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F-MULTIPLIERS AND THE
LOCALIZATION OF MV-ALGEBRAS

Dumitru Busneag and Dana Piciu

Abstract
The aim of the present paper is to define the localisation of MV-
algebra of an MV-algebra A with respect to a topology F' on A. In
the last part of the paper it is proved that the maximal MV-algebra of
quotients (defined in [6]) and the MV-algebra of fractions relative to an
A—closed system (defined in [5]) are MV - algebra of localisation.

The concept of multiplier for distributive lattices was defined by W. H.
Cornish in [9]. J. Schmid used the multipliers in order to give a non-standard
construction of the maximal lattice of quotients for a distributive lattice (see
[14]). A direct treatment of the lattices of quotients can be found in [15]. In
[11], G. Georgescu exhibited the localization lattice Lz of a distributive lattice
L with respect to a topology F on L in a similar way as for rings (see [13]) or
monoids (see [16]). For the case of Hilbert and Heyting algebras, see [1], [2]
and respectively [10].

The concepts of MV-algebra of fractions relative to an A— closed system
of MV-algebra of fractions and of maximal MV-algebra of quotients were
defined by the authors ([5], [6]).

1 Definitions and preliminaries

Definition 1.1 ([7], [8]) An MV -algebra is an algebra (A,+,*,0) of type
(2,1,0) satisfying the following equations:

(@) 4 (y+2)=(r+y)+2
(a2) z+y=y+uz,

(ag) x4+ 0=z,

(aq) x** =z,
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(G'B) £L'+0* = 0*7
(ag) (=" +y) +y=(y +2) +z

MYV - algebras were originally introduced by Chang in [7] in order to give
an algebraic counterpart of the Lukasiewicz many valued logic (MV = many
valued). Note that axioms aj-as state that (A, +,0) is an abelian monoid;
following tradition, we denote an M V-algebra (A, +,",0) by its universe A.

Remark 1.1 If in ag we put y = 0 we obtain x** = 0** + x, so, if 0*" = 0,
then ©** = x for each x € A. Hence, the aziom a4 is equivalent with (a})
0** = 0.

Examples:

Ey) A singleton {0} is a trivial example of an M V-algebra; an MV -algebra
is said nontrivial provided its universe has more that one element.

Es) Let (G, ®,—,0,<) be an l-group. For each u € G, u > 0, let

0,u] ={zr e G:0<z <u}

and for each z,y € [0,u], let 24y = v A (z @ y) and 2* = w — z. Then
([0,u],+,*,0) is an MV - algebra. In particular, if we consider the real unit
interval [0,1] and, for all z,y € [0,1], we define z + y = min{l,z + y} and
x* =1—z, then ([0,1],+,%,0) is an MV-algebra.

Es) If (A, V,A,*,0,1) is a Boolean lattice, then (A4,V,*,0) is an MV-
algebra.

E,) The rational numbers in [0,1], and, for each integer n > 2, the n-

element set L, = {0, ﬁ, cny EZ:?% , 1} yield examples of subalgebras of [0, 1].

E5) Given an MV-algebra A and a set X, the set AX of all functions
f X — A becomes an MV-algebra if the operations + and * and the

element 0 are defined pointwise. The continuous functions from [0, 1] into
[0,1] form a subalgebra of the MV-algebra [0, 1]01,

In the rest of this paper, by A we denote an MV -algebra.

On A we define the constant 1 and the operations ,,-” and ,,—” as follows
1=05z-y=(@*+y) " andax—y=x-y* = (" +y)* ( we consider the ,*
” operation more binding that any other operation, and the ,,-” more binding
that + and —).

7

Lemma 1.1 (/8]-[8], [12]) For x,y € A, the following conditions are equiva-
lent:

(i) z*+y=1.
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(i5) z-y* =0.
(i11) y=a+ (y — x).
(iv) There is an element z € A such that  + z = y.

For any two elements x,y € A let us agree to write x < y iff x and y satisfy
the equivalent conditions (¢)-(iv) in the above lemma. So, < is a partial order
relation on A (which is called the natural order on A).

