left(I_{1}, A / \theta_{\mathcal{F}}\right)
$$

defined by

$$
\varphi_{I_{1}, I_{2}}(f)=f_{\mid I_{1}} \text { for } f \in M\left(I_{2}, A / \theta_{\mathcal{F}}\right)
$$

Let us consider the directed system of sets

$$
\left\langle\left\{M\left(I, A / \theta_{\mathcal{F}}\right)\right\}_{I \in \mathcal{F}},\left\{\varphi_{I_{1}, I_{2}}\right\}_{I_{1}, I_{2} \in \mathcal{F}, I_{1} \subseteq I_{2}}\right\rangle
$$

and denote by $A_{\mathcal{F}}$ the inductive limit (in the category of sets):

$$
A_{\mathcal{F}}=\lim _{\rightarrow I \in \mathcal{F}} M\left(I, A / \theta_{\mathcal{F}}\right) .
$$

For any \mathcal{F} - multiplier $f: I \rightarrow A / \theta_{\mathcal{F}}$, we shall denote by $\widehat{(I, f)}$ the equivalence class of f in $A_{\mathcal{F}}$.

Remark 3.1 We recall that, if $f_{i}: I_{i} \rightarrow A / \theta_{\mathcal{F}}, i=1,2$, are multipliers, then $\left.\widehat{\left(I_{1}, f_{1}\right)}=\widehat{\left(I_{2}, f_{2}\right.}\right)$ (in $A_{\mathcal{F}}$) iff there exists $I \in \mathcal{F}, I \subseteq I_{1} \cap I_{2}$ such that $f_{1 \mid I}=f_{2 \mid I}$.

Let $f_{i}: I_{i} \rightarrow A / \theta_{\mathcal{F}}$ (with $I_{i} \in \mathcal{F}, i=1,2$) be \mathcal{F}-multipliers. Let us consider the mapping

$$
f_{1} \oplus f_{2}: I_{1} \cap I_{2} \rightarrow A / \theta_{\mathcal{F}}
$$

defined by

$$
\left(f_{1} \oplus f_{2}\right)(x)=\left(f_{1}(x)+f_{2}(x)\right) \wedge x / \theta_{\mathcal{F}}
$$

for any $x \in I_{1} \cap I_{2}$, and let $\left.\left.\widehat{\left(I_{1}, f_{1}\right.}\right) \oplus \widehat{\left(I_{2}, f_{2}\right.}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \oplus f_{2}\right)$.
Also, for any multiplier $f: I \rightarrow A / \theta_{\mathcal{F}}$ (with $I \in \mathcal{F}$), let us consider the mapping

$$
f^{*}: I \rightarrow A / \theta_{\mathcal{F}}
$$

defined by

$$
f^{*}(x)=x / \theta_{\mathcal{F}} \cdot(f(x))^{*}
$$

for any $x \in I$ and let $\left.\widehat{(I, f)^{*}}=\widehat{\left(I, f^{*}\right.}\right)$.
Clearly the definitions of the operations \oplus and ${ }^{*}$ on $A_{\mathcal{F}}$ are correctly.
Lemma 3.2 $f_{1} \oplus f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. If $x \in I_{1} \cap I_{2}$ and $e \in B(A)$, then $\left(f_{1} \oplus f_{2}\right)(e \cdot x)=\left[f_{1}(e \cdot x)+\right.$ $\left.f_{2}(e \cdot x)\right] \wedge(e \cdot x) / \theta_{\mathcal{F}}=\left[\left(e / \theta_{\mathcal{F}} \cdot f_{1}(x)\right)+\left(e / \theta_{\mathcal{F}} \cdot f_{2}(x)\right)\right] \wedge\left(e / \theta_{\mathcal{F}} \cdot x / \theta_{\mathcal{F}}\right)=$ $\left[\left(e / \theta_{\mathcal{F}} \wedge f_{1}(x)\right)+\left(e / \theta_{\mathcal{F}} \wedge f_{2}(x)\right)\right] \wedge\left(e / \theta_{\mathcal{F}} \wedge x / \theta_{\mathcal{F}}\right) \stackrel{c_{26}}{=}\left[e / \theta_{\mathcal{F}} \wedge\left(f_{1}(x)+f_{2}(x)\right)\right] \wedge$ $\left[e / \theta_{\mathcal{F}} \wedge x / \theta_{\mathcal{F}}\right]=e / \theta_{\mathcal{F}} \wedge\left[\left(f_{1}(x)+f_{2}(x)\right) \wedge x / \theta_{\mathcal{F}}\right]=e / \theta_{\mathcal{F}} \cdot\left(f_{1} \oplus f_{2}\right)(x)$.

Clearly, $\left(f_{1} \oplus f_{2}\right)(x) \leq x / \theta_{\mathcal{F}}$ for every $x \in I_{1} \cap I_{2}$ and if $e \in I_{1} \cap I_{2} \cap B(A)$, then

$$
\left(f_{1} \oplus f_{2}\right)(e)=\left[f_{1}(e)+f_{2}(e)\right] \wedge e / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)
$$

For $e \in I_{1} \cap I_{2} \cap B(A)$ and $x \in I_{1} \cap I_{2}$ we have:

$$
\begin{gathered}
x / \theta_{\mathcal{F}} \wedge\left(f_{1} \oplus f_{2}\right)(e)=x / \theta_{\mathcal{F}} \wedge\left[\left(f_{1}(e)+f_{2}(e)\right) \wedge e / \theta_{\mathcal{F}}\right]=\left(f_{1}(e)+f_{2}(e)\right) \wedge x / \theta_{\mathcal{F}} \wedge e / \theta_{\mathcal{F}} \\
\stackrel{c_{26}}{=}\left(f_{1}(e)+f_{2}(e)\right) \wedge x / \theta_{\mathcal{F}},
\end{gathered}
$$

