
An. Şt. Univ. Ovidius Constanţa Vol. 11(2), 2003, 25–42

F-MULTIPLIERS AND THE

LOCALIZATION OF MV -ALGEBRAS

Dumitru Buşneag and Dana Piciu

Abstract

The aim of the present paper is to define the localisation of MV-
algebra of an MV-algebra A with respect to a topology F on A. In
the last part of the paper it is proved that the maximal MV-algebra of
quotients (defined in [6]) and the MV-algebra of fractions relative to an
∧−closed system (defined in [5]) are MV - algebra of localisation.

The concept of multiplier for distributive lattices was defined by W. H.
Cornish in [9]. J. Schmid used the multipliers in order to give a non–standard
construction of the maximal lattice of quotients for a distributive lattice (see
[14]). A direct treatment of the lattices of quotients can be found in [15]. In
[11], G. Georgescu exhibited the localization lattice LF of a distributive lattice
L with respect to a topology F on L in a similar way as for rings (see [13]) or
monoids (see [16]). For the case of Hilbert and Heyting algebras, see [1], [2]
and respectively [10].

The concepts of MV -algebra of fractions relative to an ∧− closed system
of MV -algebra of fractions and of maximal MV -algebra of quotients were
defined by the authors ([5], [6]).

1 Definitions and preliminaries

Definition 1.1 ([7], [8]) An MV -algebra is an algebra (A, +,∗ , 0) of type
(2, 1, 0) satisfying the following equations:

(a1) x + (y + z) = (x + y) + z,

(a2) x + y = y + x,

(a3) x + 0 = x,

(a4) x∗∗ = x,

25
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(a5) x + 0∗ = 0∗,

(a6) (x∗ + y)∗ + y = (y∗ + x)∗ + x.

MV - algebras were originally introduced by Chang in [7] in order to give
an algebraic counterpart of the Lukasiewicz many valued logic (MV = many
valued). Note that axioms a1-a3 state that (A, +, 0) is an abelian monoid;
following tradition, we denote an MV -algebra (A, +,∗ , 0) by its universe A.

Remark 1.1 If in a6 we put y = 0 we obtain x∗∗ = 0∗∗ + x, so, if 0∗∗ = 0,
then x∗∗ = x for each x ∈ A. Hence, the axiom a4 is equivalent with (a′

4)
0∗∗ = 0.

Examples:
E1) A singleton {0} is a trivial example of an MV -algebra; an MV -algebra

is said nontrivial provided its universe has more that one element.
E2) Let (G,⊕,−, 0,≤) be an l-group. For each u ∈ G, u > 0, let

[0, u] = {x ∈ G : 0 ≤ x ≤ u}
and for each x, y ∈ [0, u], let x+y = u ∧ (x ⊕ y) and x∗ = u − x. Then
([0, u], +,∗ , 0) is an MV - algebra. In particular, if we consider the real unit
interval [0, 1] and, for all x, y ∈ [0, 1], we define x + y = min{1, x + y} and
x∗ = 1 − x, then ([0, 1], +,∗ , 0) is an MV -algebra.

E3) If (A,∨,∧,∗ , 0, 1) is a Boolean lattice, then (A,∨,∗ , 0) is an MV -
algebra.

E4) The rational numbers in [0, 1], and, for each integer n ≥ 2, the n-
element set Ln =

{
0, 1

(n−1) , ...,
(n−2)
(n−1) , 1

}
yield examples of subalgebras of [0, 1].

E5) Given an MV -algebra A and a set X , the set AX of all functions
f : X −→ A becomes an MV -algebra if the operations + and ∗ and the
element 0 are defined pointwise. The continuous functions from [0, 1] into
[0, 1] form a subalgebra of the MV -algebra [0, 1][0,1].

In the rest of this paper, by A we denote an MV -algebra.
On A we define the constant 1 and the operations ,,·” and ,,−” as follows

1 = 0∗, x · y = (x∗ + y∗)∗ and x − y = x · y∗ = (x∗ + y)∗ ( we consider the ,,∗

” operation more binding that any other operation, and the ,,·” more binding
that + and −).

Lemma 1.1 ([3]-[8], [12]) For x, y ∈ A, the following conditions are equiva-
lent:

(i) x∗ + y = 1.
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(ii) x · y∗ = 0.

(iii) y = x + (y − x).

(iv) There is an element z ∈ A such that x + z = y.

For any two elements x, y ∈ A let us agree to write x ≤ y iff x and y satisfy
the equivalent conditions (i)-(iv) in the above lemma. So, ≤ is a partial order
relation on A (which is called the natural order on A).

Theorem 1.1 ([3]-[8], [12]) If x, y, z ∈ A, then the following hold:

(c1) 1∗ = 0,

(c2) x + y = (x∗ · y∗)∗,

(c3) x + 1 = 1,

(c4) (x − y) + y = (y − x) + x,

(c5) x + x∗ = 1, x · x∗ = 0,

(c6) x − 0 = x, 0 − x = 0, x − x = 0, 1 − x = x∗, x − 1 = 0,

(c7) x + x = x iff x · x = x,

(c8) x ≤ y iff y∗ ≤ x∗,

(c9) If x ≤ y, then x + z ≤ y + z and x · z ≤ y · z,

(c10) If x ≤ y, then x − z ≤ y − z and z − y ≤ z − x,

(c11) x − y ≤ x, x − y ≤ y∗,

(c12) (x + y) − x ≤ y,

(c13) x · z ≤ y iff z ≤ x∗ + y,

(c14) x + y + x · y = x + y.