Theorem 1.1 (/3/-[8], [12]) If x,y,z € A, then the following hold:

(c1) 1* =0,

(c2) z+y=(2"-y")",

(c3) z+1=1,

(ca) @—y)+y=(—=)+z,

(c5) z+a* =1,z -2* =0,

() z—0=2,0—2x=0,c—2=0,1—-z=a*,2—-1=0,
(¢c7) e+z=ziff v -z ==z,

(c8) z <y iffy* <a,

(co) Ifx <y, thenx+z<y+zandz-z<y-z,
(cr0) Ifx <y, thenx —z<y—zand z —y < z — z,
(en) r—y<zz—y<y,

(c12) (x+y)—z <y,

(c13) z-z<yiff z<z* +y,

(ca) z+y+z-y=x+y.

Remark 1.2 ([3/-/8], [12]) On A, the natural order determines a bounded
distributive lattice structure. Specifically, the join x V y and the meet x Ay of
the elements x and y are given by:

sVy=@-yt+ty=@Wy-z)+rx=z-y +y=y- 2" +z

cAy= (" Vy ) =z (" +y =y - +z)
Clearly, v -y <z ANy <z,y<zVy <z+y.
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We shall denote this distributive lattice with 0 and 1 by L(A) (see [7], [8]).
For any MV - algebra A we shall write B(A) as an abbreviation of set of
all complemented elements of L(A). Elements of B(A) are called the boolean
elements of A.

Theorem 1.2 ([7]) For every element x in an MV - algebra A, the following
conditions are equivalent:

Corollary 1.1 ([7], [8], [12])

(1) B(A) is subalgebra of the MV - algebra A. A subalgebra B of A is a
boolean algebra iff B C B(A).

(1i) An MV - algebra A is a boolean algebra iff the operation + is idempotent,
i.e., the equation x + x = x is satisfied by A.

Theorem 1.3 ([7], [8], [12]) If x,y,z,(x;)icr are elements of A, then the
following hold:

ci5) T+y = (zVy)+ (rAy),
r-y=(xVy)- (rAy),

(c15)

(c16)

(err) @+ (Vier@i) = Vier(@ + i),
(c18) =+ (Nicr i) = Nies (@ + 32),
(c19)
(c20)
(c21)

C16

Ci7

v (V
Z- ( ) zel(x'xi)v

o A (Vier i) = Vier (@ Awi),

€19 icr ¥ ): zez(x'xi)v
C20 7/61

C21



F-MULTIPLIERS AND THE LOCALIZATION OF MV-ALGEBRAS 29

(c22) ®V (Nies i) = Nier(@ V @i) (if all suprema and infima exist).
Lemma 1.2 If a,b,x are elements of A, then:

(cog) [(anz)+ (bAZ)Ax=(a+b) Az,

(coq) a* Nz >z (aNx)*.

Proof. (ce3). By ¢15 we have [(aAz)+ (bAz) Az = ((aAzx)+b)A((aA
r)+z)ANrz=((anz)+b)Ax=(a+bA(xz+bAz=(a+b)Ax.

(caa). We have z- (aAz)* = z-(a*Va*) L (z-a*)V(z-2*) 2 (z-a*)V0 =
z-a* <a*Aw.

Corollary 1.2 Ifa € B(A) and z,y € A, then:
(co5) a* Nz =z (aAx)*,

(c26) aN(z+y)=(anz)+(any),

(co7) aV(z+y)=(aVz)+(aVy).

Proof. (ca5). See the proof of cay4.

(cag). We have: (aAx)+ (aAy) Z [(aAz)+alAl(anz)+y]=[(anz)V
aAla+y)AN(z+y)=ar(a+y)AN(z+y)=aA (z+y).

(co7). We have (aV )+ (aVy)=(a+z)+(a+y)=(a+a)+ (z+y) =
at+(z+y)=aV(z+y).

Definition 1.2 ([3/-/8], [12]) Let A and B be MV — algebras. A function
f A — B is a morphism of MV — algebras iff it satisfies the following
conditions, for every x,y € A :

Remark 1.3 It follows that:
f) =1F@y) = f2)- f), faVy) = f@)V ), fleAy) = fz)A[fy),
for every x,y € A.

Definition 1.3 ([3/-/8], [12]) An ideal of an MV - algebra A is a subset I of
A satisfying the following conditions:
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(a10) Ifz€el,ye Aandy <z, theny € I,
(a11) If v,y €I, then a4+ y € 1.

We denote by Id(A) the set of all ideals of A and by I(A) the set
I(A)={ICA:ifz,ye A;x <yand y € I, then z € T}.