and

$$
\begin{gathered}
e / \theta_{\mathcal{F}} \wedge\left(f_{1} \oplus f_{2}\right)(x)=e / \theta_{\mathcal{F}} \wedge\left[\left(f_{1}(x)+f_{2}(x)\right) \wedge x / \theta_{\mathcal{F}}\right]=e / \theta_{\mathcal{F}} \cdot\left[\left(f_{1}(x)+f_{2}(x)\right) \wedge x / \theta_{\mathcal{F}}\right] \\
\stackrel{c_{20}}{=}\left[e / \theta_{\mathcal{F}} \cdot\left(f_{1}(x)+f_{2}(x)\right)\right] \wedge(e \cdot x) / \theta_{\mathcal{F}} \stackrel{c_{26}}{=}\left[\left(e / \theta_{\mathcal{F}} \cdot f_{1}(x)\right)+\left(e / \theta_{\mathcal{F}} \cdot f_{2}(x)\right)\right] \wedge(e \cdot x) / \theta_{\mathcal{F}} \\
=\left[x / \theta_{\mathcal{F}} \cdot f_{1}(e)+x / \theta_{\mathcal{F}} \cdot f_{2}(e)\right] \wedge(e \cdot x) / \theta_{\mathcal{F}} \\
=\left[\left(f_{1}(e) \wedge x / \theta_{\mathcal{F}}\right)+\left(f_{2}(e) \wedge x / \theta_{\mathcal{F}}\right)\right] \wedge(e \wedge x) / \theta_{\mathcal{F}} \\
=\left[\left[\left(f_{1}(e) \wedge x / \theta_{\mathcal{F}}\right)+\left(f_{2}(e) \wedge x / \theta_{\mathcal{F}}\right)\right] \wedge x / \theta_{\mathcal{F}}\right] \wedge e / \theta_{\mathcal{F}} \\
\stackrel{c_{23}}{=}\left(\left(f_{1}(e)+f_{2}(e)\right) \wedge x / \theta_{\mathcal{F}}\right) \wedge e / \theta_{\mathcal{F}} \stackrel{c_{26}}{=}\left(f_{1}(e)+f_{2}(e)\right) \wedge x / \theta_{\mathcal{F}}
\end{gathered}
$$

hence

$$
x / \theta_{\mathcal{F}} \wedge\left(f_{1} \oplus f_{2}\right)(e)=e / \theta_{\mathcal{F}} \wedge\left(f_{1} \oplus f_{2}\right)(x)
$$

that is $f_{1} \oplus f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Lemma $3.3 f^{*} \in M\left(I, A / \theta_{\mathcal{F}}\right)$.
Proof. If $x \in I$ and $e \in B(A)$, then $f^{*}(e \cdot x)=(e \cdot x) / \theta_{\mathcal{F}} \cdot(f(e \cdot x))^{*}=$ $e / \theta_{\mathcal{F}} \cdot x / \theta_{\mathcal{F}} \cdot\left(e / \theta_{\mathcal{F}} \cdot f(x)\right)^{*}=e / \theta_{\mathcal{F}} \cdot x / \theta_{\mathcal{F}} \cdot\left[\left(e / \theta_{\mathcal{F}}\right)^{*}+(f(x))^{*}\right]=x / \theta_{\mathcal{F}} \cdot\left(e / \theta_{\mathcal{F}}\right.$. $\left.\left(\left(e / \theta_{\mathcal{F}}\right)^{*}+(f(x))^{*}\right)\right)=x / \theta_{\mathcal{F}} \cdot\left(e / \theta_{\mathcal{F}} \wedge(f(x))^{*}\right)=x / \theta_{\mathcal{F}} \cdot\left(e / \theta_{\mathcal{F}} \cdot(f(x))^{*}\right)=$ $e / \theta_{\mathcal{F}} \cdot\left(x / \theta_{\mathcal{F}} \cdot(f(x))^{*}\right)=e / \theta_{\mathcal{F}} \cdot f^{*}(x)$.

Clearly, $f^{*}(x) \leq x / \theta_{\mathcal{F}}$ for every $x \in I$.
Clearly, if $e \in I \cap B(A)$, then

$$
f^{*}(e)=e / \theta_{\mathcal{F}} \cdot[f(e)]^{*} \in B\left(A / \theta_{\mathcal{F}}\right)
$$

Since $f \in M\left(I, A / \theta_{\mathcal{F}}\right)$, for $e \in I \cap B(A)$ and $x \in I$ we have:

$$
\begin{gathered}
x / \theta_{\mathcal{F}} \wedge f(e)=e / \theta_{\mathcal{F}} \wedge f(x) \Rightarrow\left(x / \theta_{\mathcal{F}}\right)^{*} \vee(f(e))^{*}=\left(e / \theta_{\mathcal{F}}\right)^{*} \vee(f(x))^{*} \\
\Rightarrow\left(x / \theta_{\mathcal{F}}\right)^{*}+(f(e))^{*}=\left(e / \theta_{\mathcal{F}}\right)^{*}+(f(x))^{*} \\
\Rightarrow e / \theta_{\mathcal{F}} \cdot x / \theta_{\mathcal{F}} \cdot\left[\left(x / \theta_{\mathcal{F}}\right)^{*}+(f(e))^{*}\right]=x / \theta_{\mathcal{F}} \cdot e / \theta_{\mathcal{F}} \cdot\left[\left(e / \theta_{\mathcal{F}}\right)^{*}+(f(x))^{*}\right] \Rightarrow \\
\Rightarrow e / \theta_{\mathcal{F}} \cdot\left[x / \theta_{\mathcal{F}} \wedge(f(e))^{*}\right]=x / \theta_{\mathcal{F}} \cdot\left[e / \theta_{\mathcal{F}} \wedge(f(x))^{*}\right] \\
\Rightarrow e / \theta_{\mathcal{F}} \cdot x / \theta_{\mathcal{F}} \cdot(f(e))^{*}=x / \theta_{\mathcal{F}} \cdot e / \theta_{\mathcal{F}} \cdot(f(x))^{*} \\
\Rightarrow x / \theta_{\mathcal{F}} \cdot\left[e / \theta_{\mathcal{F}} \cdot(f(e))^{*}\right]=e / \theta_{\mathcal{F}} \cdot\left[x / \theta_{\mathcal{F}} \cdot(f(x))^{*}\right] \\
\Rightarrow x / \theta_{\mathcal{F}} \wedge\left[e / \theta_{\mathcal{F}} \cdot(f(e))^{*}\right]=e / \theta_{\mathcal{F}} \wedge\left[x / \theta_{\mathcal{F}} \cdot(f(x))^{*}\right] \Rightarrow x / \theta_{\mathcal{F}} \wedge f^{*}(e)=e / \theta_{\mathcal{F}} \wedge f^{*}(x),
\end{gathered}
$$

hence f^{*} verify and a_{17}, that is $f^{*} \in M\left(I, A / \theta_{\mathcal{F}}\right)$.

