ON MULTIVARIATE INTERPOLATION BY WEIGHTS

Dana Simian and Corina Simian

Abstract

The aim of this paper is to study a particular bivariate interpolation problem, named interpolation by weights. A minimal interpolation space is derived for these interpolation conditions. An integral formula for the remainder is given, as well as a superior bound for it. An expression for $g(D)\left(L_{n}(f)\right)$ is obtained.

1 Introduction

Multivariate interpolation is a problem situated in the field of interest of many mathematicians. To find out an interpolation space for certain interpolation conditions, to derive the form of interpolation operator and a formula for the remainder are some of the problems in multivariate interpolation. The aim of this paper is to solve the problems enumerated above, for a particular multivariate interpolation scheme, named interpolation by weights.

To do this we need some preliminary notions, that we will present next.
Let Λ be a set of linear independent functionals and \mathcal{F} be a space of functions which includes polynomials. Multivariate polynomial interpolation problem consists in finding a polynomial subspace $\mathcal{P}(\Lambda)$, such that, for a given function $f \in \mathcal{F}$ there exists a unique polynomial $p \in \mathcal{P}(\Lambda)$ satisfying the conditions:

$$
\begin{equation*}
\lambda(f)=\lambda(p), \quad \forall \lambda \in \Lambda \tag{1}
\end{equation*}
$$

In this case we say that the interpolation problem is well-posed in $\mathcal{P}(\Lambda)$, the space $\mathcal{P}(\Lambda)$ is an interpolation space for Λ or the pair $(\Lambda, \mathcal{P}(\Lambda))$ is correct.

Kergin proved that always exists an interpolation space for a set of conditions Λ, but we are interested in finding a minimal interpolation space, that is $\mathcal{P}(\Lambda) \subset \Pi_{n}^{d}$ with n the minimum of all possible values, or equivalent, the interpolation problem with respect to Λ is not well-posed in any subspaces of
Π_{n-1}^{d}.
To express the interpolation operator from a minimal interpolation space we can use a Newton formula. In multivariate case, Newton basis can be defined using a sequence of nested sets of multiindices :

$$
\begin{align*}
& I_{0} \subset I_{1} \subset \ldots \subset I_{n} ; I_{-1}=\Phi ; I_{k} \backslash I_{k-1} \subset\{\alpha:|\alpha|=k\} ; k=\overline{0, n} \tag{2}\\
& I_{k}^{\prime}=\left\{\alpha \in N^{d}:|\alpha| \leq k\right\} \backslash I_{k} ; k=\overline{0, n} \tag{3}\\
& I_{n} \backslash I_{n-1} \neq \Phi ; \quad \operatorname{card} I_{n}=\operatorname{dim} \mathcal{P}(\Lambda) \tag{4}
\end{align*}
$$

and such that the functionals in Λ can be reindexed in the blocks:
$\Lambda^{(k)}=\left\{\lambda_{\alpha}: \lambda_{\alpha} \in \Lambda ; \alpha \in I_{k} \backslash I_{k-1}\right\}, k=0, \ldots, n ; \quad \Lambda=\left\{\lambda_{\beta}: \beta \in I_{n}\right\}$
The Newton polynomials $p_{\alpha} \in \Pi_{|\alpha|}, \alpha \in I_{n}$ of $\mathcal{P}(\Lambda)$ have the properties $\lambda_{\beta}\left(p_{\alpha}\right)=\delta_{\alpha, \beta} ; \beta \in I_{n} ;|\beta| \leq|\alpha|$ and there exists the complementary polynomials $p_{\alpha}^{\perp} \in \Pi_{|\alpha|}, \alpha \in I_{n}^{\prime}$ such that $\Lambda\left(p_{\alpha}^{\perp}\right)=0$ and $\Pi_{n}=\operatorname{span}\left\{p_{\alpha}: \alpha \in\right.$ $\left.I_{n}\right\} \oplus \operatorname{span}\left\{p_{\alpha}^{\perp}: \alpha \in I_{n}^{\prime}\right\}$.

The number of functionals in the block $\Lambda^{(k)}$ is $n_{k}=\operatorname{dim} \mathcal{P}_{k}^{0} \leq k+1$; $\mathcal{P}_{k}^{0}=\mathcal{P}(\Lambda) \cap \Pi_{k}^{0}$.

If $\operatorname{ker}(\Lambda)$ is a polynomial ideal, then we say that Λ defines an ideal interpolation scheme.