Remark 1.4 Clearly, Id(A) C I(A) and if I, Iz € I(A), then I; NI € I(A).
Also, if I € I(A), then 0 € I.

For M C A we denote by (M] the ideal of A generated by M. If M = {a}
with a € A, we denote by (a] the ideal generated by {a}((a] is called principal).

Proposition 1.1 ([7], [8]) If M C A, then
M={x€A:x<z1+..4+ 2, for some x1,...,x, € M}.

In particular, for a € A, (a] = {z € A: x < na for some integer n > 0}; if
e € B(A), then (e]={x e A:x<e}.

2 Topologies on an MV-algebra

Definition 2.1 A non-empty set F of elements of I € I(A) will be called a
topology on A if the following properties hold:

(a12) If I € F, Iy € I(A) and I C I, then Iy € F (hence A€ F ).
(a13) If[l,lg e F, then 1 NI, € F .

Any intersection of topologies on A is a topology; hence the set T'(A) of
all topologies of A is a complete lattice with respect to inclusion.

Examples

1. If I € I(A), then the set

F(I)={I'e I(A):I1C T}

is clearly a topology on A.

2. A non-empty set I C A will be called regular (see [6]) if for every
x,y € A such that e Az =e Ay for every e € I N B(A), we have z = y. If we
denote R(A) = {I C A : I is a regular subset of A}, then I(A) N R(A) is a
topology on A (see [6]).

3. A subset S C A is called A— closed if 1 € S and if z,y € S implies
x Ay €S (see [5]). For any A— closed subset S of A we set Fg ={I € I(A) :
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INSNB(A) # @}. Then Fg is a topology on A . Clearly, if I € Fgand I C J
(with J € I(A)), then I NS N B(A) # @, hence JNS N B(A) # ©, that is
J e Fs.

If I1,Io € Fg then there exist s; € I; NS N B(A),i = 1,2. If we set
s =51 A sg, then s € (I1NI2) NS NB(A), hence 1 N1, € Fg .

3 JF-multipliers and localization MV-algebras

Let F be a topology on A. Let us consider the relation 87 of A defined in the
following way:

(x,y) € 0 < there exists I € F such that e Az = e Ay for any e € INB(A).
Lemma 3.1 6r is a congruence on A.

Proof. The reflexivity and the symmetry of 7 are immediate; to prove
the transitivity of 8x let (x,y), (y,2) € 0£. Then there exists Iy, Is € F such
that e Ax = eAy for every e € [1 N B(A), and f Ay = f A z for every
f € LnNB(A). If the set I = I1 NIy € F | then for every g € I N B(A),
gAxT=gAz, hence (x,z) € Or.

To prove the compatibility of 87 with the operations 4+ and *, let (z,y)
and (z,t) € O, that is there exists I, J € F such that e Az = e Ay for every
e€ INB(A), and fAz = fAtforevery f € JNB(A). If we denote K = INJ,
then K € F and for every g€ KNB(A),gAxz=gAyand gAhz=gAL.

By co6 we deduce that for every g € KN B(A) :

gAN(@+z)=(gNAz)+(gN2)=(gNYy)+(gNt)=gA(y+1),

hence (z + z,y +t) € Ox,that is 07 is compatible with the operation +.
Also, since z Ae =y Ae for every e € I N B(A), we deduce that z* V e* =
y*Ve* hencee- (z*Ve*)=e-(y*Ve*) e (ef+a*)=e-(e" +y*) (since
e* € B(A))& e ANz* = e Ay* for every e € I N B(A), hence (z*,y*) € 0r ,
that is 67 is compatible with the operations *, so 0 is a congruence on A.
We shall denote by z/6 £ the congruence class of an element z € A and by

PF: A— A/@]:
the canonical morphism of MV - algebras.

Proposition 3.1 Fora € A,a/07 € B(A/0F) iff there exists I € F such that
aNe € B(A) for every e € INB(A). So, if a € B(A), then a/0r € B(A/0F).
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Proof. For a € A, we have a/0r € B(A/0r) < a/0r +a/0r = a/0r <
(a+a)/0F = a/0r < there exists I € F such that (a+a)Ae = aAe for every
e € INB(A) € (ane)+(ane) = aAe for every e € INB(A) & ale € B(A)
for every e € I N B(A).

