

An. Şt. Univ. Ovidius Constanța

# *F***-MULTIPLIERS AND THE LOCALIZATION OF** *MV***-ALGEBRAS**

Dumitru Buşneag and Dana Piciu

### Abstract

The aim of the present paper is to define the localisation of MV-algebra of an MV-algebra A with respect to a topology F on A. In the last part of the paper it is proved that the maximal MV-algebra of quotients (defined in [6]) and the MV-algebra of fractions relative to an  $\wedge$ -closed system (defined in [5]) are MV - algebra of localisation.

The concept of multiplier for distributive lattices was defined by W. H. Cornish in [9]. J. Schmid used the multipliers in order to give a non-standard construction of the maximal lattice of quotients for a distributive lattice (see [14]). A direct treatment of the lattices of quotients can be found in [15]. In [11], G. Georgescu exhibited the localization lattice  $L_{\mathcal{F}}$  of a distributive lattice L with respect to a topology  $\mathcal{F}$  on L in a similar way as for rings (see [13]) or monoids (see [16]). For the case of Hilbert and Heyting algebras, see [1], [2] and respectively [10].

The concepts of MV-algebra of fractions relative to an  $\wedge$ - closed system of MV-algebra of fractions and of maximal MV-algebra of quotients were defined by the authors ([5], [6]).

### 1 Definitions and preliminaries

**Definition 1.1** ([7], [8]) An MV-algebra is an algebra (A, +, \*, 0) of type (2, 1, 0) satisfying the following equations:

- $(a_1) \ x + (y+z) = (x+y) + z,$
- $(a_2) \ x+y=y+x,$
- $(a_3) x + 0 = x,$
- $(a_4) \ x^{**} = x,$

25

 $(a_5) \ x + 0^* = 0^*,$ 

 $(a_6) (x^* + y)^* + y = (y^* + x)^* + x.$ 

MV - algebras were originally introduced by Chang in [7] in order to give an algebraic counterpart of the Lukasiewicz many valued logic (MV = many valued). Note that axioms  $a_1$ - $a_3$  state that (A, +, 0) is an abelian monoid; following tradition, we denote an MV-algebra (A, +, \*, 0) by its universe A.

**Remark 1.1** If in  $a_6$  we put y = 0 we obtain  $x^{**} = 0^{**} + x$ , so, if  $0^{**} = 0$ , then  $x^{**} = x$  for each  $x \in A$ . Hence, the axiom  $a_4$  is equivalent with  $(a'_4) 0^{**} = 0$ .

### **Examples:**

 $E_1$ ) A singleton {0} is a trivial example of an MV-algebra; an MV-algebra is said *nontrivial* provided its universe has more that one element.

 $E_2$ ) Let  $(G, \oplus, -, 0, \leq)$  be an *l*-group. For each  $u \in G$ , u > 0, let

$$[0, u] = \{ x \in G : 0 \le x \le u \}$$

and for each  $x, y \in [0, u]$ , let  $x+y = u \land (x \oplus y)$  and  $x^* = u - x$ . Then ([0, u], +, \*, 0) is an MV - algebra. In particular, if we consider the real unit interval [0, 1] and, for all  $x, y \in [0, 1]$ , we define  $x + y = \min\{1, x + y\}$  and  $x^* = 1 - x$ , then ([0, 1], +, \*, 0) is an MV-algebra.

 $E_3$ ) If  $(A, \lor, \land, *, 0, 1)$  is a Boolean lattice, then  $(A, \lor, *, 0)$  is an MV-algebra.

 $E_4$ ) The rational numbers in [0, 1], and, for each integer  $n \ge 2$ , the *n*-element set  $L_n = \left\{0, \frac{1}{(n-1)}, ..., \frac{(n-2)}{(n-1)}, 1\right\}$  yield examples of subalgebras of [0, 1].

 $E_5$ ) Given an MV-algebra A and a set X, the set  $A^X$  of all functions  $f : X \longrightarrow A$  becomes an MV-algebra if the operations + and \* and the element 0 are defined pointwise. The continuous functions from [0,1] into [0,1] form a subalgebra of the MV-algebra  $[0,1]^{[0,1]}$ .

In the rest of this paper, by A we denote an MV -algebra.

On A we define the constant 1 and the operations ,,." and ,,-" as follows  $1 = 0^*$ ,  $x \cdot y = (x^* + y^*)^*$  and  $x - y = x \cdot y^* = (x^* + y)^*$  (we consider the ,,\*" operation more binding that any other operation, and the ,,." more binding that + and -).

**Lemma 1.1** ([3]-[8], [12]) For  $x, y \in A$ , the following conditions are equivalent:

(*i*)  $x^* + y = 1$ .

- $(ii) \ x \cdot y^* = 0.$
- (*iii*) y = x + (y x).
- (iv) There is an element  $z \in A$  such that x + z = y.

For any two elements  $x, y \in A$  let us agree to write  $x \leq y$  iff x and y satisfy the equivalent conditions (i)-(iv) in the above lemma. So,  $\leq$  is a partial order relation on A (which is called the *natural order* on A).

**Theorem 1.1** ([3]-[8], [12]) If  $x, y, z \in A$ , then the following hold:

$$\begin{array}{l} (c_1) \ 1^* = 0, \\ (c_2) \ x + y = (x^* \cdot y^*)^*, \\ (c_3) \ x + 1 = 1, \\ (c_4) \ (x - y) + y = (y - x) + x, \\ (c_5) \ x + x^* = 1, x \cdot x^* = 0, \\ (c_6) \ x - 0 = x, \ 0 - x = 0, \ x - x = 0, \ 1 - x = x^*, \ x - 1 = 0, \\ (c_7) \ x + x = x \ iff \ x \cdot x = x, \\ (c_8) \ x \le y \ iff \ y^* \le x^*, \\ (c_9) \ If \ x \le y, \ then \ x + z \le y + z \ and \ x \cdot z \le y \cdot z, \\ (c_{10}) \ If \ x \le y, \ then \ x - z \le y - z \ and \ z - y \le z - x, \\ (c_{11}) \ x - y \le x, x - y \le y^*, \\ (c_{12}) \ (x + y) - x \le y, \\ (c_{13}) \ x \cdot z \le y \ iff \ z \le x^* + y, \end{array}$$

 $(c_{14}) x + y + x \cdot y = x + y.$ 

**Remark 1.2** ([3]-[8], [12]) On A, the natural order determines a bounded distributive lattice structure. Specifically, the join  $x \vee y$  and the meet  $x \wedge y$  of the elements x and y are given by:

$$x \lor y = (x - y) + y = (y - x) + x = x \cdot y^* + y = y \cdot x^* + x$$
$$x \land y = (x^* \lor y^*)^* = x \cdot (x^* + y) = y \cdot (y^* + x).$$

Clearly,  $x \cdot y \leq x \wedge y \leq x, y \leq x \vee y \leq x + y$ .

We shall denote this distributive lattice with 0 and 1 by L(A) (see [7], [8]). For any MV - algebra A we shall write B(A) as an abbreviation of set of all complemented elements of L(A). Elements of B(A) are called the *boolean* elements of A.

**Theorem 1.2** ([7]) For every element x in an MV - algebra A, the following conditions are equivalent:

- (i)  $x \in B(A)$ .
- (*ii*)  $x \lor x^* = 1$ .
- (*iii*)  $x \wedge x^* = 0$ .
- $(iv) \ x + x = x.$
- (v)  $x \cdot x = x$ .
- (vi)  $x + y = x \lor y$ , for all  $y \in A$ .
- (vii)  $x \cdot y = x \wedge y$ , for all  $y \in A$ .

Corollary 1.1 ([7], [8], [12])

- (i) B(A) is subalgebra of the MV algebra A. A subalgebra B of A is a boolean algebra iff  $B \subseteq B(A)$ .
- (ii) An MV algebra A is a boolean algebra iff the operation + is idempotent, i.e., the equation x + x = x is satisfied by A.