Proposition $3.2\left(A_{\mathcal{F}}, \oplus,{ }^{*}, \widehat{(A, \mathbf{0})}\right)$ is an $M V$ - algebra.
Proof. We verify the axioms of $M V$ - algebras.
$\left.a_{1}\right)$. Let $f_{i} \in M\left(I_{i}, A / \theta_{\mathcal{F}}\right)$ where $I_{i} \in \mathcal{F}, i=1,2,3$ and denote $I=$ $I_{1} \cap I_{2} \cap I_{3} \in \mathcal{F}$.

Also, denote $f=f_{1} \oplus\left(f_{2} \oplus f_{3}\right), g=\left(f_{1} \oplus f_{2}\right) \oplus f_{3}$ and for $x \in I, a=$ $f_{1}(x), b=f_{2}(x), c=f_{3}(x)$.

Clearly $a, b, c \leq x / \theta_{\mathcal{F}}$. Thus, for $x \in I$:
$f(x)=\left(f_{1}(x)+\left(f_{2} \oplus f_{3}\right)(x)\right) \wedge x / \theta_{\mathcal{F}}=\left(f_{1}(x)+\left(\left(f_{2}(x)+f_{3}(x)\right) \wedge x / \theta_{\mathcal{F}}\right)\right) \wedge$ $x / \theta_{\mathcal{F}}=$
$=\left(a+(b+c) \wedge x / \theta_{\mathcal{F}}\right) \wedge x / \theta_{\mathcal{F}}=\left(\left(a \wedge x / \theta_{\mathcal{F}}\right)+\left((b+c) \wedge x / \theta_{\mathcal{F}}\right)\right) \wedge x / \theta_{\mathcal{F}} \stackrel{c_{23}}{=}$ $(a+b+c) \wedge x / \theta_{\mathcal{F}}$.

Analogously, $g(x)=(a+b+c) \wedge x / \theta_{\mathcal{F}}$, hence $f=g$, so

$$
\widehat{\left(I_{1}, f_{1}\right)} \oplus\left[\widehat{\left(I_{2}, f_{2}\right)} \oplus \widehat{\left(I_{3}, f_{3}\right)}\right]=\left[\widehat{\left(I_{1}, f_{1}\right)} \oplus \widehat{\left(I_{2}, f_{2}\right)}\right] \oplus \widehat{\left(I_{3}, f_{3}\right)}
$$

that is the operation \oplus is associative on $A_{\mathcal{F}}$.
a_{2}). Obviously.
$\left.a_{3}\right)$. Let $f \in M\left(I, A / \theta_{\mathcal{F}}\right)$ with $I \in \mathcal{F}$. If $x \in I$, then $(f \oplus \mathbf{0})(x)=(f(x)+$ $\mathbf{0}(x)) \wedge x / \theta_{\mathcal{F}}=f(x) \wedge x / \theta_{\mathcal{F}}=f(x)$, hence $f \oplus \mathbf{0}=f$, that is

$$
\widehat{(I, f)} \oplus \widehat{(A, \mathbf{0}})=\widehat{(I, f)}
$$

$\left.a_{4}\right)$. For $x \in A$, we have $\mathbf{0}^{*}(x)=x / \theta_{\mathcal{F}} \cdot(\mathbf{0}(x))^{*}=x / \theta_{\mathcal{F}} \cdot\left(0 / \theta_{\mathcal{F}}\right)^{*}=$ $x / \theta_{\mathcal{F}} \cdot 1 / \theta_{\mathcal{F}}=x / \theta_{\mathcal{F}}=\mathbf{1}(x)$, hence $\mathbf{0}^{*}=\mathbf{1}$ and $\mathbf{1}^{*}(x)=x / \theta_{\mathcal{F}} \cdot(\mathbf{1}(x))^{*}=$ $x / \theta_{\mathcal{F}} \cdot\left(x / \theta_{\mathcal{F}}\right)^{*}=0 / \theta_{\mathcal{F}}=\mathbf{0}(x)$. So, $\mathbf{0}^{* *}=\mathbf{1}^{*}=\mathbf{0}$ that is

$$
\widehat{(A, \mathbf{0})^{* *}}=\widehat{(A, \mathbf{0})}
$$

and by Remark 11, a_{4}) is verified.
a_{5}). Since $\mathbf{0}^{*}=\mathbf{1}$, for $f \in M\left(I, A / \theta_{\mathcal{F}}\right)$ (with $\left.I \in \mathcal{F}\right)$ and $x \in I$, we have: $\left(f \oplus \mathbf{0}^{*}\right)(x)=(f \oplus \mathbf{1})(x)=\left(f(x)+x / \theta_{\mathcal{F}}\right) \wedge x / \theta_{\mathcal{F}}=x / \theta_{\mathcal{F}}=\mathbf{1}(x)=\mathbf{0}^{*}(x)$, hence $f \oplus \mathbf{0}^{*}=\mathbf{0}^{*}$, that is

$$
\left.\widehat{(I, f)} \oplus \widehat{(A, \mathbf{0}})^{*}=\widehat{(A, \mathbf{0}}\right)^{*}
$$