So, if @ € B(A), then for every I € F, aNe € B(A) for every e € INB(A),
hence a/0r € B(A/0F).

Corollary 3.1 If F = I(A) N R(A), then for a € A, a € B(A) iff a/0F €
B(A/0F).

Definition 3.1 Let F be a topology on A. An F— multiplier is a mapping
f:I— A/0r where I € F and for every x € I and e € B(A) the following
axioms are fulfilled:

(e-2) = /07 A f(x) = /07 ().

(z) <x/0F.

ai6) If e € INB(A), then f(e) € B(A/0F).

ai7) (z/0F) N f(e) = (e/0r) A f(x), for every e € INB(A) and z € I.

(a14) f
(a15) f
(a16)
(

By dom(f) € F we denote the domain of f; if dom(f) = A, we called f
total.

To simplify the language, we will use multiplier instead of partial multiplier,
using total to indicate that the domain of a certain multiplier is A.

If 7 = {A}, then 0 is the identity congruence of A so an F— multiplier
is a total multiplier in the sense of [6].

The maps 0,1 : A — A/07 defined by 0(x) = 0/0 and 1(x) = z/0F for
every x € A are multipliers in the sense of Definition 3.1 (see [6] for the case
of multipliers).

Also, for a € B(A) and I € F, f, : I — A/0fr defined by f,(z) =
a/0F N x/0F for every x € I, is an F— multiplier (see [6] for the case of
multipliers). If dom(f,) = A, we denote f, by f, ; clearly, fo = 0.

We shall denote by M(I,A/07) the set of all the F— multipliers having
the domain I € F and

M(A/0F) = UrerM(I,A/0F).
If ,I, € F, I C Iy, we have a canonical mapping
@]1’]2 : M(IQ,A/G]—') — M(Il,A/Q}'),

defined by
on,1(f) = fir, for f € M(I2,A/0F).
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Let us consider the directed system of sets

({MI,A/05)}rer,{en 1} 1 neF ncl,)

and denote by Az the inductive limit (in the category of sets):
A}-:hm M(I,A/@]:)
— IeF

For any F— multiplier f: I — A/0x, we shall denote by (I, f) the equiv-
alence class of f in Ar.

Remark 3.1 We recall that, if f; : I; — A/0r , i = 1,2, are multipliers,

—_—

then (I, f1) = (I2, f2) (in Ax) iff there exists I € F , I C Iy N Iz such that
Jur = for-

Let f; : I — A/0Fx (with I, € F, i = 1,2) be F—multipliers. Let us
consider the mapping

fiefo:hinly, — A/fF,

defined by
(1@ f2)(@) = (fi(2) + fa(x)) A 2/OF,

—_—

for any r S Il N IQ, and let (Il7f1) & (IQ, fg) = (Il N IQ, f1 & fg)
Also, for any multiplier f : I — A/07 (with I € F), let us consider the
mapping
ffiI— AJOF,
defined by
(@) =2/0F - (f(2))",

—_—

for any « € I and let (I, f)* = (I, f*).
Clearly the definitions of the operations @ and * on Ax are correctly.

Lemma 3.2 f1 (&) fg S M(Il N 12714/9_7:).

Proof. If z € 1N Iy and e € B(A), then (f1 ® f2)(e-z) = [fi(e- z) +
fole-z)l N (e -x)/0F = [(e/0F - fi(x)) + (e/0F - fo(x))] A (e/0F - x/0F) =
[(e/07 A fr(x))+ (e/0F A f2(x))] A(e/0F Ax/07) ZE [e/0F A(fi(z) + fa(x))] A
(¢/07 N 2/07] = /05 A (f1(2) + fo(2)) A 2/0] = /05 - (}1 & ) ).

Clearly, (f1 @ f2)(z) < z/0F for every x € 1N Iz and if e € [y NI; N B(A),
then

(1@ f2)(e) = [fi(e) + fa(e)] Ae/bF € B(A/OF).
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Fore € Iy NI N B(A) and z € I; N Iy we have:
z/0rN(frof2)(e) = 2/0rN[(f1(e)+fa(e))Ne/0x] = (fi(e)+fa(e))Ax/0FNe/OF
2 (fule) + fale)) Ax/bF,

and
e/0rN(fr®f2)(x) = e/0FN[(f1(2)+fa(x))A2/0F] = e/0F[(f1(x)+ f2(x))Ax/0F]