**Theorem 1.3** ([7], [8], [12]) If  $x, y, z, (x_i)_{i \in I}$  are elements of A, then the following hold:

 $(c_{15}) \ x + y = (x \lor y) + (x \land y),$   $(c_{16}) \ x \cdot y = (x \lor y) \cdot (x \land y),$   $(c_{17}) \ x + (\bigvee_{i \in I} x_i) = \bigvee_{i \in I} (x + x_i),$   $(c_{18}) \ x + (\bigwedge_{i \in I} x_i) = \bigwedge_{i \in I} (x + x_i),$   $(c_{19}) \ x \cdot (\bigvee_{i \in I} x_i) = \bigvee_{i \in I} (x \cdot x_i),$   $(c_{20}) \ x \cdot (\bigwedge_{i \in I} x_i) = \bigwedge_{i \in I} (x \cdot x_i),$   $(c_{21}) \ x \land (\bigvee_{i \in I} x_i) = \bigvee_{i \in I} (x \land x_i),$ 

 $(c_{22}) x \vee (\bigwedge_{i \in I} x_i) = \bigwedge_{i \in I} (x \vee x_i)$  (if all suprema and infima exist).

**Lemma 1.2** If a, b, x are elements of A, then:

- $(c_{23}) [(a \wedge x) + (b \wedge x)] \wedge x = (a+b) \wedge x,$
- $(c_{24}) \ a^* \wedge x \ge x \cdot (a \wedge x)^*.$

**Proof.**  $(c_{23})$ . By  $c_{18}$  we have  $[(a \land x) + (b \land x)] \land x = ((a \land x) + b) \land ((a \land x) + x) \land x = ((a \land x) + b) \land x = (a + b) \land (x + b) \land x = (a + b) \land x.$  $(c_{24})$ . We have  $x \cdot (a \land x)^* = x \cdot (a^* \lor x^*) \stackrel{c_{19}}{=} (x \cdot a^*) \lor (x \cdot x^*) \stackrel{c_{5}}{=} (x \cdot a^*) \lor 0 = x \cdot a^* \leq a^* \land x.$ 

**Corollary 1.2** If  $a \in B(A)$  and  $x, y \in A$ , then:

- $(c_{25}) \ a^* \wedge x = x \cdot (a \wedge x)^*,$
- $(c_{26}) \ a \wedge (x+y) = (a \wedge x) + (a \wedge y),$
- $(c_{27}) \ a \lor (x+y) = (a \lor x) + (a \lor y).$

**Proof.**  $(c_{25})$ . See the proof of  $c_{24}$ .

 $\begin{array}{l} (c_{26}). \text{ We have: } (a \wedge x) + (a \wedge y) \stackrel{c_{\underline{18}}}{=} [(a \wedge x) + a] \wedge [(a \wedge x) + y] = [(a \wedge x) \vee a] \wedge [(a + y) \wedge (x + y)] = a \wedge (a + y) \wedge (x + y) = a \wedge (x + y). \\ (c_{27}). \text{ We have } (a \vee x) + (a \vee y) = (a + x) + (a + y) = (a + a) + (x + y) = (a + a) + (a + y) = (a + a) + (a + y) + (a + y) = (a + a) + (a + y) + (a + y) + (a + y) =$ 

 $a + (x + y) = a \lor (x + y).$ 

**Definition 1.2** ([3]-[8], [12]) Let A and B be MV – algebras. A function  $f : A \to B$  is a morphism of MV – algebras iff it satisfies the following conditions, for every  $x, y \in A$ :

- $(a_7) f(0) = 0,$
- $(a_8) \ f(x+y) = f(x) + f(y),$
- $(a_9) f(x^*) = (f(x))^*.$

Remark 1.3 It follows that:

$$f(1) = 1, f(x \cdot y) = f(x) \cdot f(y), f(x \lor y) = f(x) \lor f(y), f(x \land y) = f(x) \land f(y), f(y) \land f($$

for every  $x, y \in A$ .

**Definition 1.3** ([3]-[8], [12]) An ideal of an MV - algebra A is a subset I of A satisfying the following conditions:

 $(a_{10})$  If  $x \in I$ ,  $y \in A$  and  $y \leq x$ , then  $y \in I$ ,

 $(a_{11})$  If  $x, y \in I$ , then  $x + y \in I$ .

We denote by Id(A) the set of all ideals of A and by I(A) the set

 $I(A) = \{I \subseteq A : \text{if } x, y \in A, x \leq y \text{ and } y \in I, \text{ then } x \in I\}.$ 

**Remark 1.4** Clearly,  $Id(A) \subseteq I(A)$  and if  $I_1, I_2 \in I(A)$ , then  $I_1 \cap I_2 \in I(A)$ . Also, if  $I \in I(A)$ , then  $0 \in I$ .

For  $M \subseteq A$  we denote by (M] the *ideal of* A generated by M. If  $M = \{a\}$  with  $a \in A$ , we denote by  $\{a\}$  the ideal generated by  $\{a\}((a)$  is called *principal*).

**Proposition 1.1** ([7], [8]) If  $M \subseteq A$ , then

 $(M] = \{ x \in A : x \le x_1 + \dots + x_n \text{ for some } x_1, \dots, x_n \in M \}.$ 

In particular, for  $a \in A$ ,  $(a] = \{x \in A : x \le na \text{ for some integer } n \ge 0\}$ ; if  $e \in B(A)$ , then  $(e] = \{x \in A : x \le e\}$ .

# 2 Topologies on an MV-algebra

**Definition 2.1** A non-empty set  $\mathcal{F}$  of elements of  $I \in I(A)$  will be called a topology on A if the following properties hold:

 $(a_{12})$  If  $I_1 \in \mathcal{F}, I_2 \in I(A)$  and  $I_1 \subseteq I_2$ , then  $I_2 \in \mathcal{F}$  (hence  $A \in \mathcal{F}$ ).

 $(a_{13})$  If  $I_1, I_2 \in \mathcal{F}$ , then  $I_1 \cap I_2 \in \mathcal{F}$ .

Any intersection of topologies on A is a topology; hence the set T(A) of all topologies of A is a complete lattice with respect to inclusion.

Examples

1. If  $I \in I(A)$ , then the set

$$\mathcal{F}(I) = \{ I' \in I(A) : I \subseteq I' \}$$

is clearly a topology on A.

2. A non-empty set  $I \subseteq A$  will be called *regular* (see [6]) if for every  $x, y \in A$  such that  $e \wedge x = e \wedge y$  for every  $e \in I \cap B(A)$ , we have x = y. If we denote  $R(A) = \{I \subseteq A : I \text{ is a regular subset of } A\}$ , then  $I(A) \cap R(A)$  is a topology on A (see [6]).

3. A subset  $S \subseteq A$  is called  $\wedge -$  *closed* if  $1 \in S$  and if  $x, y \in S$  implies  $x \wedge y \in S$  (see [5]). For any  $\wedge -$  closed subset S of A we set  $\mathcal{F}_S = \{I \in I(A) :$ 

 $I \cap S \cap B(A) \neq \emptyset$ }. Then  $\mathcal{F}_S$  is a topology on A. Clearly, if  $I \in \mathcal{F}_S$  and  $I \subseteq J$  (with  $J \in I(A)$ ), then  $I \cap S \cap B(A) \neq \emptyset$ , hence  $J \cap S \cap B(A) \neq \emptyset$ , that is  $J \in \mathcal{F}_S$ .

If  $I_1, I_2 \in \mathcal{F}_S$  then there exist  $s_i \in I_i \cap S \cap B(A), i = 1, 2$ . If we set  $s = s_1 \wedge s_2$ , then  $s \in (I_1 \cap I_2) \cap S \cap B(A)$ , hence  $I_1 \cap I_2 \in \mathcal{F}_S$ .

# 3 *F*-multipliers and localization MV-algebras

Let  $\mathcal{F}$  be a topology on A. Let us consider the relation  $\theta_{\mathcal{F}}$  of A defined in the following way:

 $(x,y) \in \theta_{\mathcal{F}} \Leftrightarrow$  there exists  $I \in \mathcal{F}$  such that  $e \wedge x = e \wedge y$  for any  $e \in I \cap B(A)$ .