Definition 1 A subspace $\mathcal{P}(\Lambda) \subset \Pi_{n}^{d}$ is called a minimal interpolation space of order n with respect to Λ if:

1. The pair $(\Lambda, \mathcal{P}(\Lambda))$ is correct.
2. Λ defines an ideal interpolation scheme.
3. The interpolation scheme $(\Lambda, \mathcal{P}(\Lambda)), \mathcal{P}(\Lambda) \subset \Pi_{n}^{d}$ is degree reducing (or equivalent, the interpolation problem with respect to Λ is not posed in any subspaces of Π_{n-1}^{d}).

Theorem 1 Let Λ be a set of linear independent functionals. The polynomial subspace $\mathcal{P}(\Lambda)$ is a minimal interpolation space of order n, with respect to Λ, if and only if there exists a Newton basis of order n for $\mathcal{P}(\Lambda)$ with respect to Λ.

The Newton basis for a minimal interpolation space can be derived using an inductive algorithm (see [4], [6]).

If \mathcal{P}_{1} and \mathcal{P}_{2} are two minimal interpolation spaces for the set of functionals Λ, then

$$
\operatorname{dim}\left(\mathcal{P}_{1} \cap \Pi_{k}\right)=\operatorname{dim}\left(\mathcal{P}_{2} \cap \Pi_{k}\right)
$$

Moreover, the Newton basis is unique iff $\mathcal{P}(\Lambda)=\Pi_{n}$ (see [1], [2]).
We introduce a general divided difference, named λ - divided difference:

Definition 2 Let $\left(p_{\alpha}\right), \alpha \in I_{n}$ be the Newton basis for the minimal interpolation space of order $n \mathcal{P}(\Lambda)$ and $\Lambda^{(k)}$ be the proper blocks of functionals. The λ-divided difference is defined recursively by:
$d_{0}[\lambda ; f]=\lambda(f)$,
$d_{k+1}\left[\Lambda^{(0)}, \ldots, \Lambda^{(k)}, \lambda ; f\right]=d_{k}\left[\Lambda^{(0)}, \ldots, \Lambda^{(k-1)}, \lambda ; f\right]-$
$-\sum_{\alpha \in J_{k}} d_{k}\left[\Lambda^{(0)}, \ldots, \Lambda^{(k-1)}, \lambda_{\alpha} ; f\right] \lambda\left(p_{\alpha}\right)$, with $J_{k}=I_{k} \backslash I_{k-1}$.
Taking $\lambda=\delta_{x}$ and $\Lambda=\left\{\delta_{\theta}: \theta \in \Theta \subset R^{d}\right\}$, we obtain the divided difference uses by T. Sauer in [3], from which, in the univariate case, we obtain the classical divided difference multiplied with the knots polynomial:

$$
d_{n+1}\left[\theta_{0}, \ldots, \theta_{n}, x ; f\right]=\left[\theta_{0}, \ldots, \theta_{n}, x ; f\right] \cdot\left(x-\theta_{0}\right) \cdots\left(x-\theta_{n}\right)
$$

Theorem 2 ([5]) With the notations in the Definition 2 and considering L_{n} as the corresponding interpolation operator, the following equalities hold:

$$
\begin{align*}
& \lambda\left(L_{n}(f)\right)=\sum_{\alpha \in I_{n}} d_{|\alpha|}\left[\Lambda^{(0)}, \ldots, \Lambda^{(|\alpha|-1)}, \lambda_{\alpha} ; f\right] \cdot \lambda\left(p_{\alpha}\right) ; \lambda \in\left(\Pi^{d}\right)^{\prime} \tag{5}\\
& \lambda\left(f-L_{n}(f)\right)=R_{\Lambda, \lambda}(f)=d_{n+1}\left[\Lambda^{(0)}, \ldots, \Lambda^{(n)}, \lambda ; f\right] \tag{6}
\end{align*}
$$

We call λ-remainder the value $R_{\Lambda, \lambda}$, for a certain linear functional Λ.
In [1] C. de Boor and A. Ron proves that, for a given set of points, Θ, always exists a minimal interpolation space,

$$
\begin{equation*}
\Pi_{\Theta}=\left(\operatorname{Exp}_{\Theta}\right) \downarrow=\operatorname{span}\left\{g \downarrow ; g \in \operatorname{Exp}_{\Theta}\right\} \tag{7}
\end{equation*}
$$

with $\operatorname{Exp}_{\Theta}=\operatorname{span}\left\{e_{\theta} ; \theta \in \Theta\right\}$ and $f \downarrow=T_{j} f$, with j the smallest integer for which $T_{j} f \quad=0, T_{j} f$ being the Taylor polynomial of degree $\leq j$ and $e_{\theta}(z)=$ $e^{\theta \cdot z}$.