$\left.a_{6}\right)$. Let $f \in M\left(I, A / \theta_{\mathcal{F}}\right), g \in M\left(J, A / \theta_{\mathcal{F}}\right)($ with $I, J \in \mathcal{F})$ and $x \in I \cap J$.
If denote $h=\left(f^{*} \oplus g\right)^{*} \oplus g, t=\left(g^{*} \oplus f\right)^{*} \oplus f$, and $a=f(x), b=g(x)$, then $a, b \leq x / \theta_{\mathcal{F}}$ and we have:
$h(x)=\left(\left(f^{*} \oplus g\right)^{*} \oplus g\right)(x)=\left(\left(f^{*} \oplus g\right)^{*}(x)+g(x)\right) \wedge x / \theta_{\mathcal{F}}=\left(\left(x / \theta_{\mathcal{F}} \cdot\left(\left(f^{*} \oplus\right.\right.\right.\right.$ $\left.\left.g)(x))^{*}\right)+g(x)\right) \wedge x / \theta_{\mathcal{F}}=\left(x / \theta_{\mathcal{F}} \cdot\left(\left(f^{*}(x)+g(x)\right) \wedge x / \theta_{\mathcal{F}}\right)^{*}+g(x)\right) \wedge x / \theta_{\mathcal{F}}=$ $\left(x / \theta_{\mathcal{F}} \cdot\left(\left(\left(x / \theta_{\mathcal{F}} \cdot(f(x))^{*}\right)+g(x)\right) \wedge x / \theta_{\mathcal{F}}\right)^{*}+g(x)\right) \wedge x / \theta_{\mathcal{F}}=\left(x / \theta_{\mathcal{F}} \cdot\left(\left(\left(x / \theta_{\mathcal{F}}\right.\right.\right.\right.$. $\left.\left.\left.\left.a^{*}\right)+b\right) \wedge x / \theta_{\mathcal{F}}\right)^{*}+b\right) \wedge x / \theta_{\mathcal{F}}=\left(x / \theta_{\mathcal{F}} \cdot\left(\left(\left(x / \theta_{\mathcal{F}} \cdot a^{*}\right)+b\right)^{*} \vee\left(x / \theta_{\mathcal{F}}\right)^{*}\right)+b\right) \wedge x / \theta_{\mathcal{F}}$
$=\left(x / \theta_{\mathcal{F}} \cdot\left(\left(x / \theta_{\mathcal{F}} \cdot a^{*}\right)+b\right)^{*}+b\right) \wedge x / \theta_{\mathcal{F}}=\left(x / \theta_{\mathcal{F}} \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+a\right) \cdot b^{*}+b\right) \wedge x / \theta_{\mathcal{F}}=$ $\left(\left(\left(x / \theta_{\mathcal{F}} \wedge a\right) \cdot b^{*}\right)+b\right) \wedge x / \theta_{\mathcal{F}}=\left(\left(a \cdot b^{*}\right)+b\right) \wedge x / \theta_{\mathcal{F}}=(a \vee b) \wedge x / \theta_{\mathcal{F}}=a \vee b$.

Analogously, $t(x)=a \vee b=h(x)$, hence $h=t$, so

$$
\left(\widehat{(I, f)^{*}} \oplus \widehat{(J, g)}\right)^{*} \oplus \widehat{(J, g)}=\left(\widehat{(J, g)^{*}} \oplus \widehat{(I, f)}\right)^{*} \oplus \widehat{(I, f)}
$$

Remark $3.2\left(M\left(A / \theta_{\mathcal{F}}\right), \oplus,{ }^{*}, \mathbf{0}\right)$ is an $M V$ - algebra.
Lemma 3.4 Let $f_{1}, f_{2} \in M\left(A / \theta_{\mathcal{F}}\right)$ with $f_{i} \in M\left(I_{i}, A / \theta_{\mathcal{F}}\right)\left(I_{i} \in \mathcal{F}\right), i=$ 1,2 . Then for every $x \in I_{1} \cap I_{2}$:
(i) $\left(f_{1} \odot f_{2}\right)(x)=f_{1}(x) \cdot\left[\left(x / \theta_{\mathcal{F}}\right)^{*}+f_{2}(x)\right]=f_{2}(x) \cdot\left[\left(x / \theta_{\mathcal{F}}\right)^{*}+f_{1}(x)\right]$.
(ii) $\left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x)$.
(iii) $\left(f_{1} \vee f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x)$.

Proof. We recall that in the MV - algebra $M\left(A / \theta_{\mathcal{F}}\right)$ we have:

$$
\begin{gathered}
f_{1} \odot f_{2}=\left(f_{1}^{*} \oplus f_{2}^{*}\right)^{*} \\
f_{1} \wedge f_{2}=f_{1} \odot\left[f_{1}^{*} \oplus f_{2}\right],
\end{gathered}
$$