**Lemma 3.1**  $\theta_{\mathcal{F}}$  is a congruence on A.

**Proof.** The reflexivity and the symmetry of  $\theta_{\mathcal{F}}$  are immediate; to prove the transitivity of  $\theta_{\mathcal{F}}$  let  $(x, y), (y, z) \in \theta_{\mathcal{F}}$ . Then there exists  $I_1, I_2 \in \mathcal{F}$  such that  $e \wedge x = e \wedge y$  for every  $e \in I_1 \cap B(A)$ , and  $f \wedge y = f \wedge z$  for every  $f \in I_2 \cap B(A)$ . If the set  $I = I_1 \cap I_2 \in \mathcal{F}$ , then for every  $g \in I \cap B(A)$ ,  $g \wedge x = g \wedge z$ , hence  $(x, z) \in \theta_{\mathcal{F}}$ .

To prove the compatibility of  $\theta_{\mathcal{F}}$  with the operations + and \*, let (x, y)and  $(z, t) \in \theta_{\mathcal{F}}$ , that is there exists  $I, J \in \mathcal{F}$  such that  $e \wedge x = e \wedge y$  for every  $e \in I \cap B(A)$ , and  $f \wedge z = f \wedge t$  for every  $f \in J \cap B(A)$ . If we denote  $K = I \cap J$ , then  $K \in \mathcal{F}$  and for every  $g \in K \cap B(A)$ ,  $g \wedge x = g \wedge y$  and  $g \wedge z = g \wedge t$ .

By  $c_{26}$  we deduce that for every  $g \in K \cap B(A)$ :

$$g \wedge (x+z) = (g \wedge x) + (g \wedge z) = (g \wedge y) + (g \wedge t) = g \wedge (y+t),$$

hence  $(x + z, y + t) \in \theta_{\mathcal{F}}$ , that is  $\theta_{\mathcal{F}}$  is compatible with the operation +.

Also, since  $x \wedge e = y \wedge e$  for every  $e \in I \cap B(A)$ , we deduce that  $x^* \vee e^* = y^* \vee e^*$ , hence  $e \cdot (x^* \vee e^*) = e \cdot (y^* \vee e^*) \Leftrightarrow e \cdot (e^* + x^*) = e \cdot (e^* + y^*)$  (since  $e^* \in B(A)$ ) $\Leftrightarrow e \wedge x^* = e \wedge y^*$  for every  $e \in I \cap B(A)$ , hence  $(x^*, y^*) \in \theta_{\mathcal{F}}$ , that is  $\theta_{\mathcal{F}}$  is compatible with the operations \*, so  $\theta_{\mathcal{F}}$  is a congruence on A.

We shall denote by  $x/\theta_{\mathcal{F}}$  the congruence class of an element  $x \in A$  and by

$$p_{\mathcal{F}}: A \to A/\theta_{\mathcal{F}}$$

the canonical morphism of MV - algebras.

**Proposition 3.1** For  $a \in A$ ,  $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}})$  iff there exists  $I \in \mathcal{F}$  such that  $a \wedge e \in B(A)$  for every  $e \in I \cap B(A)$ . So, if  $a \in B(A)$ , then  $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}})$ .

**Proof.** For  $a \in A$ , we have  $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}}) \Leftrightarrow a/\theta_{\mathcal{F}} + a/\theta_{\mathcal{F}} = a/\theta_{\mathcal{F}} \Leftrightarrow (a+a)/\theta_{\mathcal{F}} = a/\theta_{\mathcal{F}} \Leftrightarrow \text{there exists } I \in \mathcal{F} \text{ such that } (a+a) \land e = a \land e \text{ for every}$  $e \in I \cap B(A) \stackrel{c_{26}}{\Leftrightarrow} (a \land e) + (a \land e) = a \land e \text{ for every } e \in I \cap B(A) \Leftrightarrow a \land e \in B(A)$ for every  $e \in I \cap B(A)$ .

So, if  $a \in B(A)$ , then for every  $I \in \mathcal{F}$ ,  $a \wedge e \in B(A)$  for every  $e \in I \cap B(A)$ , hence  $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}})$ .

**Corollary 3.1** If  $\mathcal{F} = I(A) \cap R(A)$ , then for  $a \in A$ ,  $a \in B(A)$  iff  $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}})$ .

**Definition 3.1** Let  $\mathcal{F}$  be a topology on A. An  $\mathcal{F}$ - multiplier is a mapping  $f: I \to A/\theta_{\mathcal{F}}$  where  $I \in \mathcal{F}$  and for every  $x \in I$  and  $e \in B(A)$  the following axioms are fulfilled:

- $(a_{14}) \ f(e \cdot x) = e/\theta_{\mathcal{F}} \wedge f(x) = e/\theta_{\mathcal{F}} \cdot f(x).$
- $(a_{15}) f(x) \le x/\theta_{\mathcal{F}}.$

 $(a_{16})$  If  $e \in I \cap B(A)$ , then  $f(e) \in B(A/\theta_{\mathcal{F}})$ .

 $(a_{17})$   $(x/\theta_{\mathcal{F}}) \wedge f(e) = (e/\theta_{\mathcal{F}}) \wedge f(x)$ , for every  $e \in I \cap B(A)$  and  $x \in I$ .

By  $dom(f) \in \mathcal{F}$  we denote the domain of f; if dom(f) = A, we called f total.

To simplify the language, we will use *multiplier* instead of *partial multiplier*, using *total* to indicate that the domain of a certain multiplier is A.

If  $\mathcal{F} = \{A\}$ , then  $\theta_{\mathcal{F}}$  is the identity congruence of A so an  $\mathcal{F}$ - multiplier is a total multiplier in the sense of [6].

The maps  $\mathbf{0}, \mathbf{1} : A \to A/\theta_{\mathcal{F}}$  defined by  $\mathbf{0}(x) = 0/\theta_{\mathcal{F}}$  and  $\mathbf{1}(x) = x/\theta_{\mathcal{F}}$  for every  $x \in A$  are multipliers in the sense of Definition 3.1 (see [6] for the case of multipliers).

Also, for  $a \in B(A)$  and  $I \in \mathcal{F}$ ,  $f_a : I \to A/\theta_{\mathcal{F}}$  defined by  $f_a(x) = a/\theta_{\mathcal{F}} \wedge x/\theta_{\mathcal{F}}$  for every  $x \in I$ , is an  $\mathcal{F}$ - multiplier (see [6] for the case of multipliers). If  $dom(f_a) = A$ , we denote  $f_a$  by  $\overline{f_a}$ ; clearly,  $\overline{f_0} = \mathbf{0}$ .

We shall denote by  $M(I, A/\theta_{\mathcal{F}})$  the set of all the  $\mathcal{F}$ - multipliers having the domain  $I \in \mathcal{F}$  and

$$M(A/\theta_{\mathcal{F}}) = \bigcup_{I \in \mathcal{F}} M(I, A/\theta_{\mathcal{F}}).$$

If  $I_1, I_2 \in \mathcal{F}$ ,  $I_1 \subseteq I_2$ , we have a canonical mapping

$$\varphi_{I_1,I_2}: M(I_2, A/\theta_{\mathcal{F}}) \to M(I_1, A/\theta_{\mathcal{F}}),$$

defined by

$$\varphi_{I_1,I_2}(f) = f_{|I_1|} \text{ for } f \in M(I_2, A/\theta_{\mathcal{F}}).$$

Let us consider the directed system of sets

$$\langle \{M(I, A/\theta_{\mathcal{F}})\}_{I \in \mathcal{F}}, \{\varphi_{I_1, I_2}\}_{I_1, I_2 \in \mathcal{F}, I_1 \subseteq I_2} \rangle$$

and denote by  $A_{\mathcal{F}}$  the inductive limit (in the category of sets):

$$A_{\mathcal{F}} = \lim_{\to I \in \mathcal{F}} M(I, A/\theta_{\mathcal{F}}).$$

For any  $\mathcal{F}$ - multiplier  $f: I \to A/\theta_{\mathcal{F}}$ , we shall denote by (I, f) the equivalence class of f in  $A_{\mathcal{F}}$ .