2 le/0r-(fi(2)+f2(2))]A(e-2) /07 = [(e/0F f1(2))+(e/0F fo(x))]A(e-x)/0F
= [z/0F - file) +2/0F - fa(e)] A(e-x)/0F
= [(file) Ax/0F) + (fale) Nx/0F)] A (e Nx)/0F
= [[(fr(e) Nx/0F) + (f2(e) Na/0F)] Aa/0F] Ne/br

2 ((fi(e) + fae)) Ax/0F) NefOr Z (fi(e) + fale)) A /bF,
hence
z/0F A (f1 @ f2)(e) =e/0F A (f1 @ f2)(2),
that is f1 @ fo € M(I1 N 13, A/OF).
Lemma 3.3 f* e M(I,A/0F).

Proof. If z € I and e € B(A), then f*(e-z) =
e/0r x/0r-(e/0r- f(x))" =e/0r -x/0F [(e/0F)" +
((e/07)" + (f(2))") = x/0F - (e/0F A (f(2))") =«
e/0r - (x/0F - (f(2))") =¢/0F - [*(z).

Clearly, f*(z) < x/0f for every = € I.

Clearly, if e € I N B(A), then

fr(e) =e/0r - [f(e)]" € B(A/0F).
Since f € M(I,A/0F), for e € IN B(A) and = € I we have:
z/0F N fe) =e/0F N f(x) = (2/0F)" V (f(€))" = (e/07)" V (f(2))"
= (¢/0F)" + (f(e))” = (e/0F)" + (f(2))"
=ef0r-x/0r - [(x/0F)" + (f(e))*] = 2/0F -e/0F - [(e/0F)" + (f(2))"] =
= /0 - [x/0F A (f(e))'] = z/0F - [e/0F A\ (f(2))"]
= e/ -x/0F-(f(e))" =x/0F -e/0F - (f(x))"
= z/0F - [e/0F - (f(e))'] = ¢/0F - [2/0F - (f(2))"]
= x/07Ne/0F(f(e))"] = e/0FN[z/0F(f(2))"] = x/0rN["(e) = e/0rNf"(2),
hence f* verify and a7, that is f* € M(I,A/0F).

(c- )05 - (f(e-))* =
(f(@))*] = /67 - (/0
Jor - (/05 - (f(2))) =
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—

Proposition 3.2 (Ar, ®,*,(A,0)) is an MV - algebra.

Proof. We verify the axioms of MV - algebras.

a1). Let f; € M(I;,A/0F) where I; € F, i = 1,2,3 and denote I =
LhNnlhbNnIz e F.

Also, denote f = f1® (fa® f3), 9= (1D fo)® fs and for x € I, a =
J1@),b = fol@),e = fo(a).

Clearly a,b,c < x/0%. Thus, for x € I :

10 = (o) + a0 1)) = U3+ (Ul + o) )

T 9]: =

=(a+b+c)Ax/0r)Nz/0r = (aAz)0F)+ ((b+c)A/0F) ANx/0F Z
(a+b+c)Nx/0F.

Analogously, g(z) = (a + b+ ¢) Ax/0x, hence f = g, so

—_—

(Ila fl) D [(I27f2) D (I?n f3)] = [(Ila fl) D (I27f2)] D (I?n f3)7

that is the operation @ is associative on Ar.

a2). Obviously.

az). Let f € M(I,A/0F) with I € F. If x € I, then (f & 0)(z) = (f(z) +
0(z))ANzx/0r = f(x) Nx/OF = f(z), hence f 0 = f, that is

— -

(I,f)@(A,O)Z(I,f)

a4). For ¢ € A, we have 0*(z) = z/0F - (0(z))* = z/0F - (0/0£)*
z/0F - 1/0Fr = x/0F = 1(z), hence 0* = 1 and 1*(z) = z/0r - (1(x))*
x/0F - (x/0F)* =0/0F = 0(z). So, 0** = 1* = 0 that is

—_—

(Aa O)** = (Av 0)

and by Remark 11, ay4) is verified.

as). Since 0* =1, for f € M(I,A/0r) (with I € F) and x € I, we have:
(fe07)(z) = (f ®1)(x) = (f(z) +2/07) Nz/0F = x/0F = 1(z) = 07 (z),
hence f ® 0* = 0%, that is

— -

(Ia f) D (AaO)* = (A,O)*

ag). Let fe M(I,A/0r),g € M(J,A/0F) (with I,J € F) and z € I N J.