and

$$
f_{1} \vee f_{2}=\left(f_{1}^{*} \wedge f_{2}^{*}\right)^{*}
$$

For $x \in I_{1} \cap I_{2}$ we denote $a=f_{1}(x), b=f_{2}(x)$; clearly $a, b \leq x / \theta_{\mathcal{F}}$.
So: $(i) \cdot\left(f_{1} \odot f_{2}\right)(x)=x / \theta_{\mathcal{F}} \cdot\left[\left(f_{1}^{*}(x)+f_{2}^{*}(x)\right) \wedge x / \theta_{\mathcal{F}}\right]^{*}=x / \theta_{\mathcal{F}} \cdot\left[\left(x / \theta_{\mathcal{F}}\right.\right.$. $\left.\left.a^{*}+x / \theta_{\mathcal{F}} \cdot b^{*}\right) \wedge x / \theta_{\mathcal{F}}\right]^{*}=x / \theta_{\mathcal{F}} \cdot\left[\left(x / \theta_{\mathcal{F}} \cdot a^{*}+x / \theta_{\mathcal{F}} \cdot b^{*}\right)^{*} \vee\left(x / \theta_{\mathcal{F}}\right)^{*}\right]$
$=x / \theta_{\mathcal{F}} \cdot\left[\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+a\right) \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+b\right) \vee\left(x / \theta_{\mathcal{F}}\right)^{*}\right]=x / \theta_{\mathcal{F}} \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+\right.$ $a) \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+b\right)=\left(x / \theta_{\mathcal{F}} \wedge a\right) \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+b\right)=a \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+b\right)=f_{1}(x)$. $\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+f_{2}(x)\right)=f_{2}(x) \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+f_{1}(x)\right)$.
$(i i) \cdot\left(f_{1}^{*} \oplus f_{2}\right)(x)=\left(x / \theta_{\mathcal{F}} \cdot a^{*}+b\right) \wedge x / \theta_{\mathcal{F}}$, hence $\left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x)$. $\left[\left(x / \theta_{\mathcal{F}}\right)^{*}+\left(f_{1}^{*} \oplus f_{2}\right)(x)\right]=a \cdot\left[\left(x / \theta_{\mathcal{F}}\right)^{*}+\left(x / \theta_{\mathcal{F}} \cdot a^{*}+b\right) \wedge x / \theta_{\mathcal{F}}\right] \stackrel{c_{18}}{=} a \cdot\left[\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+\right.\right.$ $\left.\left.x / \theta_{\mathcal{F}} \cdot a^{*}+b\right) \wedge\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+x / \theta_{\mathcal{F}}\right)\right] \stackrel{c_{5}}{=} a \cdot\left[\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+x / \theta_{\mathcal{F}} \cdot a^{*}+b\right) \wedge 1\right]=a \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+\right.$ $\left.x / \theta_{\mathcal{F}} \cdot a^{*}+b\right)=a \cdot\left[\left(\left(x / \theta_{\mathcal{F}}\right)^{*} \vee a^{*}\right)+b\right]=a \cdot\left(a^{*}+b\right)=a \wedge b=f_{1}(x) \wedge f_{2}(x)$.
(iii). $\left(f_{1} \vee f_{2}\right)(x)=\left(f_{1}^{*} \wedge f_{2}^{*}\right)^{*}(x)=x / \theta_{\mathcal{F}} \cdot\left[\left(x / \theta_{\mathcal{F}} \cdot a^{*}\right) \wedge\left(x / \theta_{\mathcal{F}} \cdot b^{*}\right)\right]^{*}=$ $x / \theta_{\mathcal{F}} \cdot\left[\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+a\right) \vee\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+b\right)\right]=x / \theta_{\mathcal{F}} \cdot\left[\left(x / \theta_{\mathcal{F}}\right)^{*}+(a \vee b)\right]=x / \theta_{\mathcal{F}} \wedge(a \vee b)=$ $a \vee b=f_{1}(x) \vee f_{2}(x)$.

Corollary $3.2\left(A_{\mathcal{F}}, \oplus,^{*}, \mathbf{0}\right)$ is an $M V$ - algebra, where $\mathbf{0}=\widehat{(A, \mathbf{0})}$ and $\mathbf{1}=$ $\mathbf{0}^{*}=\widehat{(A, \mathbf{1})}$. Also, for two elements $\widehat{\left(I_{1}, f_{1}\right)}, \widehat{\left(I_{2}, f_{2}\right)}$ in $A_{\mathcal{F}}$ we have

$$
\left.\widehat{\left(I_{1}, f_{1}\right)} \odot \widehat{\left(I_{2}, f_{2}\right.}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \odot f_{2}\right)
$$

$$
\begin{aligned}
& \left.\widehat{\left(I_{1}, f_{1}\right)} \wedge \widehat{\left(I_{2}, f_{2}\right.}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \wedge f_{2}\right) \\
& \widehat{\left(I_{1}, f_{1}\right)} \vee \widehat{\left(I_{2}, f_{2}\right)}=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \vee f_{2}\right)
\end{aligned}
$$

where $f_{1} \odot f_{2}, f_{1} \wedge f_{2}, f_{1} \vee f_{2}$ are characterized as in Lemma 3.4.
Definition 3.2 The MV - algebra $A_{\mathcal{F}}$ will be called the localization MV algebra of A with respect to the topology \mathcal{F}.
Lemma 3.5 Let the map $v_{\mathcal{F}}: B(A) \rightarrow A_{\mathcal{F}}$ defined by $v_{\mathcal{F}}(a)=\widehat{\left(A, \overline{f_{a}}\right)}$ for every $a \in B(A)$. Then:
(i) $v_{\mathcal{F}}$ is a morphism of $M V$ - algebras.
(ii) For $a \in B(A), \widehat{\left(A, \overline{f_{a}}\right)} \in B\left(A_{\mathcal{F}}\right)$.
(iii) $v_{\mathcal{F}}(B(A)) \in R\left(A_{\mathcal{F}}\right)$.

Proof. (i). We have $v_{\mathcal{F}}(0)=\widehat{\left(A, \overline{f_{0}}\right)}=\widehat{(A, \mathbf{0})}=\mathbf{0}$.
 $\left(\widehat{\left.A, \overline{f_{a+b}}\right)}=v_{\mathcal{F}}(a+b)\right.$ and for $x \in A$, since

$$
\begin{aligned}
& \left(\bar{f}_{a}\right)^{*}(x)=x / \theta_{\mathcal{F}} \cdot\left[(a \wedge x) / \theta_{\mathcal{F}}\right]^{*}=x / \theta_{\mathcal{F}} \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*} \vee\left(a / \theta_{\mathcal{F}}\right)^{*}\right) \\
& \quad=x / \theta_{\mathcal{F}} \cdot\left(\left(x / \theta_{\mathcal{F}}\right)^{*}+\left(a / \theta_{\mathcal{F}}\right)^{*}\right)=x / \theta_{\mathcal{F}} \wedge\left(a / \theta_{\mathcal{F}}\right)^{*}=\overline{f_{a^{*}}}(x)
\end{aligned}
$$

that is $\left(\bar{f}_{a}\right)^{*}=\overline{f_{a^{*}}}$ we deduce that

$$
v_{\mathcal{F}}\left(a^{*}\right)=\left(\widehat{\left.A, \overline{f_{a^{*}}}\right)}=\widehat{\left(A, \overline{f_{a}}\right.}\right)^{*}=\left(v_{\mathcal{F}}(a)\right)^{*}
$$

hence $v_{\mathcal{F}}$ is a morphism of $M V$ - algebras.
(ii). For $a \in B(A)$ we have $a+a=a$, hence by $c_{23},((a \wedge x)+(a \wedge x)) \wedge x=$ $a \wedge x$ for every $x \in A$.