**Remark 3.1** We recall that, if  $f_i : I_i \to A/\theta_{\mathcal{F}}$ , i = 1, 2, are multipliers, then  $\widehat{(I_1, f_1)} = \widehat{(I_2, f_2)}$  (in  $A_{\mathcal{F}}$ ) iff there exists  $I \in \mathcal{F}$ ,  $I \subseteq I_1 \cap I_2$  such that  $f_{1|I} = f_{2|I}$ .

Let  $f_i: I_i \to A/\theta_{\mathcal{F}}$  (with  $I_i \in \mathcal{F}, i = 1, 2$ ) be  $\mathcal{F}$ -multipliers. Let us consider the mapping

$$f_1 \oplus f_2 : I_1 \cap I_2 \to A/\theta_{\mathcal{F}},$$

defined by

$$(f_1 \oplus f_2)(x) = (f_1(x) + f_2(x)) \wedge x/\theta_{\mathcal{F}_1}$$

for any  $x \in I_1 \cap I_2$ , and let  $\widehat{(I_1, f_1)} \oplus \widehat{(I_2, f_2)} = (I_1 \cap \widehat{I_2, f_1} \oplus f_2).$ 

Also, for any multiplier  $f: I \to A/\theta_{\mathcal{F}}$  (with  $I \in \mathcal{F}$ ), let us consider the mapping

$$f^*: I \to A/\theta_{\mathcal{F}}$$

defined by

$$f^*(x) = x/\theta_{\mathcal{F}} \cdot (f(x))^*,$$

for any  $x \in I$  and let  $(\widehat{I, f})^* = (\widehat{I, f^*})$ .

Clearly the definitions of the operations  $\oplus$  and \* on  $A_{\mathcal{F}}$  are correctly.

Lemma 3.2  $f_1 \oplus f_2 \in M(I_1 \cap I_2, A/\theta_{\mathcal{F}}).$ 

**Proof.** If  $x \in I_1 \cap I_2$  and  $e \in B(A)$ , then  $(f_1 \oplus f_2)(e \cdot x) = [f_1(e \cdot x) + f_2(e \cdot x)] \wedge (e \cdot x)/\theta_{\mathcal{F}} = [(e/\theta_{\mathcal{F}} \cdot f_1(x)) + (e/\theta_{\mathcal{F}} \cdot f_2(x))] \wedge (e/\theta_{\mathcal{F}} \cdot x/\theta_{\mathcal{F}}) = [(e/\theta_{\mathcal{F}} \wedge f_1(x)) + (e/\theta_{\mathcal{F}} \wedge f_2(x))] \wedge (e/\theta_{\mathcal{F}} \wedge x/\theta_{\mathcal{F}}) \stackrel{c_{26}}{=} [e/\theta_{\mathcal{F}} \wedge (f_1(x) + f_2(x))] \wedge [e/\theta_{\mathcal{F}} \wedge x/\theta_{\mathcal{F}}] = e/\theta_{\mathcal{F}} \wedge [(f_1(x) + f_2(x)) \wedge x/\theta_{\mathcal{F}}] = e/\theta_{\mathcal{F}} \cdot (f_1 \oplus f_2)(x).$ 

Clearly,  $(f_1 \oplus f_2)(x) \leq x/\theta_{\mathcal{F}}$  for every  $x \in I_1 \cap I_2$  and if  $e \in I_1 \cap I_2 \cap B(A)$ , then

$$(f_1 \oplus f_2)(e) = [f_1(e) + f_2(e)] \land e/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}}).$$

For  $e \in I_1 \cap I_2 \cap B(A)$  and  $x \in I_1 \cap I_2$  we have:  $x/\theta_{\mathcal{F}} \wedge (f_1 \oplus f_2)(e) = x/\theta_{\mathcal{F}} \wedge [(f_1(e) + f_2(e)) \wedge e/\theta_{\mathcal{F}}] = (f_1(e) + f_2(e)) \wedge x/\theta_{\mathcal{F}} \wedge e/\theta_{\mathcal{F}}$   $\stackrel{c_{26}}{=} (f_1(e) + f_2(e)) \wedge x/\theta_{\mathcal{F}},$ 

and

$$\begin{aligned} e/\theta_{\mathcal{F}} \wedge (f_1 \oplus f_2)(x) &= e/\theta_{\mathcal{F}} \wedge [(f_1(x) + f_2(x)) \wedge x/\theta_{\mathcal{F}}] = e/\theta_{\mathcal{F}} \cdot [(f_1(x) + f_2(x)) \wedge x/\theta_{\mathcal{F}}] \\ \stackrel{c_{20}}{=} [e/\theta_{\mathcal{F}} \cdot (f_1(x) + f_2(x))] \wedge (e \cdot x)/\theta_{\mathcal{F}} \stackrel{c_{26}}{=} [(e/\theta_{\mathcal{F}} \cdot f_1(x)) + (e/\theta_{\mathcal{F}} \cdot f_2(x))] \wedge (e \cdot x)/\theta_{\mathcal{F}} \\ &= [x/\theta_{\mathcal{F}} \cdot f_1(e) + x/\theta_{\mathcal{F}} \cdot f_2(e)] \wedge (e \cdot x)/\theta_{\mathcal{F}} \\ &= [(f_1(e) \wedge x/\theta_{\mathcal{F}}) + (f_2(e) \wedge x/\theta_{\mathcal{F}})] \wedge (e \wedge x)/\theta_{\mathcal{F}} \\ &= [[(f_1(e) \wedge x/\theta_{\mathcal{F}}) + (f_2(e) \wedge x/\theta_{\mathcal{F}})] \wedge x/\theta_{\mathcal{F}}] \wedge e/\theta_{\mathcal{F}} \end{aligned}$$

$$\stackrel{c_{23}}{=} \left( (f_1(e) + f_2(e)) \wedge x/\theta_{\mathcal{F}} \right) \wedge e/\theta_{\mathcal{F}} \stackrel{c_{26}}{=} (f_1(e) + f_2(e)) \wedge x/\theta_{\mathcal{F}},$$

hence

$$x/ heta_{\mathcal{F}} \wedge (f_1 \oplus f_2)(e) = e/ heta_{\mathcal{F}} \wedge (f_1 \oplus f_2)(x),$$
  
that is  $f_1 \oplus f_2 \in M(I_1 \cap I_2, A/ heta_{\mathcal{F}}).$ 

Lemma 3.3  $f^* \in M(I, A/\theta_{\mathcal{F}})$ .

**Proof.** If  $x \in I$  and  $e \in B(A)$ , then  $f^*(e \cdot x) = (e \cdot x)/\theta_{\mathcal{F}} \cdot (f(e \cdot x))^* = e/\theta_{\mathcal{F}} \cdot x/\theta_{\mathcal{F}} \cdot (e/\theta_{\mathcal{F}} \cdot f(x))^* = e/\theta_{\mathcal{F}} \cdot x/\theta_{\mathcal{F}} \cdot [(e/\theta_{\mathcal{F}})^* + (f(x))^*] = x/\theta_{\mathcal{F}} \cdot (e/\theta_{\mathcal{F}} \cdot ((e/\theta_{\mathcal{F}})^* + (f(x))^*)) = x/\theta_{\mathcal{F}} \cdot (e/\theta_{\mathcal{F}} \wedge (f(x))^*) = x/\theta_{\mathcal{F}} \cdot (e/\theta_{\mathcal{F}} \cdot (f(x))^*) = e/\theta_{\mathcal{F}} \cdot (x/\theta_{\mathcal{F}} \cdot (f(x))^*) = e/\theta_{\mathcal{F}} \cdot f^*(x).$ 

Clearly,  $f^*(x) \leq x/\theta_{\mathcal{F}}$  for every  $x \in I$ . Clearly, if  $e \in I \cap B(A)$ , then

$$f^*(e) = e/\theta_{\mathcal{F}} \cdot [f(e)]^* \in B(A/\theta_{\mathcal{F}}).$$