Remark 1.2 ([3]-[8], [12]) On A, the natural order determines a bounded
distributive lattice structure. Specifically, the join x ∨ y and the meet x ∧ y of
the elements x and y are given by:

x ∨ y = (x − y) + y = (y − x) + x = x · y∗ + y = y · x∗ + x

x ∧ y = (x∗ ∨ y∗)∗ = x · (x∗ + y) = y · (y∗ + x).

Clearly, x · y ≤ x ∧ y ≤ x, y ≤ x ∨ y ≤ x + y.
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We shall denote this distributive lattice with 0 and 1 by L(A) (see [7], [8]).
For any MV - algebra A we shall write B(A) as an abbreviation of set of
all complemented elements of L(A). Elements of B(A) are called the boolean
elements of A.

Theorem 1.2 ([7]) For every element x in an MV - algebra A, the following
conditions are equivalent:

(i) x ∈ B(A).

(ii) x ∨ x∗ = 1.

(iii) x ∧ x∗ = 0.

(iv) x + x = x.

(v) x · x = x.

(vi) x + y = x ∨ y, for all y ∈ A.

(vii) x · y = x ∧ y, for all y ∈ A.

Corollary 1.1 ([7], [8], [12])

(i) B(A) is subalgebra of the MV - algebra A. A subalgebra B of A is a
boolean algebra iff B ⊆ B(A).

(ii) An MV - algebra A is a boolean algebra iff the operation + is idempotent,
i.e., the equation x + x = x is satisfied by A.

Theorem 1.3 ([7], [8], [12]) If x, y, z, (xi)i∈I are elements of A, then the
following hold:

(c15) x + y = (x ∨ y) + (x ∧ y),

(c16) x · y = (x ∨ y) · (x ∧ y),

(c17) x +
(∨

i∈I xi

)
=

∨
i∈I(x + xi),

(c18) x +
(∧

i∈I xi

)
=

∧
i∈I(x + xi),

(c19) x · (∨i∈I xi

)
=

∨
i∈I(x · xi),

(c20) x · (∧i∈I xi

)
=

∧
i∈I(x · xi),

(c21) x ∧ (∨
i∈I xi

)
=

∨
i∈I(x ∧ xi),
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(c22) x ∨ (∧
i∈I xi

)
=

∧
i∈I(x ∨ xi) (if all suprema and infima exist).

Lemma 1.2 If a, b, x are elements of A, then:

(c23) [(a ∧ x) + (b ∧ x)] ∧ x = (a + b) ∧ x,

(c24) a∗ ∧ x ≥ x · (a ∧ x)∗.

Proof. (c23). By c18 we have [(a ∧ x) + (b ∧ x)] ∧ x = ((a ∧ x) + b) ∧ ((a ∧
x) + x) ∧ x = ((a ∧ x) + b) ∧ x = (a + b) ∧ (x + b) ∧ x = (a + b) ∧ x.

(c24). We have x · (a∧x)∗ = x · (a∗∨x∗) c19= (x ·a∗)∨ (x ·x∗) c5= (x ·a∗)∨0 =
x · a∗ ≤ a∗ ∧ x.

Corollary 1.2 If a ∈ B(A) and x, y ∈ A, then:

(c25) a∗ ∧ x = x · (a ∧ x)∗,

(c26) a ∧ (x + y) = (a ∧ x) + (a ∧ y),

(c27) a ∨ (x + y) = (a ∨ x) + (a ∨ y).

Proof. (c25). See the proof of c24.

(c26). We have: (a∧ x) + (a∧ y) c18= [(a∧ x) + a]∧ [(a∧ x) + y] = [(a∧ x)∨
a] ∧ [(a + y) ∧ (x + y)] = a ∧ (a + y) ∧ (x + y) = a ∧ (x + y).

(c27). We have (a ∨ x) + (a ∨ y) = (a + x) + (a + y) = (a + a) + (x + y) =
a + (x + y) = a ∨ (x + y).

Definition 1.2 ([3]-[8], [12]) Let A and B be MV − algebras. A function
f : A → B is a morphism of MV − algebras iff it satisfies the following
conditions, for every x, y ∈ A :

(a7) f(0) = 0,

(a8) f(x + y) = f(x) + f(y),

(a9) f(x∗) = (f(x))∗.

Remark 1.3 It follows that:

f(1) = 1, f(x · y) = f(x) · f(y), f(x∨ y) = f(x)∨ f(y), f(x∧ y) = f(x) ∧ f(y),

for every x, y ∈ A.

Definition 1.3 ([3]-[8], [12]) An ideal of an MV - algebra A is a subset I of
A satisfying the following conditions:
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(a10) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I,

(a11) If x, y ∈ I, then x+ y ∈ I.

We denote by Id(A) the set of all ideals of A and by I(A) the set

I(A) = {I ⊆ A : if x, y ∈ A, x ≤ y and y ∈ I, then x ∈ I}.
Remark 1.4 Clearly, Id(A) ⊆ I(A) and if I1, I2 ∈ I(A), then I1 ∩ I2 ∈ I(A).
Also, if I ∈ I(A), then 0 ∈ I.

For M ⊆ A we denote by (M ] the ideal of A generated by M . If M = {a}
with a ∈ A, we denote by (a] the ideal generated by {a}((a] is called principal).