Since $A \in \mathcal{F}$ we deduce that $\left((a \wedge x) / \theta_{\mathcal{F}}+(a \wedge x) / \theta_{\mathcal{F}}\right) \wedge x / \theta_{\mathcal{F}}=(a \wedge x) / \theta_{\mathcal{F}}$ hence $\overline{f_{a}} \oplus \overline{f_{a}}=\overline{f_{a}}$, that is

$$
\left(\widehat{A, \overline{f_{a}}}\right) \in B\left(A_{\mathcal{F}}\right)
$$

(iii). To prove that $v_{\mathcal{F}}(B(A))$ is a regular subset of $A_{\mathcal{F}}$, let $\widehat{\left(I_{i}, f_{i}\right)} \in A_{\mathcal{F}}$, $I_{i} \in \mathcal{F}, i=1,2$, such that $\left(\widehat{\left(A, \overline{f_{a}}\right)} \wedge \widehat{\left(I_{1}, f_{1}\right.}\right)=\left(\widehat{\left(A, \overline{f_{a}}\right)} \wedge \widehat{\left(I_{2}, f_{2}\right)}\right.$ for every $a \in B(A) . \operatorname{By}(i i),\left(\widehat{\left(A, \overline{f_{a}}\right.}\right) \in B\left(\underline{A_{\mathcal{F}}}\right)$.

Then $\left(f_{1} \wedge \overline{f_{a}}\right)(x)=\left(f_{2} \wedge \overline{f_{a}}\right)(x)$ for every $x \in I_{1} \cap I_{2}$ and $a \in B(A)$ $\Leftrightarrow f_{1}(x) \wedge x / \theta_{\mathcal{F}} \wedge a / \theta_{\mathcal{F}}=f_{2}(x) \wedge x / \theta_{\mathcal{F}} \wedge a / \theta_{\mathcal{F}}$ for every $x \in I_{1} \cap I_{2}$ and $a \in B(A) \Leftrightarrow f_{1}(x) \wedge a / \theta_{\mathcal{F}}=f_{2}(x) \wedge a / \theta_{\mathcal{F}}$ for every $x \in I_{1} \cap I_{2}$ and $a \in B(A)$.

In particular for $a=1, a / \theta_{\mathcal{F}}=\mathbf{1} \in B\left(A / \theta_{\mathcal{F}}\right)$ we obtain that $f_{1}(x)=f_{2}(x)$ for every $x \in I_{1} \cap I_{2}$, hence $\left.\widehat{\left(I_{1}, f_{1}\right)}=\widehat{\left(I_{2}, f_{2}\right.}\right)$, that is $v_{\mathcal{F}}(B(A)) \in R\left(A_{\mathcal{F}}\right)$.

4 Applications

In the following we describe the localization $M V$ - algebra $A_{\mathcal{F}}$ in some special instances.

1. If $I \in I(A)$, and \mathcal{F} is the topology

$$
\mathcal{F}(I)=\left\{I^{\prime} \in I(A): I \subseteq I^{\prime}\right\}
$$

(see example 1 in section 2), then $A_{\mathcal{F}}$ is isomorphic with $M\left(I, A / \theta_{\mathcal{F}}\right)$ and $v_{\mathcal{F}}: B(A) \rightarrow A_{\mathcal{F}}$ is defined by $v_{\mathcal{F}}(a)=\overline{f_{a \mid I}}$ for every $a \in B(A)$.
2. If $\mathcal{F}=I(A) \cap R(A)$ is the topology of regular ideals (see example 2 in section 2), then $\theta_{\mathcal{F}}$ is the identity congruence of A and

$$
A_{\mathcal{F}}=\lim _{\rightarrow I \in \mathcal{F}} M(I, A),
$$

where $M(I, A)$ is the set of multipliers of A having the domain I (see [6]).
In this situation we obtain:
Proposition 4.1 In the case $\mathcal{F}=I(A) \cap R(A), A_{\mathcal{F}}$ is exactly the maximal $M V$-algebra $Q(A)$ of quotients of A (introduced by the authors in [6] where this is denoted by $A^{\prime \prime}$).
3. If $S \subseteq A$ an $\wedge-$ closed system of A. Consider the following congruence on $A:(x, y) \in \theta_{S} \Leftrightarrow$ there exists $e \in S \cap B(A)$ such that $x \wedge e=y \wedge e$ (see [5]). $A[S]=A / \theta_{S}$ is called in [5] the $M V$ - algebra of fractions of A relative to the \wedge-closed system S.

Proposition 4.2 If \mathcal{F}_{S} is the topology associated with a \wedge-closed system $S \subseteq A$ (see example 3 in section 2), then the $M V$ - algebra $A_{\mathcal{F}_{S}}$ is isomorphic with $B(A[S])$.

Proof. For $x, y \in A$ we have $(x, y) \in \theta_{\mathcal{F}_{S}} \Leftrightarrow$ there exists $I \in \mathcal{F}_{S}$ (hence $I \cap S \cap B(A) \neq \oslash)$ such that $x \wedge e=y \wedge e$ for any $e \in I \cap B(A)$. Since $I \cap S \cap B(A) \neq \oslash$ there exists $e_{0} \in I \cap S \cap B(A)$ such that $x \wedge e_{0}=y \wedge e_{0}$, hence $(x, y) \in \theta_{S}$. So, $\theta_{\mathcal{F}_{S}} \subseteq \theta_{S}$.

If $(x, y) \in \theta_{S}$, there exists $e_{0} \in S \cap B(A)$ such that $x \wedge e_{0}=y \wedge e_{0}$. If we set $I=\left(e_{0}\right]=\left\{a \in A: a \leq e_{0}\right\}$, then $I \in I(A)$; since $e_{0} \in I \cap S \cap B(A)$, then $I \cap S \cap B(A) \neq \oslash$, that is $I \in \mathcal{F}_{S}$. For every $e \in I \cap B(A), e \leq e_{0}$, hence $e=e \wedge e_{0}$ and $x \wedge e=x \wedge\left(e_{0} \wedge e\right)=\left(x \wedge e_{0}\right) \wedge e=\left(y \wedge e_{0}\right) \wedge e=y \wedge\left(e_{0} \wedge e\right)=y \wedge e$, hence $(x, y) \in \theta_{\mathcal{F}_{S}}$, that is $\theta_{\mathcal{F}_{S}}=\theta_{S}$.