In the case of an arbitrary set of functionals, Λ, a minimal interpolation space is given by

$$
\begin{equation*}
H_{\Lambda} \downarrow=\operatorname{span}\left\{g \downarrow ; g \in H_{\Lambda}\right\}, \quad \text { with } H_{\Lambda}=\operatorname{span}\left\{\lambda^{\nu} ; \lambda \in \Lambda\right\} \tag{8}
\end{equation*}
$$

We denoted by λ^{ν} the generating function of the functional $\lambda \in \Lambda$.

2 Interpolation by weights

Definition 3 Let $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset R^{2}$ be a set of different points and

$$
\begin{equation*}
W=\left\{\left(w_{1}^{1}, \ldots, w_{N}^{1}\right), \ldots,\left(w_{1}^{N}, \ldots, w_{N}^{N}\right)\right\} \subset Z_{+}^{N} \tag{9}
\end{equation*}
$$

be a set of weights, such that the of functionals

$$
\begin{equation*}
\Lambda=\left\{\lambda_{k} \mid \lambda_{k}=\delta_{y_{k}}, y_{k}=\sum_{i=1}^{N} w_{k}^{i} x_{i} ; k=1, \ldots, N\right\} \tag{10}
\end{equation*}
$$

be linear independent.
We name the interpolation problem given by the set of conditions Λ interpolation by weights.

Our aim is to find a minimal interpolation space for the conditions (10) and to derive a formula for the remainder in the interpolation by weights.

Proposition 1 The weights used in the interpolation by weights satisfy the equality:

$$
\begin{equation*}
\sum_{i=1}^{N}\left(w_{i}^{k}-w_{l}^{k}\right) x_{i} \neq 0, \forall k \neq l, k, l \in\{1, \ldots, N\} \tag{11}
\end{equation*}
$$

The conditions (7) express linear independence of functionals from (10).
Proposition 2 The interpolation by weights scheme is an ideal interpolation scheme.

Theorem 3 A minimal interpolation space for the conditions of the interpolation by weights is

$$
\begin{align*}
& H_{\Lambda} \downarrow=\Pi_{Y}=\operatorname{span}\left\{e_{y_{k}}=\mid y_{k} \in Y ; k=1, \ldots, N\right\}, \tag{12}\\
& Y=\left\{y_{k}=\sum_{i=1}^{N} w_{k}^{i} x_{i} ; k=1, \ldots, N\right\} \tag{13}
\end{align*}
$$

Proof: We use the relations (8) and the fact that, for the functionals in the interpolation by weights, the generating function is $\lambda_{k}^{\nu}=e_{y_{k}}$.

Let us denote by n the order of the minimal interpolation space Π_{Y}. For this minimal interpolation space, there exists a Newton basis, that is, the functionals in Λ can be reindexed and put into blocks, using the sequence of index sets $\left\{I_{0}, \ldots, I_{n}\right\}$. Let $\Lambda^{(k)}=\left\{\lambda_{r}^{[k]}\right\}, k \in\{0, \ldots, n\}, r \in\left\{1, \ldots, n_{k}\right\}$, $n_{k}=\# I_{k}$, the functionals corresponding to the set of multiindices I_{k}. We associate to the blocks $\Lambda^{(k)}$ the corresponding blocks of points

$$
\begin{equation*}
Y^{(k)}=\left\{y_{r}^{[k]}\right\}, k \in\{0, \ldots, n\}, r \in\left\{1, \ldots, n_{k}\right\} . \tag{14}
\end{equation*}
$$

Polynomials p_{α}, with $\alpha \in J_{k}=I_{k} \backslash I_{k-1}$, are denoted by $p_{i}^{[k]}, k \in\{0, \ldots, n\} ; i \in$ $\left\{1, \ldots, n_{k}\right\}$.
Then the followings relations hold:

$$
\begin{align*}
& \lambda_{i}^{[k]}\left(p_{j}^{[k]}\right)=\delta_{i, j} \Rightarrow \delta_{y_{i}^{[k]}}\left(p_{j}^{[k]}\right)=\delta_{i, j}, \forall k=\overline{0, n} ; i, j=\overline{1, n_{k}} \tag{15}\\
& \lambda_{i}^{[l]}\left(p_{j}^{[k]}\right)=0 \Rightarrow \delta_{y_{i}^{[l]}}\left(p_{j}^{[k]}\right)=0, \forall l<k ; i=\overline{1, n_{k}} ; j=\overline{1, n_{l}} \tag{16}
\end{align*}
$$