Proposition 1.1 ([7], [8]) If M ⊆ A, then

(M ] = {x ∈ A : x ≤ x1 + ... + xn for some x1, ..., xn ∈ M}.
In particular, for a ∈ A, (a] = {x ∈ A : x ≤ na for some integer n ≥ 0}; if
e ∈ B(A), then (e] = {x ∈ A : x ≤ e }.

2 Topologies on an MV-algebra

Definition 2.1 A non-empty set F of elements of I ∈ I(A) will be called a
topology on A if the following properties hold:

(a12) If I1 ∈ F , I2 ∈ I(A) and I1 ⊆ I2, then I2 ∈ F (hence A ∈ F ).

(a13) If I1, I2 ∈ F , then I1 ∩ I2 ∈ F .

Any intersection of topologies on A is a topology; hence the set T (A) of
all topologies of A is a complete lattice with respect to inclusion.

Examples
1. If I ∈ I(A), then the set

F(I) = {I ′ ∈ I(A) : I ⊆ I ′}
is clearly a topology on A.
2. A non-empty set I ⊆ A will be called regular (see [6]) if for every

x, y ∈ A such that e ∧ x = e ∧ y for every e ∈ I ∩ B(A), we have x = y. If we
denote R(A) = {I ⊆ A : I is a regular subset of A}, then I(A) ∩ R(A) is a
topology on A (see [6]).

3. A subset S ⊆ A is called ∧− closed if 1 ∈ S and if x, y ∈ S implies
x ∧ y ∈ S (see [5]). For any ∧− closed subset S of A we set FS = {I ∈ I(A) :
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I∩S∩B(A) 
= �}. Then FS is a topology on A . Clearly, if I ∈ FS and I ⊆ J
(with J ∈ I(A)), then I ∩ S ∩ B(A) 
= �, hence J ∩ S ∩ B(A) 
= �, that is
J ∈ FS .

If I1, I2 ∈ FS then there exist si ∈ Ii ∩ S ∩ B(A), i = 1, 2. If we set
s = s1 ∧ s2, then s ∈ (I1 ∩ I2) ∩ S ∩ B(A), hence I1 ∩ I2 ∈ FS .

3 F-multipliers and localization MV-algebras

Let F be a topology on A. Let us consider the relation θF of A defined in the
following way:

(x, y) ∈ θF ⇔ there exists I ∈ F such that e∧x = e∧ y for any e ∈ I ∩B(A).

Lemma 3.1 θF is a congruence on A.

Proof. The reflexivity and the symmetry of θF are immediate; to prove
the transitivity of θF let (x, y), (y, z) ∈ θF . Then there exists I1, I2 ∈ F such
that e ∧ x = e ∧ y for every e ∈ I1 ∩ B(A), and f ∧ y = f ∧ z for every
f ∈ I2 ∩ B(A). If the set I = I1 ∩ I2 ∈ F , then for every g ∈ I ∩ B(A),
g ∧ x = g ∧ z, hence (x, z) ∈ θF .

To prove the compatibility of θF with the operations + and ∗, let (x, y)
and (z, t) ∈ θF , that is there exists I, J ∈ F such that e ∧ x = e ∧ y for every
e ∈ I∩B(A), and f ∧z = f ∧t for every f ∈ J ∩B(A). If we denote K = I∩J ,
then K ∈ F and for every g ∈ K ∩ B(A), g ∧ x = g ∧ y and g ∧ z = g ∧ t.

By c26 we deduce that for every g ∈ K ∩ B(A) :

g ∧ (x + z) = (g ∧ x) + (g ∧ z) = (g ∧ y) + (g ∧ t) = g ∧ (y + t),

hence (x + z, y + t) ∈ θF ,that is θF is compatible with the operation +.

Also, since x ∧ e = y ∧ e for every e ∈ I ∩ B(A), we deduce that x∗ ∨ e∗ =
y∗ ∨ e∗, hence e · (x∗ ∨ e∗) = e · (y∗ ∨ e∗) ⇔ e · (e∗ + x∗) = e · (e∗ + y∗) (since
e∗ ∈ B(A))⇔ e ∧ x∗ = e ∧ y∗ for every e ∈ I ∩ B(A), hence (x∗, y∗) ∈ θF ,
that is θF is compatible with the operations ∗, so θF is a congruence on A.

We shall denote by x/θF the congruence class of an element x ∈ A and by

pF : A → A/θF

the canonical morphism of MV - algebras.

Proposition 3.1 For a ∈ A, a/θF ∈ B(A/θF ) iff there exists I ∈ F such that
a ∧ e ∈ B(A) for every e ∈ I ∩B(A). So, if a ∈ B(A), then a/θF ∈ B(A/θF ).
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Proof. For a ∈ A, we have a/θF ∈ B(A/θF ) ⇔ a/θF + a/θF = a/θF ⇔
(a+a)/θF = a/θF ⇔ there exists I ∈ F such that (a+a)∧ e = a∧ e for every
e ∈ I ∩B(A) c26⇔ (a∧e)+(a∧e) = a∧e for every e ∈ I ∩B(A) ⇔ a∧e ∈ B(A)
for every e ∈ I ∩ B(A).

So, if a ∈ B(A), then for every I ∈ F , a∧ e ∈ B(A) for every e ∈ I ∩B(A),
hence a/θF ∈ B(A/θF ).

Corollary 3.1 If F = I(A) ∩ R(A), then for a ∈ A, a ∈ B(A) iff a/θF ∈
B(A/θF ).