Then $A[S]=A / \theta_{S}$; therefore an $\mathcal{F}_{S}-$ multiplier can be considered in this case (see $\left.a_{14}-a_{17}\right)$ as a mapping $f: I \rightarrow A[S]\left(I \in \mathcal{F}_{S}\right)$ having the properties
$f(e \cdot x)=e / S \cdot f(x)$ and $f(x) \leq x / S$, for every $x \in I$ and $e \in B(A)$, if $e \in I \cap B(A)$, then $f(e) \in B(A[S])$ and for every $e \in I \cap B(A)$ and $x \in I$,

$$
(e / S) \wedge f(x)=(x / S) \wedge f(e)
$$

(x / S denotes the congruence class of x relative to θ_{S}).
We recall ([5]) that for $x \in A, x / S \in B(A[S])$ iff there is $e_{0} \in S \cap B(A)$ such that $e_{0} \wedge x \in B(A)$. In particular if $e \in B(A)$, then $e / S \in B(A[S])$.

If $\left.\left.\widehat{\left(I_{1}, f_{1}\right.}\right), \widehat{\left(I_{2}, f_{2}\right.}\right) \in A_{\mathcal{F}_{S}}=\lim _{\rightarrow I \in \mathcal{F}_{S}} M(I, A[S])$, and $\left.\widehat{\left(I_{1}, f_{1}\right)}=\widehat{\left(I_{2}, f_{2}\right.}\right)$ then there exists $I \in \mathcal{F}_{S}$ such that $I \subseteq I_{1} \cap I_{2}$ and $f_{1 \mid I}=f_{2 \mid I}$. Since $I, I_{1}, I_{2} \in$ \mathcal{F}_{S}, there exist $e \in I \cap S \cap B(A), e_{1} \in I_{1} \cap S \cap B(A)$ and $e_{2} \in I_{2} \cap S \cap B(A)$. We shall prove that $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$. If denote $f=e \wedge e_{1} \wedge e_{2}$, then $f \in I \cap S \cap B(A)$, and $f \leq e_{1}, e_{2}$. Since $e_{1} \wedge f=e_{2} \wedge f$ then $f_{1}\left(e_{1} \wedge f\right)=f_{1}\left(e_{2} \wedge f\right)=f_{2}\left(e_{2} \wedge f\right) \Leftrightarrow$ $f_{1}\left(e_{1}\right) \wedge f / S=f_{2}\left(e_{2}\right) \wedge f / S \Leftrightarrow f_{1}\left(e_{1}\right) \wedge 1=f_{2}\left(e_{2}\right) \wedge 1$ (since $f \in S \Rightarrow f / S=1$) $\Leftrightarrow f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$. In a similar way we can show that $f_{1}\left(s_{1}\right)=f_{2}\left(s_{2}\right)$ for any $s_{1}, s_{2} \in I \cap S \cap B(A)$.

In accordance with these considerations we can define the mapping:

$$
\alpha: A_{\mathcal{F}_{S}}=\lim _{I \in \mathcal{F}_{S}} M(I, A[S]) \rightarrow B(A[S]),
$$

by putting

$$
\alpha(\widehat{(I, f)})=f(s) \in B(A[S])
$$

where $s \in I \cap S \cap B(A)$.
This mapping is a morphism of $M V$ - algebras.
Indeed, $\alpha(\mathbf{0})=\alpha(\widehat{(A, \mathbf{0})})=\mathbf{0}(e)=0 / S=\mathbf{0}$ for every $e \in S \cap B(A)$. If $\widehat{(I, f)} \in A_{\mathcal{F}_{S}}$, we have $\alpha\left(\widehat{(I, f)^{*}}\right)=\alpha\left(\widehat{\left(I, f^{*}\right)}\right)=f^{*}(e)=(e / S) \cdot[f(e)]^{*}=$ $1 \cdot(f(e))^{*}=(f(e))^{*}=(\alpha(\widehat{(I, f)}))^{*}$ (with $\left.e \in I \cap S \cap B(A)\right)$. Also, for every $\widehat{\left(I_{i}, f_{i}\right)} \in A_{\mathcal{F}_{S}}, i=1,2$ we have: $\left.\alpha\left[\widehat{\left(I_{1}, f_{1}\right)} \oplus \widehat{\left(I_{2}, f_{2}\right.}\right)\right]=\alpha\left[\left(I_{1} \cap \widehat{I_{2}, f_{1}} \oplus f_{2}\right).\right]=$ $\left.\left(f_{1} \oplus f_{2}\right)(e)=\left(f_{1}(e)+f_{2}(e)\right) \wedge(e / S)=f_{1}(e)+f_{2}(e)=\alpha\left[\widehat{\left(I_{1}, f_{1}\right.}\right)\right]+\alpha\left[\widehat{\left(I_{2}, f_{2}\right)}\right]$ (with $e \in I_{1} \cap I_{2} \cap S \cap B(A)$).

We shall prove that α is injective and surjective. To prove the injectivity of α let $\left.\left.\widehat{\left(I_{1}, f_{1}\right.}\right), \widehat{\left(I_{2}, f_{2}\right.}\right) \in A_{\mathcal{F}_{S}}$ such that $\alpha\left(\widehat{\left(I_{1}, f_{1}\right)}\right)=\alpha\left(\widehat{\left(I_{2}, f_{2}\right)}\right)$. Then for any $e_{1} \in I_{1} \cap S \cap B(A), e_{2} \in I_{2} \cap S \cap B(A)$ we have $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$. If $f_{1}\left(e_{1}\right)=x / S, f_{2}\left(e_{2}\right)=y / S$ with $x, y \in A$, since $x / S=y / S$, there exists $e \in S \cap B(A)$ such that $x \wedge e=y \wedge e$.