If denote h = (f*@g)* @g,t = (gD f)* D@ f, and a = f(z),b = g(x), then
a,b < z/0r and we have:

h(z) = ((f*®9)" ®g)(x) = ((f* @ 9)" () +9(@) Nx/0r = ((x/07 - ((f* &
9)(@)*) + g(@)) N /bF = (x/0F - (f*(x) + g(x)) Nx/0F)" + g(x)) Nz /bF =
(@/0F - (((z/0F - (f(2))*) +9(z) Nx/0F)" + g(x)) N2 /0F = (z/0F - ((z/0F -
a*)+0)Az/0F) +b)Ax/0r = (x2/0F- (/05 a*)+b)*V (z/0£)*)+b)Ax/0F
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= (/0% -((x/0F-a*)+b)*+b)A\x/0F = (x/0x ((x/0F)*+a)-b*+b)A\x/0F =
(((x/0r Na) -b*)+b)ANz/0F = ((a-b*)+b)ANx/0F = (aVD)ANx/0Fr =a Vb
Analogously, t(xz) = a Vb = h(z), hence h =, so

—_— -~~~ e~

(L) ehg) ey =g el ) &f)
Remark 3.2 (M(A/0r), ®,",0) is an MV - algebra.

Lemma 3.4 Let fl,fg S M(A/H]:) with fz S M(Ii,A/G]:) (Ii S .7:), 1=
1,2.Then for every x € I1 N I5:

(1) (fr© f2)(@) = fi(®@) - [(x/07)" + fa(@)] = fo(2) - [(2/0F)" + f1(2)]-
(i) (fr A f2)(x) = fi(z) A fa(z).
(222) (f1V fo)(z) = fi(z) V fa(2).
Proof. We recall that in the MV - algebra M(A/65) we have:
fiof2=(1af3),
finfe=HOf [,

and
fiva= (AR
For x € I; N Iy we denote a = f1(x),b = fa(x); clearly a,b < x/0r.

So: (i).(f1 © f2)(z) = z/0F - [(fi(z) + f5(2)) Nx/0F]" = x/0F - [(x/0F -
a*+x/0r - V)Nx/0F]* =2/0F - [(x/0F -a* +x/0F - b*)* V (x/0F)%]

= z/0F - [((z/0F)" + a) - ((x/0F)" + ) V (z/0F)*] = z/0F - ((x/0F)" +
a) - ((z/07)" +b) = (x/0F Na) - ((x/0F)" +b) =a-((z/0F)" +b) = fi(z) -

(@/0F)" + f2(z)) = fo(x) - ((2/0F)" + fi(z)).

(12).(ff ® f2)(z) = (x/0F - a* + b) Ax/0F, hence (f1 A f2)(z) = fi(z) -
[(x/0F)"+(fi © f2)(2)] = a-[(¢/07)" + (/07 -a* +b) Ax/07] = a-[((x/0F)" +
2/0F-a*+b)A((2/0F) +2/07)] 2 a-[((x/05)" +x/05-a"+b)A1] = a-((x/0F)"+
z/0r-a*+b)=a-[((z/0F)*Va*)+b =a-(a*+b)=anb= fi(z) A fo(x).

(#i). (frV f2)(x) = (ff A f3)"(x) = 2/0F - [(x/0F - a*) A (2/0F - b)]" =
x/0F [((z/0F)* +a)V((x/05)*+b)] = /0 [(x/0F)*+(aVD)] = /0N (aVD) =
aVb= fi(x)V fa(z).

-

Corollary 3.2 (Ag,®,*,0) is an MV - algebra, where 0 = (A,0) and 1 =

—

0* = (A,1). Also, for two elements (I1, f1), (I2, f2) in Ar we have

—

T, 1) © (@2, fa) = (N T2, f1 © fa),
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(I, f) A (T, fo) = (I N T, fi A o),

—_—

(I, f1) V (L2, f2) = (I1 N 12, f1 V fa)
where f1 ® fa, f1 A fa, f1 V fo are characterized as in Lemma 3.4.

Definition 3.2 The MV - algebra Ax will be called the localization MV -
algebra of A with respect to the topology F .

—

Lemma 3.5 Let the map vr : B(A) — Ax defined by vr(a) = (A, fa) for
every a € B(A). Then:

(1) vg is a morphism of MV - algebras.