Since  $f \in M(I, A/\theta_{\mathcal{F}})$ , for  $e \in I \cap B(A)$  and  $x \in I$  we have:

$$\begin{split} x/\theta_{\mathcal{F}} \wedge f(e) &= e/\theta_{\mathcal{F}} \wedge f(x) \Rightarrow (x/\theta_{\mathcal{F}})^* \vee (f(e))^* = (e/\theta_{\mathcal{F}})^* \vee (f(x))^* \\ &\Rightarrow (x/\theta_{\mathcal{F}})^* + (f(e))^* = (e/\theta_{\mathcal{F}})^* + (f(x))^* \\ \Rightarrow e/\theta_{\mathcal{F}} \cdot x/\theta_{\mathcal{F}} \cdot [(x/\theta_{\mathcal{F}})^* + (f(e))^*] = x/\theta_{\mathcal{F}} \cdot e/\theta_{\mathcal{F}} \cdot [(e/\theta_{\mathcal{F}})^* + (f(x))^*] \Rightarrow \\ &\Rightarrow e/\theta_{\mathcal{F}} \cdot [x/\theta_{\mathcal{F}} \wedge (f(e))^*] = x/\theta_{\mathcal{F}} \cdot [e/\theta_{\mathcal{F}} \wedge (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \cdot [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \cdot [x/\theta_{\mathcal{F}} \cdot (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \cdot [x/\theta_{\mathcal{F}} \cdot (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \wedge [x/\theta_{\mathcal{F}} \cdot (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \wedge [x/\theta_{\mathcal{F}} \cdot (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \wedge [x/\theta_{\mathcal{F}} \cdot (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \wedge [x/\theta_{\mathcal{F}} \cdot (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \wedge [x/\theta_{\mathcal{F}} \cdot (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \wedge [x/\theta_{\mathcal{F}} \cdot (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \wedge [x/\theta_{\mathcal{F}} \cdot (f(x))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \wedge [x/\theta_{\mathcal{F}} \cdot (f(e))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] = e/\theta_{\mathcal{F}} \wedge [x/\theta_{\mathcal{F}} \cdot (f(e))^*] \\ &\Rightarrow x/\theta_{\mathcal{F}} \wedge [e/\theta_{\mathcal{F}} \cdot (f(e))^*] \\$$

**Proposition 3.2**  $(A_{\mathcal{F}}, \oplus, {}^*, (\widehat{A, \mathbf{0}}))$  is an MV - algebra.

**Proof.** We verify the axioms of MV - algebras.

 $a_1$ ). Let  $f_i \in M(I_i, A/\theta_{\mathcal{F}})$  where  $I_i \in \mathcal{F}, i = 1, 2, 3$  and denote  $I = I_1 \cap I_2 \cap I_3 \in \mathcal{F}$ .

Also, denote  $f = f_1 \oplus (f_2 \oplus f_3)$ ,  $g = (f_1 \oplus f_2) \oplus f_3$  and for  $x \in I$ ,  $a = f_1(x), b = f_2(x), c = f_3(x)$ .

Clearly  $a, b, c \leq x/\theta_{\mathcal{F}}$ . Thus, for  $x \in I$ :

 $\begin{aligned} f(x) &= \left(f_1(x) + \left(f_2 \oplus f_3\right)(x)\right) \wedge x/\theta_{\mathcal{F}} = \left(f_1(x) + \left(\left(f_2(x) + f_3(x)\right) \wedge x/\theta_{\mathcal{F}}\right)\right) \wedge x/\theta_{\mathcal{F}} = 0 \end{aligned}$ 

 $= (a + (b + c) \land x/\theta_{\mathcal{F}}) \land x/\theta_{\mathcal{F}} = ((a \land x/\theta_{\mathcal{F}}) + ((b + c) \land x/\theta_{\mathcal{F}})) \land x/\theta_{\mathcal{F}} \stackrel{c_{23}}{=} (a + b + c) \land x/\theta_{\mathcal{F}}.$ 

Analogously,  $g(x) = (a + b + c) \wedge x/\theta_{\mathcal{F}}$ , hence f = g, so

$$\widehat{(I_1,f_1)} \oplus [\widehat{(I_2,f_2)} \oplus \widehat{(I_3,f_3)}] = [\widehat{(I_1,f_1)} \oplus \widehat{(I_2,f_2)}] \oplus \widehat{(I_3,f_3)},$$

that is the operation  $\oplus$  is associative on  $A_{\mathcal{F}}$ .

 $a_2$ ). Obviously.

 $a_3$ ). Let  $f \in M(I, A/\theta_{\mathcal{F}})$  with  $I \in \mathcal{F}$ . If  $x \in I$ , then  $(f \oplus \mathbf{0})(x) = (f(x) + \mathbf{0}(x)) \wedge x/\theta_{\mathcal{F}} = f(x) \wedge x/\theta_{\mathcal{F}} = f(x)$ , hence  $f \oplus \mathbf{0} = f$ , that is

$$(\widehat{I,f}) \oplus (\widehat{A,\mathbf{0}}) = (\widehat{I,f}).$$

 $a_4$ ). For  $x \in A$ , we have  $\mathbf{0}^*(x) = x/\theta_{\mathcal{F}} \cdot (\mathbf{0}(x))^* = x/\theta_{\mathcal{F}} \cdot (0/\theta_{\mathcal{F}})^* = x/\theta_{\mathcal{F}} \cdot 1/\theta_{\mathcal{F}} = x/\theta_{\mathcal{F}} = \mathbf{1}(x)$ , hence  $\mathbf{0}^* = \mathbf{1}$  and  $\mathbf{1}^*(x) = x/\theta_{\mathcal{F}} \cdot (\mathbf{1}(x))^* = x/\theta_{\mathcal{F}} \cdot (x/\theta_{\mathcal{F}})^* = 0/\theta_{\mathcal{F}} = \mathbf{0}(x)$ . So,  $\mathbf{0}^{**} = \mathbf{1}^* = \mathbf{0}$  that is

$$\widehat{(A,\mathbf{0})}^{**} = \widehat{(A,\mathbf{0})}$$

and by Remark 11,  $a_4$ ) is verified.

 $a_5$ ). Since  $\mathbf{0}^* = \mathbf{1}$ , for  $f \in M(I, A/\theta_{\mathcal{F}})$  (with  $I \in \mathcal{F}$ ) and  $x \in I$ , we have:  $(f \oplus \mathbf{0}^*)(x) = (f \oplus \mathbf{1})(x) = (f(x) + x/\theta_{\mathcal{F}}) \wedge x/\theta_{\mathcal{F}} = x/\theta_{\mathcal{F}} = \mathbf{1}(x) = \mathbf{0}^*(x)$ , hence  $f \oplus \mathbf{0}^* = \mathbf{0}^*$ , that is

$$(\widehat{I,f}) \oplus \widehat{(A,\mathbf{0})}^* = \widehat{(A,\mathbf{0})}^*$$

 $a_6$ ). Let  $f \in M(I, A/\theta_{\mathcal{F}}), g \in M(J, A/\theta_{\mathcal{F}})$  (with  $I, J \in \mathcal{F}$ ) and  $x \in I \cap J$ . If denote  $h = (f^* \oplus g)^* \oplus g, t = (g^* \oplus f)^* \oplus f$ , and a = f(x), b = g(x), then  $a, b \leq x/\theta_{\mathcal{F}}$  and we have:

 $\begin{aligned} h(x) &= \left( (f^* \oplus g)^* \oplus g \right)(x) = \left( (f^* \oplus g)^*(x) + g(x) \right) \wedge x/\theta_{\mathcal{F}} = \left( (x/\theta_{\mathcal{F}} \cdot ((f^* \oplus g)^*)^* + g(x)) \wedge x/\theta_{\mathcal{F}} \right) \\ g)(x))^*) &+ g(x)) \wedge x/\theta_{\mathcal{F}} = (x/\theta_{\mathcal{F}} \cdot ((f^*(x) + g(x)) \wedge x/\theta_{\mathcal{F}})^* + g(x)) \wedge x/\theta_{\mathcal{F}} \\ (x/\theta_{\mathcal{F}} \cdot (((x/\theta_{\mathcal{F}} \cdot (f(x))^*) + g(x)) \wedge x/\theta_{\mathcal{F}})^* + g(x)) \wedge x/\theta_{\mathcal{F}} = (x/\theta_{\mathcal{F}} \cdot (((x/\theta_{\mathcal{F}} \cdot a^*) + b) \wedge x/\theta_{\mathcal{F}})^* + b) \wedge x/\theta_{\mathcal{F}} \\ = (x/\theta_{\mathcal{F}} \cdot (((x/\theta_{\mathcal{F}} \cdot a^*) + b)^* \vee (x/\theta_{\mathcal{F}})^*) + b) \wedge x/\theta_{\mathcal{F}} \end{aligned}$ 