If we consider $e^{\prime}=e \wedge e_{1} \wedge e_{2} \in I_{1} \cap I_{2} \cap S \cap B(A)$, we have $x \wedge e^{\prime}=y \wedge e^{\prime}$ and $e^{\prime} \leq e_{1}, e_{2}$. It follows that $f_{1}\left(e^{\prime}\right)=f_{1}\left(e^{\prime} \wedge e_{1}\right)=f_{1}\left(e_{1}\right) \wedge\left(e^{\prime} / S\right)=x / S \wedge 1=$ $x / \bar{S}=y / S=f_{2}\left(e_{2}\right)=f_{2}\left(e_{2}\right) \wedge\left(e^{\prime} / S\right)=f_{2}\left(e_{2} \wedge e^{\prime}\right)=f_{2}\left(e^{\prime}\right)$. If denote $I=\left(e^{\prime}\right]$ then we obtained that $I \in \mathcal{F}_{S}, I \subseteq I_{1} \cap I_{2}$ and $f_{1 \mid I}=f_{2 \mid I}$, hence $\widehat{\left(I_{1}, f_{1}\right)}=\widehat{\left(I_{2}, f_{2}\right)}$, that is α is injective.

To prove the surjectivity of α, let $a / S \in B(A[S])$ (hence there exists $e_{0} \in$ $S \cap B(A)$ such that $\left.a \wedge e_{0} \in B(A)\right)$. We consider $I_{0}=\left(e_{0}\right]=\left\{x \in A: x \leq e_{0}\right\}$ (since $e_{0} \in I_{0} \cap S \cap B(A)$, then $I_{0} \in \mathcal{F}_{S}$) and define $f_{a}: I_{0} \rightarrow A[S]$ by putting $f_{a}(x)=x / S \wedge a / S=(x \wedge a) / S$ for every $x \in I_{0}$.

We shall prove that f_{a} is a \mathcal{F}_{S}-multiplier. Indeed, if $e \in B(A)$ and $x \in I_{0}$, since $e / S \in B(A[S])$, then

$$
\begin{gathered}
f_{a}(e \cdot x)=f_{a}(e \wedge x)=(e / S) \wedge(x / S) \wedge(a / S) \\
=(e / S) \wedge((x / S) \wedge(a / S))=(e / S) \wedge f_{a}(x)=(e / S) \cdot f_{a}(x)
\end{gathered}
$$

Clearly, $f_{a}(x) \leq x / S$. Also, if $e \in I_{0} \cap B(A)$, then $f_{a}(e)=e / S \wedge a / S \in$ $B(A[S])$.

Clearly if for every $e \in I_{0} \cap B(A)$ and $x \in I_{0}$,

$$
(e / S) \wedge f_{a}(x)=(x / S) \wedge f_{a}(e)
$$

hence f_{a} is a \mathcal{F}_{S}-multiplier and we shall prove that $\alpha\left(\widehat{\left(I_{0}, f_{a}\right)}\right)=a / S$.
Indeed, since $e_{0} \in S$ we have $\left.\alpha\left(\widehat{\left(I_{0}, f_{a}\right.}\right)\right)=f_{a}\left(e_{0}\right)=\left(e_{0} \wedge a\right) / S=\left(e_{0} / S\right) \wedge$ $(a / S)=1 \wedge(a / S)=a / S$.

So, we have proved that α is an isomorphism of $M V$ - algebras.

REFERENCES

[1] D. Buşneag, Hilbert algebra of fractions and maximal Hilbert algebras of quotients, Kobe Journal of Mathematics, 5 (1988), 161-172.
[2] D. Buşneag, F-multipliers and the localization of Hilbert algebras, Zeitschr. f. math. Logik und Grundlagen d. Math. Bd. 36 (1990), 331-338.
[3] D. Buşneag, D. Piciu, Meet-irreducible ideals in an MV - algebra, Analele Universităţii din Craiova, Seria Matematica-Informatica, vol. XXVIII, (2001), 110-119.
[4] D. Buşneag, D. Piciu, On the lattice of ideals of an MV - algebra, Scientiae Mathematicae Japonicae, 56, No. 2 (2002), 367-372,:e6, 221-226.
[5] D. Buşneag, D. Piciu, MV - algebra of fractions relative to a \wedge-closed system, Analele Universităţii din Craiova, Seria Matematica-Informatica, vol. XXX, (2003), 1-6.
[6] D. Buşneag, D. Piciu, MV-algebra of fractions and maximal MV-algebra of quotients, to appear in Journal of Multiple-Valued Logic and Soft Computing.
[7] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88(1958), 467-490.
[8] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici, Algebraic foundation of many -valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000.
[9] W. H. Cornish, The multiplier extension of a distributive lattice, Journal of Algebra, 32 (1974), 339-355.
[10] C. Dan, F-multipliers and the localization of Heyting algebras, Analele Universităţii din Craiova, Seria Matematica-Informatica, vol. XXIV, (1997), 98-109.
[11] G. Georgescu, F-multipliers and the localization of distributive lattices, Algebra Universalis, 21 (1985), 181-197.
[12] G. Georgescu, A. Iorgulescu, Pseudo MV - algebras, Multi. Val. Logic, vol 6 (2001), 95-135.
[13] N. Popescu, Abelian categories with applications to rings and modules, Academic Press, New York,1973.
[14] J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston Journal of Mathematics, vol.6, no. 3 (1980).
[15] J. Schmid, Distributive lattices and rings of quotients, Coll. Math. Societatis Janos Bolyai, 33, Szeged, Hungary, (1980).
[16] B. Strenström, Flatness and localization over monoids, Math. Nachrichten 48 (1971), 315-334.

Department of Mathematics, University of Craiova,
Al.I.Cuza street, 13, Craiova, 200585, Romania
E-mail: busneag@central.ucv.ro
Department of Mathematics, University of Craiova,
Al.I.Cuza street, 13, Craiova, 200585, Romania
E-mail: danap@central.ucv.ro