Definition 3.1 Let F be a topology on A. An F− multiplier is a mapping
f : I → A/θF where I ∈ F and for every x ∈ I and e ∈ B(A) the following
axioms are fulfilled:

(a14) f(e · x) = e/θF ∧ f(x) = e/θF · f(x).

(a15) f(x) ≤ x/θF .

(a16) If e ∈ I ∩ B(A), then f(e) ∈ B(A/θF).

(a17) (x/θF ) ∧ f(e) = (e/θF) ∧ f(x), for every e ∈ I ∩ B(A) and x ∈ I.

By dom(f) ∈ F we denote the domain of f ; if dom(f) = A, we called f
total.

To simplify the language, we will use multiplier instead of partial multiplier,
using total to indicate that the domain of a certain multiplier is A.

If F = {A}, then θF is the identity congruence of A so an F− multiplier
is a total multiplier in the sense of [6].

The maps 0,1 : A → A/θF defined by 0(x) = 0/θF and 1(x) = x/θF for
every x ∈ A are multipliers in the sense of Definition 3.1 (see [6] for the case
of multipliers).

Also, for a ∈ B(A) and I ∈ F , fa : I → A/θF defined by fa(x) =
a/θF ∧ x/θF for every x ∈ I, is an F− multiplier (see [6] for the case of
multipliers). If dom(fa) = A, we denote fa by fa ; clearly, f0 = 0.

We shall denote by M(I, A/θF) the set of all the F− multipliers having
the domain I ∈ F and

M(A/θF) = ∪I∈FM(I, A/θF).

If I1, I2 ∈ F , I1 ⊆ I2, we have a canonical mapping

ϕI1,I2 : M(I2, A/θF ) → M(I1, A/θF),

defined by
ϕI1,I2(f) = f|I1 for f ∈ M(I2, A/θF ).
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Let us consider the directed system of sets
〈{M(I, A/θF)}I∈F , {ϕI1,I2}I1,I2∈F,I1⊆I2

〉
and denote by AF the inductive limit (in the category of sets):

AF = lim→ I∈F
M(I, A/θF ).

For any F− multiplier f : I → A/θF , we shall denote by ̂(I, f) the equiv-
alence class of f in AF .

Remark 3.1 We recall that, if fi : Ii → A/θF , i = 1, 2, are multipliers,
then ̂(I1, f1) = ̂(I2, f2) (in AF ) iff there exists I ∈ F , I ⊆ I1 ∩ I2 such that
f1|I = f2|I .

Let fi : Ii → A/θF (with Ii ∈ F , i = 1, 2) be F−multipliers. Let us
consider the mapping

f1 ⊕ f2 : I1 ∩ I2 → A/θF ,

defined by
(f1 ⊕ f2)(x) = (f1(x) + f2(x)) ∧ x/θF ,

for any x ∈ I1 ∩ I2, and let ̂(I1, f1) ⊕ ̂(I2, f2) = ̂(I1 ∩ I2, f1 ⊕ f2).
Also, for any multiplier f : I → A/θF (with I ∈ F), let us consider the

mapping
f∗ : I → A/θF ,

defined by
f∗(x) = x/θF · (f(x))∗,

for any x ∈ I and let (̂I, f)∗ = ̂(I, f∗).
Clearly the definitions of the operations ⊕ and ∗ on AF are correctly.

Lemma 3.2 f1 ⊕ f2 ∈ M(I1 ∩ I2, A/θF).

Proof. If x ∈ I1∩ I2 and e ∈ B(A), then (f1 ⊕ f2)(e · x) = [f1(e · x) +
f2(e · x)] ∧ (e · x)/θF = [(e/θF · f1(x)) + (e/θF · f2(x))] ∧ (e/θF · x/θF) =
[(e/θF ∧ f1(x))+ (e/θF ∧ f2(x))]∧ (e/θF ∧x/θF) c26= [e/θF ∧ (f1(x)+ f2(x))]∧
[e/θF ∧ x/θF ] = e/θF ∧ [(f1(x) + f2(x)) ∧ x/θF ] = e/θF · (f1 ⊕ f2)(x).

Clearly, (f1 ⊕ f2)(x) ≤ x/θF for every x ∈ I1∩ I2 and if e ∈ I1 ∩ I2 ∩B(A),
then

(f1 ⊕ f2)(e) = [f1(e) + f2(e)] ∧ e/θF ∈ B(A/θF).
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For e ∈ I1 ∩ I2 ∩ B(A) and x ∈ I1 ∩ I2 we have:

x/θF∧(f1⊕f2)(e) = x/θF∧[(f1(e)+f2(e))∧e/θF ] = (f1(e)+f2(e))∧x/θF∧e/θF
c26= (f1(e) + f2(e)) ∧ x/θF ,

and

e/θF∧(f1⊕f2)(x) = e/θF∧[(f1(x)+f2(x))∧x/θF ] = e/θF ·[(f1(x)+f2(x))∧x/θF ]
c20= [e/θF ·(f1(x)+f2(x))]∧(e·x)/θF

c26= [(e/θF ·f1(x))+(e/θF ·f2(x))]∧(e·x)/θF
= [x/θF · f1(e) + x/θF · f2(e)] ∧ (e · x)/θF

= [(f1(e) ∧ x/θF ) + (f2(e) ∧ x/θF)] ∧ (e ∧ x)/θF
= [[(f1(e) ∧ x/θF ) + (f2(e) ∧ x/θF )] ∧ x/θF ] ∧ e/θF

c23= ((f1(e) + f2(e)) ∧ x/θF ) ∧ e/θF
c26= (f1(e) + f2(e)) ∧ x/θF ,

hence
x/θF ∧ (f1 ⊕ f2)(e) = e/θF ∧ (f1 ⊕ f2)(x),

that is f1 ⊕ f2 ∈ M(I1 ∩ I2, A/θF).