Proposition 3 If we reindex the weights from (9), such that

$$
\begin{equation*}
y_{i}^{[k]}=\sum_{j=1}^{N} c_{i, j}^{[k]} x_{j} \tag{17}
\end{equation*}
$$

and denote by

$$
C^{[k]}=\left(c_{j, i}^{[k]}\right) ; P^{[k]}=\left(p_{i}^{[k]}\left(x_{j}\right)\right) ; k=0, \ldots n ; j=1, \ldots, N ; i=1, \ldots, n_{k}
$$

the blocks matrix $C^{[k]}$ and $P^{[k]}$, with n_{k} columns, then the matrix

$$
\begin{equation*}
M=C^{T} \cdot P \tag{18}
\end{equation*}
$$

is a block matrix of the same type with C and P, left triangular and with unitary diagonal.

Proof: Obviously results from (15), (16) and (17).
Taking in Definition $2, \Lambda=\left\{\delta_{y_{\lambda}}: \lambda \in \Lambda\right\}$ and $\lambda=\delta_{x}$, we can formally write

$$
\begin{equation*}
d_{k+1}\left[\Lambda^{(0)}, \ldots, \Lambda^{(k)}, \lambda ; f\right]=d_{k+1}\left[Y^{(0)}, \ldots, Y^{(k)}, x ; f\right] \tag{19}
\end{equation*}
$$

We want to give an integral form for the divided difference given in Definition 2 , that is for the remainder in the interpolation by weights.

Using the model in [3] we introduce the notion of path in a multiindices set and consider the following elements:

1. A path, μ 'in I_{n} is $\mu=\left(\mu_{0}, \ldots, \mu_{n}\right) ; \mu_{k} \in J_{k}=I_{k} \backslash I_{k-1} ; k=\overline{0, n}$;
2. \mathcal{C}_{n} is the set of all paths. The number of path is $N_{c}=\prod_{k=0}^{n} n_{k}, n_{k}=$ card J_{k};
3. $\mathcal{C}_{n}(\alpha)$ is the set of paths $\mu \in \mathcal{C}_{n}$ having the property that $\mu_{n}=\alpha$;
4. The set of functionals according to a path $\mu \in \mathcal{C}_{n}: \Lambda^{\mu}=\left\{\lambda_{\mu_{0}}, \ldots, \lambda_{\mu_{n}}\right\}$; $\left(\mu_{0}, \ldots, \mu_{n}\right) \in \mathcal{C}_{n} ;$
5. The set $Y^{\mu}=\left\{y_{\lambda_{\mu_{0}}}, \ldots, y_{\lambda_{\mu_{n}}}\right\}=\left\{y_{\mu_{0}}, \ldots, y_{\mu_{n}}\right\} ;\left(\mu_{0}, \ldots, \mu_{n}\right) \in \mathcal{C}_{n}$;
6. The points blocks $Y^{(k)}=\left\{y_{\lambda} \mid \lambda \in \Lambda^{(k)}\right\}$;
7. The number $\Pi_{\mu}\left(\Lambda^{\mu}\right)=\Pi_{\mu}\left(Y^{\mu}\right)=\prod_{i=0}^{n-1} p_{\mu_{i}}\left(y_{\mu_{i+1}}\right)$;
8. The differential operator $D_{Y^{\mu}}^{n}=D_{y_{\mu_{n}}-y_{\mu_{n-1}}} \ldots D_{y_{\mu_{1}-}-y_{\mu_{0}}}$.

We will need the application $f \rightarrow \int_{\Theta} f, \Theta=\left\{\theta_{0}, \ldots, \theta_{k}\right\} \subset R^{2}$, where

$$
\int_{\Theta} f=\int_{0}^{1} \int_{0}^{s_{1}} \cdots \int_{0}^{s_{k-1}} f\left(\theta_{0}+s_{1}\left(\theta_{1}-\theta_{0}\right)+\cdots+s_{k}\left(\theta_{k}-\theta_{k-1}\right)\right) \cdot d s_{k} \ldots d s_{1}
$$

Theorem 4 Let Y be the set of the associated points given in (14). Then

$$
\begin{aligned}
& d_{n+1}\left[Y^{(0)}, \ldots, Y^{(n)}, x ; f\right]=\sum_{\mu \in \mathcal{C}_{n}} p_{\mu_{n}}(x) \Pi_{\mu}\left(Y^{\mu}\right) \int_{\left[Y^{\mu}, x\right]} D_{x-y_{\mu_{n}}} D_{Y^{\mu}}^{n} f(20) \\
& +\sum_{j=1}^{n} \sum_{\mu \in \mathcal{C}_{j-1}} \sum_{\beta \in I_{j}^{\prime}} p_{\beta}^{\perp}(x) \Pi_{\mu}\left(Y^{\mu}\right) \int_{\left[Y^{\mu}, x\right]} D_{d_{\mu_{j-1}, \beta}} D_{Y^{\mu}}^{j-1} f, \forall n \in N, x \in R^{2} .
\end{aligned}
$$