 $= (x/\theta_{\mathcal{F}} \cdot ((x/\theta_{\mathcal{F}} \cdot a^*) + b)^* + b) \wedge x/\theta_{\mathcal{F}} = (x/\theta_{\mathcal{F}} \cdot ((x/\theta_{\mathcal{F}})^* + a) \cdot b^* + b) \wedge x/\theta_{\mathcal{F}} = (((x/\theta_{\mathcal{F}} \wedge a) \cdot b^*) + b) \wedge x/\theta_{\mathcal{F}} = ((a \cdot b^*) + b) \wedge x/\theta_{\mathcal{F}} = (a \vee b) \wedge x/\theta_{\mathcal{F}} = a \vee b.$ Analogously,  $t(x) = a \vee b = h(x)$ , hence h = t, so

$$(\widehat{(I,f)}^* \oplus \widehat{(J,g)})^* \oplus \widehat{(J,g)} = (\widehat{(J,g)}^* \oplus \widehat{(I,f)})^* \oplus \widehat{(I,f)}.$$

**Remark 3.2**  $(M(A/\theta_{\mathcal{F}}), \oplus, *, \mathbf{0})$  is an MV - algebra.

**Lemma 3.4** Let  $f_1, f_2 \in M(A/\theta_{\mathcal{F}})$  with  $f_i \in M(I_i, A/\theta_{\mathcal{F}})$   $(I_i \in \mathcal{F}), i = 1, 2$ . Then for every  $x \in I_1 \cap I_2$ :

- (i)  $(f_1 \odot f_2)(x) = f_1(x) \cdot [(x/\theta_{\mathcal{F}})^* + f_2(x)] = f_2(x) \cdot [(x/\theta_{\mathcal{F}})^* + f_1(x)].$
- (*ii*)  $(f_1 \wedge f_2)(x) = f_1(x) \wedge f_2(x)$ .
- (*iii*)  $(f_1 \lor f_2)(x) = f_1(x) \lor f_2(x).$

**Proof.** We recall that in the MV - algebra  $M(A/\theta_{\mathcal{F}})$  we have:

$$f_1 \odot f_2 = (f_1^* \oplus f_2^*)^*,$$
  
 $f_1 \wedge f_2 = f_1 \odot [f_1^* \oplus f_2].$ 

and

$$f_1 \vee f_2 = (f_1^* \wedge f_2^*)^*.$$

For  $x \in I_1 \cap I_2$  we denote  $a = f_1(x), b = f_2(x)$ ; clearly  $a, b \le x/\theta_{\mathcal{F}}$ . So:  $(i).(f_1 \odot f_2)(x) = x/\theta_{\mathcal{F}} \cdot [(f_1^*(x) + f_2^*(x)) \wedge x/\theta_{\mathcal{F}}]^* = x/\theta_{\mathcal{F}} \cdot [(x/\theta_{\mathcal{F}} \cdot a^* + x/\theta_{\mathcal{F}} \cdot b^*) \wedge x/\theta_{\mathcal{F}}]^* = x/\theta_{\mathcal{F}} \cdot [(x/\theta_{\mathcal{F}} \cdot a^* + x/\theta_{\mathcal{F}} \cdot b^*)^* \vee (x/\theta_{\mathcal{F}})^*]$  $= x/\theta_{\mathcal{F}} \cdot [((x/\theta_{\mathcal{F}})^* + a) \cdot ((x/\theta_{\mathcal{F}})^* + b) \vee (x/\theta_{\mathcal{F}})^*] = x/\theta_{\mathcal{F}} \cdot ((x/\theta_{\mathcal{F}})^* + a) \cdot ((x/\theta_{\mathcal{F}})^* + b) = a \cdot ((x/\theta_{\mathcal{F}})^* + b) = f_1(x) \cdot ((x/\theta_{\mathcal{F}})^* + f_2(x)) = f_2(x) \cdot ((x/\theta_{\mathcal{F}})^* + f_1(x)).$ 

 $\begin{array}{l} x/\theta_{\mathcal{F}} \cdot \left[ ((x/\theta_{\mathcal{F}})^* + a) \lor ((x/\theta_{\mathcal{F}})^* + b) \right] = x/\theta_{\mathcal{F}} \cdot \left[ (x/\theta_{\mathcal{F}})^* + (a \lor b) \right] = x/\theta_{\mathcal{F}} \land (a \lor b) = a \lor b = f_1(x) \lor f_2(x). \end{array}$ 

**Corollary 3.2**  $(A_{\mathcal{F}}, \oplus, {}^*, \mathbf{0})$  is an MV - algebra, where  $\mathbf{0} = (A, \mathbf{0})$  and  $\mathbf{1} = \mathbf{0}^* = (\widehat{A, \mathbf{1}})$ . Also, for two elements  $(\widehat{I_1, f_1}), (\widehat{I_2, f_2})$  in  $A_{\mathcal{F}}$  we have

$$\widehat{(I_1,f_1)}\odot\widehat{(I_2,f_2)}=(I_1\cap\widehat{I_2,f_1}\odot f_2),$$

$$\widehat{(I_1, f_1)} \land \widehat{(I_2, f_2)} = (I_1 \cap \widehat{I_2, f_1} \land f_2),$$
$$\widehat{(I_1, f_1)} \lor \widehat{(I_2, f_2)} = (I_1 \cap \widehat{I_2, f_1} \lor f_2)$$

where  $f_1 \odot f_2, f_1 \land f_2, f_1 \lor f_2$  are characterized as in Lemma 3.4.

**Definition 3.2** The MV - algebra  $A_{\mathcal{F}}$  will be called the localization MV - algebra of A with respect to the topology  $\mathcal{F}$ .

**Lemma 3.5** Let the map  $v_{\mathcal{F}} : B(A) \to A_{\mathcal{F}}$  defined by  $v_{\mathcal{F}}(a) = (A, \overline{f_a})$  for every  $a \in B(A)$ . Then:

- (i)  $v_{\mathcal{F}}$  is a morphism of MV algebras.
- (*ii*) For  $a \in B(A)$ ,  $(A, \overline{f_a}) \in B(A_{\mathcal{F}})$ .
- (*iii*)  $v_{\mathcal{F}}(B(A)) \in R(A_{\mathcal{F}}).$

**Proof.** (i). We have  $v_{\mathcal{F}}(0) = (A, \overline{f_0}) = (A, 0) = 0$ . For  $a, b \in B(A)$ , we have  $v_{\mathcal{F}}(a) \oplus v_{\mathcal{F}}(b) = (A, \overline{f_a}) \oplus (A, \overline{f_b}) = (A, \overline{f_a} \oplus \overline{f_b}) \stackrel{c_{23}}{=}$ 

 $(A, \overline{f_{a+b}}) = v_{\mathcal{F}}(a+b)$  and for  $x \in A$ , since

$$\begin{aligned} (\overline{f}_a)^*(x) &= x/\theta_{\mathcal{F}} \cdot \left[ (a \wedge x)/\theta_{\mathcal{F}} \right]^* = x/\theta_{\mathcal{F}} \cdot \left( (x/\theta_{\mathcal{F}})^* \vee (a/\theta_{\mathcal{F}})^* \right) \\ &= x/\theta_{\mathcal{F}} \cdot \left( (x/\theta_{\mathcal{F}})^* + (a/\theta_{\mathcal{F}})^* \right) = x/\theta_{\mathcal{F}} \wedge (a/\theta_{\mathcal{F}})^* = \overline{f_{a^*}}(x), \end{aligned}$$

that is  $(\overline{f}_a)^* = \overline{f_{a^*}}$  we deduce that

$$v_{\mathcal{F}}(a^*) = (\widehat{A, f_{a^*})} = (\widehat{A, f_a})^* = (v_{\mathcal{F}}(a))^*,$$

hence  $v_{\mathcal{F}}$  is a morphism of MV - algebras.