Lemma 3.3 f∗ ∈ M(I, A/θF).

Proof. If x ∈ I and e ∈ B(A), then f∗(e · x) = (e · x)/θF · (f(e · x))∗ =
e/θF ·x/θF · (e/θF · f(x))∗ = e/θF ·x/θF · [(e/θF)∗ + (f(x))∗] = x/θF · (e/θF ·
((e/θF)∗ + (f(x))∗)) = x/θF · (e/θF ∧ (f(x))∗) = x/θF · (e/θF · (f(x))∗) =
e/θF · (x/θF · (f(x))∗) = e/θF · f∗(x).

Clearly, f∗(x) ≤ x/θF for every x ∈ I.
Clearly, if e ∈ I ∩ B(A), then

f∗(e) = e/θF · [f(e)]∗ ∈ B(A/θF ).

Since f ∈ M(I, A/θF), for e ∈ I ∩ B(A) and x ∈ I we have:

x/θF ∧ f(e) = e/θF ∧ f(x) ⇒ (x/θF )∗ ∨ (f(e))∗ = (e/θF)∗ ∨ (f(x))∗

⇒ (x/θF )∗ + (f(e))∗ = (e/θF)∗ + (f(x))∗

⇒ e/θF · x/θF · [(x/θF )∗ + (f(e))∗] = x/θF · e/θF · [(e/θF)∗ + (f(x))∗] ⇒
⇒ e/θF · [x/θF ∧ (f(e))∗] = x/θF · [e/θF ∧ (f(x))∗]

⇒ e/θF · x/θF · (f(e))∗ = x/θF · e/θF · (f(x))∗

⇒ x/θF · [e/θF · (f(e))∗] = e/θF · [x/θF · (f(x))∗]

⇒ x/θF∧[e/θF ·(f(e))∗] = e/θF∧[x/θF ·(f(x))∗] ⇒ x/θF∧f∗(e) = e/θF∧f∗(x),

hence f∗ verify and a17, that is f∗ ∈ M(I, A/θF).
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Proposition 3.2 (AF ,⊕,∗ , ̂(A,0)) is an MV - algebra.

Proof. We verify the axioms of MV - algebras.
a1). Let fi ∈ M(Ii, A/θF) where Ii ∈ F , i = 1, 2, 3 and denote I =

I1 ∩ I2 ∩ I3 ∈ F .
Also, denote f = f1 ⊕ (f2 ⊕ f3), g = (f1 ⊕ f2) ⊕ f3 and for x ∈ I, a =

f1(x), b = f2(x), c = f3(x).
Clearly a, b, c ≤ x/θF . Thus, for x ∈ I :
f(x) = (f1(x)+ (f2⊕ f3)(x))∧x/θF = (f1(x)+ ((f2(x)+ f3(x))∧x/θF ))∧

x/θF =
= (a + (b + c)∧ x/θF)∧ x/θF = ((a∧ x/θF) + ((b + c)∧ x/θF ))∧ x/θF

c23=
(a + b + c) ∧ x/θF .

Analogously, g(x) = (a + b + c) ∧ x/θF , hence f = g, so

̂(I1, f1) ⊕ [ ̂(I2, f2) ⊕ ̂(I3, f3)] = [ ̂(I1, f1) ⊕ ̂(I2, f2)] ⊕ ̂(I3, f3),

that is the operation ⊕ is associative on AF .
a2). Obviously.
a3). Let f ∈ M(I, A/θF) with I ∈ F . If x ∈ I, then (f ⊕ 0)(x) = (f(x) +

0(x)) ∧ x/θF = f(x) ∧ x/θF = f(x), hence f ⊕ 0 = f, that is

(̂I, f) ⊕ ̂(A,0) = (̂I, f).

a4). For x ∈ A, we have 0∗(x) = x/θF · (0(x))∗ = x/θF · (0/θF)∗ =
x/θF · 1/θF = x/θF = 1(x), hence 0∗ = 1 and 1∗(x) = x/θF · (1(x))∗ =
x/θF · (x/θF )∗ = 0/θF = 0(x). So, 0∗∗ = 1∗ = 0 that is

̂(A,0)∗∗ = ̂(A,0)

and by Remark 11, a4) is verified.
a5). Since 0∗ = 1, for f ∈ M(I, A/θF ) (with I ∈ F) and x ∈ I, we have:

(f ⊕ 0∗)(x) = (f ⊕ 1)(x) = (f(x) + x/θF ) ∧ x/θF = x/θF = 1(x) = 0∗(x),
hence f ⊕ 0∗ = 0∗, that is

(̂I, f) ⊕ ̂(A,0)∗ = ̂(A,0)∗.

