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ARITHMETIZING CONTINUOUS

DISTRIBUTIONS: NUMERICAL ASPECTS

Raluca Vernic

Abstract

This paper deals with the arithmetization of univariate and bivariate
distributions, i.e. with their transformation into discrete distributions
defined on the non-negative integers. Numerical aspects are investi-
gated.

1 Introduction

An arithmetic distribution is a discrete distribution defined on the non-
negative integers, while an equispaced arithmetic distribution is defined only
on multiples of an unit of measurement h > 0, called the span (see [2]). It
is sometimes necessarily to transform a non-arithmetic distribution into an
arithmetic one and such a transformation is called discretization or arithme-
tization. For example, in actuarial mathematics, the total claims distribution
of a portfolio is frequently evaluated using recursive methods which need an
arithmetic form for the claim severity distribution. Since this distribution is
usually continuous (e.g. Exponential, Lognormal, Pareto etc.), one must first
arithmetize it.

From the existing methods for the arithmetization of continuous distribu-
tions (see [1], [2], [3], [4], [5]), in this paper we will investigate some practical
aspects on the method of rounding.

2 Arithmetizing the marginals of a bivariate distribution

Let us first recall the method of rounding (mass dispersal) for both univariate
and bivariate case. We denote by X the random variable (r.v.) to be arithme-
tized, by FX its distribution function (d.f.) and by fj the probability placed
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at jh, j = 0, 1, .... Then we set

f0 = P

(
X <

h

2

)
= FX

(
h

2
− 0

)
(1)

and for j ≥ 1:

fj = P

(
jh − h

2
≤ X < jh +

h

2

)
= FX

(
jh +

h

2
− 0

)
− FX

(
jh − h

2
− 0

)
.

(2)
Remark. The notation FX (x − 0) indicates that the discrete probability

at x should not be included. For continuous distributions this will make no
difference.

In the bivariate case, we denote by (X, Y ) the random vector to be arith-
metized, by FX,Y its d.f. and let fij be the probability placed at (ih, jk) ,
i, j = 0, 1, ... and h, k > 0. Then (see [4])

f00 = FX,Y

(
h

2
− 0,

k

2
− 0

)
(3)

f0j = FX,Y

(
h

2
− 0, jk +

k

2
− 0

)
− FX,Y

(
h

2
− 0, jk − k

2
− 0

)
, j = 1, 2, ...

(4)

fi0 = FX,Y

(
ih +

h

2
− 0,

k

2
− 0

)
− FX,Y

(
ih− h

2
− 0,

k

2
− 0

)
, i = 1, 2, ...

(5)

fij = FX,Y

(
ih +

h

2
− 0, jk +

k

2
− 0

)
− FX,Y

(
ih − h

2
− 0, jk +

k

2
− 0

)
−

−FX,Y

(
ih +

h

2
− 0, jk − k

2
− 0

)
+ FX,Y

(
ih − h

2
− 0, jk − k

2
− 0

)
. (6)

Proposition. We consider a bivariate distribution with known marginal
distributions. If we are interested in arithmetizing its marginal distributions,
then the two following methods give the same result:

1. one directly arithmetizes the univariate marginal distributions;

2. one first arithmetizes the bivariate distribution, then evaluates the marginal
distributions by summing.

Proof. We will prove the property for the marginal distribution of X , the
proof for Y being similar. Using the second method and (3), (4), we get

f
(X biv)
0 = f00 +

∞∑
j=1

f0j = FX,Y

(
h

2
− 0,

k

2
− 0

)
+
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+
∞∑

j=1

[
FX,Y

(
h

2
− 0, jk +

k

2
− 0

)
− FX,Y

(
h

2
− 0, jk − k

2
− 0

)]
=

= FX,Y

(
h

2
− 0,∞

)
= FX

(
h

2
− 0

)
= f

(X univ)
0 .