(*ii*). For  $a \in B(A)$  we have a + a = a, hence by  $c_{23}$ ,  $((a \land x) + (a \land x)) \land x = a \land x$  for every  $x \in A$ .

Since  $A \in \mathcal{F}$  we deduce that  $((a \wedge x)/\theta_{\mathcal{F}} + (a \wedge x)/\theta_{\mathcal{F}}) \wedge x/\theta_{\mathcal{F}} = (a \wedge x)/\theta_{\mathcal{F}}$ hence  $\overline{f_a} \oplus \overline{f_a} = \overline{f_a}$ , that is

$$\widehat{(A, \overline{f_a})} \in B(A_{\mathcal{F}}).$$

(*iii*). To prove that  $v_{\mathcal{F}}(B(A))$  is a regular subset of  $A_{\mathcal{F}}$ , let  $(\widehat{I_i, f_i}) \in A_{\mathcal{F}}$ ,  $I_i \in \mathcal{F}, i = 1, 2$ , such that  $(\widehat{A, f_a}) \wedge (\widehat{I_1, f_1}) = (\widehat{A, f_a}) \wedge (\widehat{I_2, f_2})$  for every  $a \in B(A)$ . By  $(\underline{ii}), (\widehat{A, f_a}) \in B(A_{\mathcal{F}})$ .

Then  $(f_1 \wedge \overline{f_a})(x) = (f_2 \wedge \overline{f_a})(x)$  for every  $x \in I_1 \cap I_2$  and  $a \in B(A)$   $\Leftrightarrow f_1(x) \wedge x/\theta_{\mathcal{F}} \wedge a/\theta_{\mathcal{F}} = f_2(x) \wedge x/\theta_{\mathcal{F}} \wedge a/\theta_{\mathcal{F}}$  for every  $x \in I_1 \cap I_2$  and  $a \in B(A) \Leftrightarrow f_1(x) \wedge a/\theta_{\mathcal{F}} = f_2(x) \wedge a/\theta_{\mathcal{F}}$  for every  $x \in I_1 \cap I_2$  and  $a \in B(A)$ . In particular for  $a = 1, a/\theta_{\mathcal{F}} = \mathbf{1} \in B(A/\theta_{\mathcal{F}})$  we obtain that  $f_1(x) = f_2(x)$ 

for every  $x \in I_1 \cap I_2$ , hence  $(I_1, f_1) = (I_2, f_2)$ , that is  $v_{\mathcal{F}}(B(A)) \in R(A_{\mathcal{F}})$ .

## 4 Applications

In the following we describe the localization MV - algebra  $A_{\mathcal{F}}$  in some special instances.

1. If  $I \in I(A)$ , and  $\mathcal{F}$  is the topology

$$\mathcal{F}(I) = \{ I' \in I(A) : I \subseteq I' \}$$

(see example 1 in section 2), then  $A_{\mathcal{F}}$  is isomorphic with  $M(I, A/\theta_{\mathcal{F}})$  and  $v_{\mathcal{F}}: B(A) \to A_{\mathcal{F}}$  is defined by  $v_{\mathcal{F}}(a) = \overline{f_a}_{|I|}$  for every  $a \in B(A)$ .

2. If  $\mathcal{F} = I(A) \cap R(A)$  is the topology of regular ideals (see example 2 in section 2), then  $\theta_{\mathcal{F}}$  is the identity congruence of A and

$$A_{\mathcal{F}} = \lim_{\to I \in \mathcal{F}} M(I, A),$$

where M(I, A) is the set of multipliers of A having the domain I (see [6]). In this situation we obtain:

**Proposition 4.1** In the case  $\mathcal{F} = I(A) \cap R(A)$ ,  $A_{\mathcal{F}}$  is exactly the maximal MV-algebra Q(A) of quotients of A (introduced by the authors in [6] where this is denoted by A'').

3. If  $S \subseteq A$  an  $\wedge$ -closed system of A. Consider the following congruence on  $A : (x, y) \in \theta_S \Leftrightarrow$  there exists  $e \in S \cap B(A)$  such that  $x \wedge e = y \wedge e$  (see [5]).  $A[S] = A/\theta_S$  is called in [5] the MV - algebra of fractions of A relative to the  $\wedge$ -closed system S.

**Proposition 4.2** If  $\mathcal{F}_S$  is the topology associated with a  $\wedge$ -closed system  $S \subseteq A$  (see example 3 in section 2), then the MV - algebra  $A_{\mathcal{F}_S}$  is isomorphic with B(A[S]).

**Proof.** For  $x, y \in A$  we have  $(x, y) \in \theta_{\mathcal{F}_S} \Leftrightarrow$  there exists  $I \in \mathcal{F}_S$  (hence  $I \cap S \cap B(A) \neq \emptyset$ ) such that  $x \wedge e = y \wedge e$  for any  $e \in I \cap B(A)$ . Since  $I \cap S \cap B(A) \neq \emptyset$  there exists  $e_0 \in I \cap S \cap B(A)$  such that  $x \wedge e_0 = y \wedge e_0$ , hence  $(x, y) \in \theta_S$ . So,  $\theta_{\mathcal{F}_S} \subseteq \theta_S$ .

If  $(x, y) \in \theta_S$ , there exists  $e_0 \in S \cap B(A)$  such that  $x \wedge e_0 = y \wedge e_0$ . If we set  $I = (e_0] = \{a \in A : a \leq e_0\}$ , then  $I \in I(A)$ ; since  $e_0 \in I \cap S \cap B(A)$ , then  $I \cap S \cap B(A) \neq \emptyset$ , that is  $I \in \mathcal{F}_S$ . For every  $e \in I \cap B(A)$ ,  $e \leq e_0$ , hence  $e = e \wedge e_0$  and  $x \wedge e = x \wedge (e_0 \wedge e) = (x \wedge e_0) \wedge e = (y \wedge e_0) \wedge e = y \wedge (e_0 \wedge e) = y \wedge e$ , hence  $(x, y) \in \theta_{\mathcal{F}_S}$ , that is  $\theta_{\mathcal{F}_S} = \theta_S$ .

Then  $A[S] = A/\theta_S$ ; therefore an  $\mathcal{F}_S$ -multiplier can be considered in this case (see  $a_{14} - a_{17}$ ) as a mapping  $f: I \to A[S]$  ( $I \in \mathcal{F}_S$ ) having the properties

 $f(e \cdot x) = e/S \cdot f(x)$  and  $f(x) \leq x/S$ , for every  $x \in I$  and  $e \in B(A)$ , if  $e \in I \cap B(A)$ , then  $f(e) \in B(A[S])$  and for every  $e \in I \cap B(A)$  and  $x \in I$ ,

$$(e/S) \wedge f(x) = (x/S) \wedge f(e)$$

(x/S denotes the congruence class of x relative to  $\theta_S$ ).

We recall ([5]) that for  $x \in A$ ,  $x/S \in B(A[S])$  iff there is  $e_0 \in S \cap B(A)$ such that  $e_0 \wedge x \in B(A)$ . In particular if  $e \in B(A)$ , then  $e/S \in B(A[S])$ .

If  $(I_1, f_1), (I_2, f_2) \in A_{\mathcal{F}_S} = \lim_{I \in \mathcal{F}_S} M(I, A[S])$ , and  $(I_1, f_1) = (I_2, f_2)$ then there exists  $I \in \mathcal{F}_S$  such that  $I \subseteq I_1 \cap I_2$  and  $f_{1|I} = f_{2|I}$ . Since  $I, I_1, I_2 \in \mathcal{F}_S$ , there exist  $e \in I \cap S \cap B(A), e_1 \in I_1 \cap S \cap B(A)$  and  $e_2 \in I_2 \cap S \cap B(A)$ . We shall prove that  $f_1(e_1) = f_2(e_2)$ . If denote  $f = e \wedge e_1 \wedge e_2$ , then  $f \in I \cap S \cap B(A)$ , and  $f \leq e_1, e_2$ . Since  $e_1 \wedge f = e_2 \wedge f$  then  $f_1(e_1 \wedge f) = f_1(e_2 \wedge f) = f_2(e_2 \wedge f) \Leftrightarrow f_1(e_1) \wedge f/S = f_2(e_2) \wedge f/S \Leftrightarrow f_1(e_1) \wedge 1 = f_2(e_2) \wedge 1$  (since  $f \in S \Rightarrow f/S = 1$ )  $\Leftrightarrow f_1(e_1) = f_2(e_2)$ . In a similar way we can show that  $f_1(s_1) = f_2(s_2)$  for any  $s_1, s_2 \in I \cap S \cap B(A)$ .