a6). Let f ∈ M(I, A/θF), g ∈ M(J, A/θF) (with I, J ∈ F) and x ∈ I ∩ J.
If denote h = (f∗⊕ g)∗⊕ g, t = (g∗⊕ f)∗⊕ f, and a = f(x), b = g(x), then

a, b ≤ x/θF and we have:
h(x) = ((f∗ ⊕ g)∗ ⊕ g)(x) = ((f∗ ⊕ g)∗(x) + g(x))∧x/θF = ((x/θF · ((f∗ ⊕

g)(x))∗) + g(x)) ∧ x/θF = (x/θF · ((f∗(x) + g(x)) ∧ x/θF )∗ + g(x)) ∧ x/θF =
(x/θF · (((x/θF · (f(x))∗) + g(x)) ∧ x/θF)∗ + g(x)) ∧ x/θF = (x/θF · (((x/θF ·
a∗)+b)∧x/θF )∗+b)∧x/θF = (x/θF ·(((x/θF ·a∗)+b)∗∨(x/θF )∗)+b)∧x/θF
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= (x/θF ·((x/θF ·a∗)+b)∗+b)∧x/θF = (x/θF ·((x/θF )∗+a)·b∗+b)∧x/θF =
(((x/θF ∧ a) · b∗) + b) ∧ x/θF = ((a · b∗) + b) ∧ x/θF = (a ∨ b) ∧ x/θF = a ∨ b.

Analogously, t(x) = a ∨ b = h(x), hence h = t, so

((̂I, f)∗ ⊕ (̂J, g))∗ ⊕ (̂J, g) = ((̂J, g)∗ ⊕ (̂I, f))∗ ⊕ (̂I, f).

Remark 3.2 (M(A/θF ), ⊕,∗ ,0) is an MV - algebra.

Lemma 3.4 Let f1, f2 ∈ M(A/θF) with fi ∈ M(Ii, A/θF ) (Ii ∈ F), i =
1, 2.Then for every x ∈ I1 ∩ I2:

(i) (f1 � f2)(x) = f1(x) · [(x/θF )∗ + f2(x)] = f2(x) · [(x/θF )∗ + f1(x)].

(ii) (f1 ∧ f2)(x) = f1(x) ∧ f2(x).

(iii) (f1 ∨ f2)(x) = f1(x) ∨ f2(x).

Proof. We recall that in the MV - algebra M(A/θF) we have:

f1 � f2 = (f∗
1 ⊕ f∗

2 )∗,

f1 ∧ f2 = f1 � [f∗
1 ⊕ f2],

and
f1 ∨ f2 = (f∗

1 ∧ f∗
2 )∗.

For x ∈ I1 ∩ I2 we denote a = f1(x), b = f2(x); clearly a, b ≤ x/θF .
So: (i).(f1 � f2)(x) = x/θF · [(f∗

1 (x) + f∗
2 (x)) ∧ x/θF ]∗ = x/θF · [(x/θF ·

a∗ + x/θF · b∗) ∧ x/θF ]∗ = x/θF · [(x/θF · a∗ + x/θF · b∗)∗ ∨ (x/θF )∗]
= x/θF · [((x/θF )∗ + a) · ((x/θF )∗ + b) ∨ (x/θF )∗] = x/θF · ((x/θF )∗ +

a) · ((x/θF )∗ + b) = (x/θF ∧ a) · ((x/θF )∗ + b) = a · ((x/θF )∗ + b) = f1(x) ·
((x/θF )∗ + f2(x)) = f2(x) · ((x/θF )∗ + f1(x)).

(ii).(f∗
1 ⊕ f2)(x) = (x/θF · a∗ + b) ∧ x/θF , hence (f1 ∧ f2)(x) = f1(x) ·

[(x/θF )∗+(f∗
1 ⊕f2)(x)] = a · [(x/θF )∗+(x/θF ·a∗+b)∧x/θF ] c18= a · [((x/θF)∗+

x/θF ·a∗+b)∧((x/θF )∗+x/θF)] c5= a·[((x/θF )∗+x/θF ·a∗+b)∧1] = a·((x/θF )∗+
x/θF · a∗ + b) = a · [((x/θF )∗ ∨ a∗) + b] = a · (a∗ + b) = a ∧ b = f1(x) ∧ f2(x).

(iii). (f1 ∨ f2)(x) = (f∗
1 ∧ f∗

2 )∗(x) = x/θF · [(x/θF · a∗) ∧ (x/θF · b∗)]∗ =
x/θF ·[((x/θF )∗+a)∨((x/θF )∗+b)] = x/θF ·[(x/θF )∗+(a∨b)] = x/θF∧(a∨b) =
a ∨ b = f1(x) ∨ f2(x).

Corollary 3.2 (AF ,⊕,∗ ,0) is an MV - algebra, where 0 = ̂(A,0) and 1 =
0∗ = ̂(A,1). Also, for two elements ̂(I1, f1), ̂(I2, f2) in AF we have

̂(I1, f1) � ̂(I2, f2) = ̂(I1 ∩ I2, f1 � f2),
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̂(I1, f1) ∧ ̂(I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2),

̂(I1, f1) ∨ ̂(I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2)

where f1 � f2, f1 ∧ f2, f1 ∨ f2 are characterized as in Lemma 3.4.

Definition 3.2 The MV - algebra AF will be called the localization MV -
algebra of A with respect to the topology F .

Lemma 3.5 Let the map vF : B(A) → AF defined by vF (a) = ̂(A, fa) for
every a ∈ B(A). Then:

(i) vF is a morphism of MV - algebras.

(ii) For a ∈ B(A), ̂(A, fa) ∈ B(AF ).