(i1) For a € B(A), (A, f.) € B(AF).
(ii1) vr(B(A)) € R(Ax).

—

Proof. (i). We have vz (0) = (A, fy) = m =0.
_Fora,b e B(A), we have vr(a)@ur(b) = (4, T)B(A. Jy) = (A.Fa & Jy) 2
(A, fo+s) = vr(a+b) and for z € A, since
(fa)* (@) = /07 - [(a A 2)/07]" = 2/0F - ((x/07)" V (a/0F)")
= af0r - ((@/07)" + (@/07)") = 205 N a/05)" = T (2),
that is (f,)* = fo we deduce that

— o — %

v}-(a*) = (Aaﬁ) :(Avﬁ) = (v}-(a))*,

hence vr is a morphism of MV - algebras.

(7). For a € B(A) we have a+a = a, hence by ca3, (aAx)+ (aAx)) Az =
a Az for every x € A.

Since A € F we deduce that ((aAz)/0r+ (aNz)/0Fr)ANx/0F = (aAx)/0F
hence f, @ f, = fa, that is

o —

(A7E) € B(A]:)

(41). To prove that ve(B(A)) is a regular subset of Az, let @) € Ar,
I, € F, i = 1,2, such that (A, f,) A (Il/,\fl) = (A, fa) A (Ig/,\fg) for every
@ € B(A). By (ii), (A, J.) € B(Az).

Then (f1 A fo)(z) = (f2 A fo)(x) for every x € I; NI, and a € B(A)
< filx) Ax/Or ANafOr = fo(x) Nx/Or AafOF for every x € I; N I and
a € B(A) & fi(x)Na/0r = fa(x) Na/OF for every x € [; NIz and a € B(A) .

In particular for a = 1, a/07 = 1 € B(A/07) we obtain that fi(x) = fa(x)

).

for every x € I1 N I, hence (I3, f1) = (12, f2), that is ve(B(A4)) € R(Ax
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4 Applications

In the following we describe the localization MV - algebra Az in some special
instances.
1. If I € I(A), and F is the topology

F(I)={I' e I(A): IC I}

(see example 1 in section 2), then Az is isomorphic with M (I, A/07) and
vr : B(A) — Ar is defined by vr(a) = E‘I for every a € B(A).

2. f F =I(A) N R(A) is the topology of regular ideals (see example 2 in
section 2), then 6z is the identity congruence of A and

Ar =lim  M(I, A),
— IeF
where M (I, A) is the set of multipliers of A having the domain I (see [6]).
In this situation we obtain:

Proposition 4.1 In the case F = I(A) N R(A), Ax is exactly the mazimal
MYV -algebra Q(A) of quotients of A (introduced by the authors in [6] where
this is denoted by A" ).

3. If S C A an A—closed system of A. Consider the following congruence
on A: (z,y) € 0s & there exists e € SN B(A) such that x Ae =y Ae (see
[5]). A[S] = A/fs is called in [5] the MV - algebra of fractions of A relative
to the A—closed system S.

Proposition 4.2 If Fg is the topology associated with a N—closed system
S C A (see example 3 in section 2), then the MV - algebra Ar, is isomorphic
with B(A[S]).

Proof. For z,y € A we have (z,y) € 07, < there exists I € Fg (hence
INSNB(A) # @) such that z Ae = y Ae for any e € I N B(A). Since
INSNB(A) # © there exists eg € I NS N B(A) such that x A eg = y A eg,
hence (z,y) € 0s. So, 07, C Og.

If (x,y) € Og, there exists eg € S N B(A) such that z A ey =y A eg. If we
set I = (eg] = {a € A:a < ey}, then I € I(A); since eg € I NS N B(A),
then INSNB(A) # @, that is I € Fg. For every e € IN B(A), e < eg, hence
e =eNeg and zAe = xA(egAe) = (xAeg)ANe = (yAeg)Ae = yA(egAe) = yAe,
hence (z,y) € Or,, that is 0, = 0s.

Then A[S] = A/6fs; therefore an Fg—multiplier can be considered in this
case (see a4 —a17) as a mapping f : I — A[S] (I € Fs) having the properties
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fle-x) =¢/S - f(z) and f(x) < x/S, for every x € I and e € B(A), if
e € INB(A), then f(e) € B(A[S]) and for every e € IN B(A) and = € I,

(e/S) A fx) = (x/S) A fle)

(/S denotes the congruence class of x relative to fg).