In accordance with these considerations we can define the mapping:

$$\alpha: A_{\mathcal{F}_S} = \lim_{\to I \in \mathcal{F}_S} M(I, A[S]) \to B(A[S]),$$

by putting

$$\alpha(\widehat{(I,f)}) = f(s) \in B(A[S]),$$

where  $s \in I \cap S \cap B(A)$ .

This mapping is a morphism of MV - algebras.

Indeed,  $\alpha(\mathbf{0}) = \alpha(\widehat{(A, \mathbf{0})}) = \mathbf{0}(e) = 0/S = \mathbf{0}$  for every  $e \in S \cap B(A)$ . If  $\widehat{(I, f)} \in A_{\mathcal{F}_S}$ , we have  $\alpha(\widehat{(I, f)^*}) = \alpha(\widehat{(I, f^*)}) = f^*(e) = (e/S) \cdot [f(e)]^* = 1 \cdot (f(e))^* = (f(e))^* = (\alpha(\widehat{(I, f)}))^*$  (with  $e \in I \cap S \cap B(A)$ ). Also, for every  $\widehat{(I_i, f_i)} \in A_{\mathcal{F}_S}, i = 1, 2$  we have:  $\alpha[\widehat{(I_1, f_1)} \oplus \widehat{(I_2, f_2)}] = \alpha[(I_1 \cap \widehat{I_2, f_1} \oplus f_2)] = (f_1 \oplus f_2)(e) = (f_1(e) + f_2(e)) \wedge (e/S) = f_1(e) + f_2(e) = \alpha[\widehat{(I_1, f_1)}] + \alpha[\widehat{(I_2, f_2)}]$ (with  $e \in I_1 \cap I_2 \cap S \cap B(A)$ ).

We shall prove that  $\alpha$  is injective and surjective. To prove the injectivity of  $\alpha$  let  $(I_1, f_1), (I_2, f_2) \in A_{\mathcal{F}_S}$  such that  $\alpha((I_1, f_1)) = \alpha((I_2, f_2))$ . Then for any  $e_1 \in I_1 \cap S \cap B(A), e_2 \in I_2 \cap S \cap B(A)$  we have  $f_1(e_1) = f_2(e_2)$ . If  $f_1(e_1) = x/S, f_2(e_2) = y/S$  with  $x, y \in A$ , since x/S = y/S, there exists  $e \in S \cap B(A)$  such that  $x \wedge e = y \wedge e$ .

If we consider  $e' = e \wedge e_1 \wedge e_2 \in I_1 \cap I_2 \cap S \cap B(A)$ , we have  $x \wedge e' = y \wedge e'$  and  $e' \leq e_1, e_2$ . It follows that  $f_1(e') = f_1(e' \wedge e_1) = f_1(e_1) \wedge (e'/S) = x/S \wedge 1 = x/S = y/S = f_2(e_2) = f_2(e_2) \wedge (e'/S) = f_2(e_2 \wedge e') = f_2(e')$ . If denote I = (e'] then we obtained that  $I \in \mathcal{F}_S$ ,  $I \subseteq I_1 \cap I_2$  and  $f_{1|I} = f_{2|I}$ , hence  $\widehat{(I_1, f_1)} = \widehat{(I_2, f_2)}$ , that is  $\alpha$  is injective.

To prove the surjectivity of  $\alpha$ , let  $a/S \in B(A[S])$  (hence there exists  $e_0 \in S \cap B(A)$  such that  $a \wedge e_0 \in B(A)$ ). We consider  $I_0 = (e_0] = \{x \in A : x \leq e_0\}$  (since  $e_0 \in I_0 \cap S \cap B(A)$ , then  $I_0 \in \mathcal{F}_S$ ) and define  $f_a : I_0 \to A[S]$  by putting  $f_a(x) = x/S \wedge a/S = (x \wedge a)/S$  for every  $x \in I_0$ .

We shall prove that  $f_a$  is a  $\mathcal{F}_S$ -multiplier. Indeed, if  $e \in B(A)$  and  $x \in I_0$ , since  $e/S \in B(A[S])$ , then

$$f_a(e \cdot x) = f_a(e \wedge x) = (e/S) \wedge (x/S) \wedge (a/S)$$

$$= (e/S) \land ((x/S) \land (a/S)) = (e/S) \land f_a(x) = (e/S) \cdot f_a(x);$$

Clearly,  $f_a(x) \leq x/S$ . Also, if  $e \in I_0 \cap B(A)$ , then  $f_a(e) = e/S \wedge a/S \in B(A[S])$ .

Clearly if for every  $e \in I_0 \cap B(A)$  and  $x \in I_0$ ,

$$(e/S) \wedge f_a(x) = (x/S) \wedge f_a(e),$$

hence  $f_a$  is a  $\mathcal{F}_S$ -multiplier and we shall prove that  $\alpha(\widehat{(I_0, f_a)}) = a/S$ .

Indeed, since  $e_0 \in S$  we have  $\alpha((I_0, f_a)) = f_a(e_0) = (e_0 \wedge a)/S = (e_0/S) \wedge (a/S) = 1 \wedge (a/S) = a/S.$ 

So, we have proved that  $\alpha$  is an isomorphism of MV - algebras.

### REFERENCES

- D. Buşneag, Hilbert algebra of fractions and maximal Hilbert algebras of quotients, Kobe Journal of Mathematics, 5 (1988), 161-172.
- [2] D. Buşneag, F-multipliers and the localization of Hilbert algebras, Zeitschr.
  f. math. Logik und Grundlagen d. Math. Bd.36 (1990), 331-338.
- [3] D. Buşneag, D. Piciu, Meet-irreducible ideals in an MV algebra, Analele Universității din Craiova, Seria Matematica-Informatica, vol. XXVIII, (2001), 110-119.
- [4] D. Buşneag, D. Piciu, On the lattice of ideals of an MV algebra, Scientiae Mathematicae Japonicae, 56, No.2 (2002), 367-372,:e6, 221-226.
- [5] D. Buşneag, D. Piciu, MV algebra of fractions relative to a ∧-closed system, Analele Universității din Craiova, Seria Matematica-Informatica, vol. XXX, (2003), 1-6.
- [6] D. Buşneag, D. Piciu, MV-algebra of fractions and maximal MV-algebra of quotients, to appear in Journal of Multiple-Valued Logic and Soft Computing.

- [7] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88(1958), 467-490.
- [8] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici, Algebraic foundation of many -valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000.
- [9] W. H. Cornish, The multiplier extension of a distributive lattice, Journal of Algebra, 32 (1974), 339-355.
- [10] C. Dan, F-multipliers and the localization of Heyting algebras, Analele Universității din Craiova, Seria Matematica-Informatica, vol. XXIV, (1997), 98-109.
- G. Georgescu, F-multipliers and the localization of distributive lattices, Algebra Universalis, 21 (1985), 181-197.
- [12] G. Georgescu, A. Iorgulescu, Pseudo MV algebras, Multi. Val. Logic, vol 6 (2001), 95-135.
- [13] N. Popescu, Abelian categories with applications to rings and modules, Academic Press, New York, 1973.
- [14] J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston Journal of Mathematics, vol.6, no. 3 (1980).
- [15] J. Schmid, Distributive lattices and rings of quotients, Coll. Math. Societatis Janos Bolyai, 33, Szeged, Hungary, (1980).
- [16] B. Strenström, Flatness and localization over monoids, Math. Nachrichten 48 (1971), 315-334.

Department of Mathematics, University of Craiova, Al.I.Cuza street, 13, Craiova, 200585, Romania E-mail: busneag@central.ucv.ro

Department of Mathematics, University of Craiova, Al.I.Cuza street, 13, Craiova, 200585, Romania E-mail: danap@central.ucv.ro