(iii) vF (B(A)) ∈ R(AF ).

Proof. (i). We have vF (0) = ̂(A, f0) = ̂(A,0) = 0.

For a, b ∈ B(A), we have vF (a)⊕vF (b) = ̂(A, fa) ̂⊕(A, fb) = ̂(A, fa ⊕ fb)
c23=

̂(A, fa+b) = vF (a + b) and for x ∈ A, since

(fa)∗(x) = x/θF · [(a ∧ x)/θF ]∗ = x/θF · ((x/θF )∗ ∨ (a/θF)∗)

= x/θF · ((x/θF )∗ + (a/θF)∗) = x/θF ∧ (a/θF )∗ = fa∗(x),

that is (fa)∗ = fa∗ we deduce that

vF (a∗) = ̂(A, fa∗) = ̂(A, fa)
∗

= (vF (a))∗,

hence vF is a morphism of MV - algebras.
(ii). For a ∈ B(A) we have a+a = a, hence by c23, ((a∧x)+ (a∧x))∧x =

a ∧ x for every x ∈ A.
Since A ∈ F we deduce that ((a∧x)/θF +(a∧x)/θF )∧x/θF = (a∧x)/θF

hence fa ⊕ fa = fa, that is

̂(A, fa) ∈ B(AF ).

(iii). To prove that vF(B(A)) is a regular subset of AF , let ̂(Ii, fi) ∈ AF ,

Ii ∈ F , i = 1, 2, such that ̂(A, fa) ∧ ̂(I1, f1) = ̂(A, fa) ∧ ̂(I2, f2) for every

a ∈ B(A). By (ii), ̂(A, fa) ∈ B(AF ).
Then (f1 ∧ fa)(x) = (f2 ∧ fa)(x) for every x ∈ I1 ∩ I2 and a ∈ B(A)

⇔ f1(x) ∧ x/θF ∧ a/θF = f2(x) ∧ x/θF ∧ a/θF for every x ∈ I1 ∩ I2 and
a ∈ B(A) ⇔ f1(x)∧a/θF = f2(x)∧a/θF for every x ∈ I1 ∩ I2 and a ∈ B(A) .

In particular for a = 1, a/θF = 1 ∈ B(A/θF ) we obtain that f1(x) = f2(x)
for every x ∈ I1 ∩ I2, hence ̂(I1, f1) = ̂(I2, f2), that is vF (B(A)) ∈ R(AF ).



38 Dumitru Buşneag and Dana Piciu

4 Applications

In the following we describe the localization MV - algebra AF in some special
instances.

1. If I ∈ I(A), and F is the topology

F(I) = {I ′ ∈ I(A) : I ⊆ I ′}

(see example 1 in section 2), then AF is isomorphic with M(I, A/θF) and
vF : B(A) → AF is defined by vF (a) = fa|I for every a ∈ B(A).

2. If F = I(A) ∩ R(A) is the topology of regular ideals (see example 2 in
section 2), then θF is the identity congruence of A and

AF = lim→ I∈F
M(I, A),

where M(I, A) is the set of multipliers of A having the domain I (see [6]).
In this situation we obtain:

Proposition 4.1 In the case F = I(A) ∩ R(A), AF is exactly the maximal
MV -algebra Q(A) of quotients of A (introduced by the authors in [6] where
this is denoted by A′′ ).

3. If S ⊆ A an ∧−closed system of A. Consider the following congruence
on A : (x, y) ∈ θS ⇔ there exists e ∈ S ∩ B(A) such that x ∧ e = y ∧ e (see
[5]). A[S] = A/θS is called in [5] the MV - algebra of fractions of A relative
to the ∧−closed system S.

Proposition 4.2 If FS is the topology associated with a ∧−closed system
S ⊆ A (see example 3 in section 2), then the MV - algebra AFS is isomorphic
with B(A[S]).

Proof. For x, y ∈ A we have (x, y) ∈ θFS ⇔ there exists I ∈ FS (hence
I ∩ S ∩ B(A) 
= �) such that x ∧ e = y ∧ e for any e ∈ I ∩ B(A). Since
I ∩ S ∩ B(A) 
= � there exists e0 ∈ I ∩ S ∩ B(A) such that x ∧ e0 = y ∧ e0,
hence (x, y) ∈ θS . So, θFS ⊆ θS .

If (x, y) ∈ θS , there exists e0 ∈ S ∩ B(A) such that x ∧ e0 = y ∧ e0. If we
set I = (e0] = {a ∈ A : a ≤ e0}, then I ∈ I(A); since e0 ∈ I ∩ S ∩ B(A),
then I ∩ S ∩B(A) 
= �, that is I ∈ FS . For every e ∈ I ∩B(A), e ≤ e0, hence
e = e∧e0 and x∧e = x∧(e0∧e) = (x∧e0)∧e = (y∧e0)∧e = y∧(e0∧e) = y∧e,
hence (x, y) ∈ θFS , that is θFS = θS .