We recall ([5]) that for z € A, /S € B(A[S]) iff there is g € SN B(A)
such that eg A x € B(A). In particular if e € B(A), then e/S € B(A[S]).

If (Il, f1)7 (IQ, fg) S A]:S = hm_,je]:SM(I,A[S]), and (Il7f1) = (Ig,fg)
then there exists I € Fg such that I C Iy N1 and fy; = fo 7. Since I, I1, I €
Fs, there exist e € INSNB(A),e;3 € [NSNB(A) and e € I, NSNB(A). We
shall prove that fi(e1) = fa(e2). If denote f = eAej Aeg, then f € INSNB(A),
and f < ej,eq. Since e1 Af = ea A f then fi(er Af) = fi(eaAf) = fa(ea AN f) &
Tl NI/S = fa(ex) AT]S & filen) AL = fa(es) A1 (since | € § = f/S = 1)
< fi(er) = fa(e2). In a similar way we can show that fi(s1) = fa(s2) for any
S1,82 € In SQB(A)

In accordance with these considerations we can define the mapping:

a:Ar, = liinlefsM(I, A[S]) — B(A[9)),

by putting
a((Z, f)) = f(s) € B(A[S]),
where s € I N SN B(A).
This mapping is a rﬂ)&hism of MV - algebras.

/Eldeed, a(0) = a((A,ODiO(e) = %S\: 0 for every e € SN B(A). If
(I, f) € Azg, we have o((L, f)*) = (I, f*)) = f*(e) = (¢/S) - [f(e)]" =
L (f(e)" = (/&))" = (a{T. /)" (with ¢ € 1SN B(A)). Also, for every

i fi) € Arg,i = 1,2 we have: o[(I1, f1) © (Iz, f2)] = a[(L N o, [1 © f2) ] =

I 1
(18 £2)(€) = (f1(6) + () A (€/9) = fi(e) + fale) = al(Tr, F)] +al(Tz, o)
(with e e I1 NI; NS N B(A)).

We slyill\prove/tﬁt « is injective and surjg:@e. To pro/vg\the injectivity
of a let (I, f1), (I2, f2) € Ary such that a((I1, f1)) = a((I2, f2)). Then for
any e; € 1 N SN B(A), e € I NSN B(A) we have fi(e1) = fa(ez). If
filer) = z/8S, fa(e2) = y/S with z,y € A, since /S = y/S, there exists
e € SN B(A) such that z Ae =y Ae.

If we consider e’ = eAej Aeg € [1NIoNSNB(A), we have zAe’ = yAe’ and
e’ < ey, eq. It follows that fi(e') = fi(e' ANe1) = fi(er) A(e'/S) =xz/SA1 =
x/S = y/S = fale2) = falea) N (€'/S) = falea AN €') = fa(e). If denote
I = (€] then we obtained that I € Fs , I C I NIy and fy); = fo1, hence

(Il/,\fl) = @), that is « is injective.
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To prove the surjectivity of a, let a/S € B(A[S]) (hence there exists ey €
SN B(A) such that a Aeg € B(A)). We consider Iy = (eg] ={r € A:x <ep}
(since eg € InN SN B(A), then Iy € Fs) and define f, : Iy — A[S] by putting
fa(x) =2/SNa/S=(xNa)/S for every x € Ij.

We shall prove that f, is a Fg—multiplier. Indeed, if e € B(A) and z € Iy,
since e/S € B(A[S]), then

fale-z) = fale N) = (e/S) A (x/S) A (a)S)

= (e/S) A ((x/S) A (a)S)) = (e/S) A fa(x) = (e/5) - fal2);
Clearly, fo(z) < z/S. Also, if e € Iy N B(A), then f,(e) =e/SANa/S €
B(A[S]).
Clearly if for every e € Iy N B(A) and z € Iy,

(e/S) A falz) = (2/S) A fale),

hence f, is a Fg—multiplier and we shall prove that a(m)) =a/S.
Indeed, since eg € S we have a(({o, fa)) = fa(eo) = (eo Aa)/S = (eg/S) A
(a/S)=1A(a/S)=a/S.

So, we have proved that « is an isomorphism of MV - algebras.
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