Similarly, from (5) and (6), for i ≥ 1,

f
(X biv)
i = fi0+

∞∑
j=1

fij = ... = FX,Y

(
ih +

h

2
− 0,∞

)
−FX,Y

(
ih − h

2
− 0,∞

)
=

= FX

(
ih +

h

2
− 0

)
− FX

(
ih − h

2
− 0

)
(2)
= f

(X univ)
i .�

Remark. Following the above property, one may choose the best method
considering his particular framework.

3 A distance between the exact and the arithmetized
distributions

3.1 The univariate case

Let X be a r.v. and X̂ its arithmetized corresponding r.v. We denote by
F and respectively F̂ their d.f.s. In order to evaluate the error made when
arithmetizing a distribution, we introduce the following distance

d(F, F̂ ) = sup
x∈R

∣∣∣F (x) − F̂ (x)
∣∣∣ = sup

a∈N∗
sup

(a−1)h<x≤ah

∣∣∣∣∣F (x) −
a−1∑
i=0

fi

∣∣∣∣∣
using (2)

=

= sup
a∈N∗

sup
(a−1)h<x≤ah

∣∣∣∣F (x) − F

(
ah − h

2

)∣∣∣∣ . (7)

Let’s consider two particular cases: Exponential and Pareto.

3.1.1 X ∼ Exponential (θ) , θ > 0

In this case, the density of X is f (x) = θe−θx, x > 0. Then the distance (7)
reduces to the first term of (7), for a = 1 (see the density’s graph, first graph),

d(F, F̂ ) = 1 − e−θh/2.
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Remark. For fixed h, when θ → ∞, d(F, F̂ ) → 1, which is not good. For
fixed θ, the smaller h is, the smaller d(F, F̂ ) becomes (which is normal).

3.1.2 X ∼ Pareto (α, θ) , α, θ > 0

The density of X is f (x) =
αθα

xα+1
, x > θ. Based on the shape of the graph

(second graph) of this density, the distance (7) gives

d(F, F̂ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
{(

θ
h

)α
(

1
(i−0.5)α − 1

iα

)
, 1 −

(
θ

h(i−0.5)

)α}
, if ∃i ∈ N,

(i − 1)h < θ ≤ (i − 0.5)h

max
{(

θ
h

)α
(

1
iα − 1

(i+0.5)α

)
, 1 − (

θ
hi

)α
}

, if ∃i ∈ N,

(i − 0.5)h < θ ≤ ih

.

Remark. The following two graphs show the evolution of the distance
d(F, F̂ ) in the Exponential case.
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3.2 The bivariate case

Considering similar notations as in the univariate case, the distance (7) can
be defined as

d(F, F̂ ) = sup
x,y∈R

∣∣∣F (x, y) − F̂ (x, y)
∣∣∣ =

= sup
a,b∈N∗

sup
(a−1)h<x≤ah,(b−1)k<y≤bk

∣∣∣∣∣∣F (x, y) −
a−1∑
i=0

b−1∑
j=0

fij

∣∣∣∣∣∣ =

= sup
a,b∈N∗

sup
(a−1)h<x≤ah,(b−1)k<y≤bk

∣∣∣∣F (x, y) − F

(
ah − h

2
, bk − k

2

)∣∣∣∣ . (8)

3.2.1 Particular case: (X, Y ) ∼ Pareto (θ1, θ2, α) , θ1 > 0, θ2 > 0, α > 0

The bivariate Pareto distribution has the density function

fX,Y (x, y) = a(a + 1) (θ1θ2)
a+1 (θ2x + θ1y − θ1θ2)

−(a+2)
, x > θ1, y > θ2.
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Then X and Y are univariate Pareto distributed (with parameters αiθi,
i = 1, 2) and for the arithmetized distribution see [4]. Unfortunately, due to
the form of the graph of the density (see next figure), we don’t have a simple
form for the distance (8), which must be evaluated numerically.
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