Then A[S] = A/θS ; therefore an FS−multiplier can be considered in this
case (see a14 − a17) as a mapping f : I → A[S] (I ∈ FS) having the properties
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f(e · x) = e/S · f(x) and f(x) ≤ x/S, for every x ∈ I and e ∈ B(A), if
e ∈ I ∩ B(A), then f(e) ∈ B(A[S]) and for every e ∈ I ∩ B(A) and x ∈ I,

(e/S) ∧ f(x) = (x/S) ∧ f(e)

(x/S denotes the congruence class of x relative to θS).
We recall ([5]) that for x ∈ A, x/S ∈ B(A[S]) iff there is e0 ∈ S ∩ B(A)

such that e0 ∧ x ∈ B(A). In particular if e ∈ B(A), then e/S ∈ B(A[S]).
If ̂(I1, f1), ̂(I2, f2) ∈ AFS = lim→I∈FS

M(I, A[S]), and ̂(I1, f1) = ̂(I2, f2)
then there exists I ∈ FS such that I ⊆ I1 ∩ I2 and f1|I = f2|I . Since I, I1, I2 ∈
FS, there exist e ∈ I∩S∩B(A), e1 ∈ I1∩S∩B(A) and e2 ∈ I2∩S∩B(A). We
shall prove that f1(e1) = f2(e2). If denote f = e∧e1∧e2, then f ∈ I∩S∩B(A),
and f ≤ e1, e2. Since e1∧f = e2∧f then f1(e1∧f) = f1(e2∧f) = f2(e2∧f) ⇔
f1(e1)∧f/S = f2(e2)∧f/S ⇔ f1(e1)∧1 = f2(e2)∧1 (since f ∈ S ⇒ f/S = 1)
⇔ f1(e1) = f2(e2). In a similar way we can show that f1(s1) = f2(s2) for any
s1, s2 ∈ I ∩ S ∩ B(A).

In accordance with these considerations we can define the mapping:

α : AFS = lim→ I∈FS

M(I, A[S]) → B(A[S]),

by putting
α(̂(I, f)) = f(s) ∈ B(A[S]),

where s ∈ I ∩ S ∩ B(A).
This mapping is a morphism of MV - algebras.
Indeed, α(0) = α(̂(A,0)) = 0(e) = 0/S = 0 for every e ∈ S ∩ B(A). If

̂(I, f) ∈ AFS , we have α( ̂(I, f)∗) = α( ̂(I, f∗)) = f∗(e) = (e/S) · [f(e)]∗ =
1 · (f(e))∗ = (f(e))∗ = (α(̂(I, f)))∗ (with e ∈ I ∩ S ∩ B(A)). Also, for every
̂(Ii, fi) ∈ AFS , i = 1, 2 we have: α[ ̂(I1, f1) ⊕ ̂(I2, f2)] = α[ ̂(I1 ∩ I2, f1 ⊕ f2).] =
(f1 ⊕ f2)(e) = (f1(e)+ f2(e))∧ (e/S) = f1(e)+ f2(e) = α[ ̂(I1, f1)] + α[ ̂(I2, f2)]
(with e ∈ I1 ∩ I2 ∩ S ∩ B(A)).

We shall prove that α is injective and surjective. To prove the injectivity
of α let ̂(I1, f1), ̂(I2, f2) ∈ AFS such that α( ̂(I1, f1)) = α( ̂(I2, f2)). Then for
any e1 ∈ I1 ∩ S ∩ B(A), e2 ∈ I2 ∩ S ∩ B(A) we have f1(e1) = f2(e2). If
f1(e1) = x/S, f2(e2) = y/S with x, y ∈ A, since x/S = y/S, there exists
e ∈ S ∩ B(A) such that x ∧ e = y ∧ e.

If we consider e′ = e∧e1∧e2 ∈ I1∩I2∩S∩B(A), we have x∧e′ = y∧e′ and
e′ ≤ e1, e2. It follows that f1(e′) = f1(e′ ∧ e1) = f1(e1) ∧ (e′/S) = x/S ∧ 1 =
x/S = y/S = f2(e2) = f2(e2) ∧ (e′/S) = f2(e2 ∧ e′) = f2(e′). If denote
I = (e′] then we obtained that I ∈ FS , I ⊆ I1 ∩ I2 and f1|I = f2|I , hence
̂(I1, f1) = ̂(I2, f2), that is α is injective.
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To prove the surjectivity of α, let a/S ∈ B(A[S]) (hence there exists e0 ∈
S ∩B(A) such that a ∧ e0 ∈ B(A)). We consider I0 = (e0] = {x ∈ A : x ≤ e0}
(since e0 ∈ I0 ∩S ∩B(A), then I0 ∈ FS) and define fa : I0 → A[S] by putting
fa(x) = x/S ∧ a/S = (x ∧ a)/S for every x ∈ I0.

We shall prove that fa is a FS−multiplier. Indeed, if e ∈ B(A) and x ∈ I0,
since e/S ∈ B(A[S]), then

fa(e · x) = fa(e ∧ x) = (e/S) ∧ (x/S) ∧ (a/S)

= (e/S) ∧ ((x/S) ∧ (a/S)) = (e/S) ∧ fa(x) = (e/S) · fa(x);

Clearly, fa(x) ≤ x/S. Also, if e ∈ I0 ∩ B(A), then fa(e) = e/S ∧ a/S ∈
B(A[S]).

Clearly if for every e ∈ I0 ∩ B(A) and x ∈ I0,

(e/S) ∧ fa(x) = (x/S) ∧ fa(e),

hence fa is a FS−multiplier and we shall prove that α( ̂(I0, fa)) = a/S.

Indeed, since e0 ∈ S we have α( ̂(I0, fa)) = fa(e0) = (e0 ∧ a)/S = (e0/S) ∧
(a/S) = 1 ∧ (a/S) = a/S.

So, we have proved that α is an isomorphism of MV - algebras.
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