Proof: We use the definition of the interpolation by weights, the Theorem 3 from [3] and the equality:

$$
\begin{aligned}
& \sum_{j=1}^{n} \sum_{\mu \in \mathcal{C}_{j-1}} \sum_{\beta \in I_{j}^{\prime}} p_{\beta}^{\perp}(x) \Pi_{\mu}\left(Y^{\mu}\right) \int_{\left[Y^{\mu}, x\right]} D_{d_{\mu_{j-1}, \beta}} D_{Y^{\mu}}^{j-1} f= \\
& =\sum_{\beta \in I_{n}^{\prime}} p_{\beta}^{\perp}(x) \sum_{j=|\beta|} \sum_{\mu \in \mathcal{C}_{j-1}} \Pi_{\mu}\left(Y^{\mu}\right) \int_{\left[Y^{\mu}, x\right]} D_{d_{\mu_{j-1}, \beta}} D_{Y^{\mu}}^{j-1} f, \forall n \in N, x \in R^{2} .
\end{aligned}
$$

Corollary 1 Let $g \in \Pi^{2}$ and $g(D)$ be the differential operator with constant coefficients associated to it. The following equality holds

$$
\begin{align*}
& \left(g(D)\left(L_{n}(f)\right)\right)(x)= \tag{21}\\
& =\sum_{j=1}^{n} \sum_{\alpha \in I_{j}} \sum_{\mu \in \mathcal{C}_{j-1}}\left(g(D) p_{\alpha}\right)(x) p_{\mu_{j-1}}\left(y_{\alpha}\right) \Pi_{\mu}\left(Y^{\mu}\right) \int_{\left[Y^{\mu}, y_{\alpha}\right]} D_{y_{\alpha}-y_{\mu_{j-1}}} D_{Y^{\mu}}^{j-1} f
\end{align*}
$$

Proof: We take in Theorem 2 the functional λ by $\lambda_{g}=g(D)$, we apply Theorem 4 , we replace $n+1$ by $|\alpha|, x$ with y_{α} and take into account that $p_{\beta}^{\perp}\left(y_{\alpha}\right)=0, \forall y \alpha \in Y$. We obtain:

$$
\begin{aligned}
&\left(g(D)\left(L_{n}(f)\right)\right)(x)= \sum_{\alpha \in I_{n}}\left(g(D) p_{\alpha}\right)(x) \sum_{\mu \in \mathcal{C}_{|\alpha|-1}} p_{\mu|\alpha|-1}\left(y_{\alpha}\right) \Pi_{\mu}\left(Y^{\mu}\right) \\
& \cdot \int_{\left[Y^{\mu}, y_{\alpha}\right]} D_{y_{\alpha}-y_{\mu_{|\alpha|-1}}}^{|\alpha|-1} f \\
& Y^{\mu}
\end{aligned}
$$

Rearranging the sums, we obtain (21).
Corollary $2 f\left(y_{\gamma}\right)=\sum_{|\alpha|=|\gamma|+1} p_{\alpha}\left(y_{\gamma}\right) d_{|\alpha|}\left[Y^{(0)}, \ldots, Y^{(|\alpha|-1)}, y_{\alpha} ; f\right]+$

$$
\begin{equation*}
+d_{|\gamma|}\left[Y^{(0)}, \ldots, Y^{(|\gamma|-1)}, y_{\gamma} ; f\right] \tag{22}
\end{equation*}
$$

Proof: $p_{\alpha}\left(y_{\beta}\right)=0, \forall \alpha \neq \beta,|\beta| \leq|\alpha|$ and $p_{\alpha}\left(y_{\alpha}\right)=1$.
Using the equality $\left(L_{n}(f)\right)\left(y_{\gamma}\right)=f\left(y_{\gamma}\right), \forall y_{\gamma} \in Y$, and (5) we obtain (22).
Theorem 5 Let $f \in C^{n+1}\left(R^{2}\right)$ and $\Omega \subset R^{2}$ be a convex domain containing the associated points $y_{k}, k \in\{1, \ldots, n\}$ in the interpolation by weights. Then, for every $x \in \Omega$, the following inequality holds:

$$
\begin{align*}
\left|\left(f-L_{n}(f)\right)(x)\right| & \leq \frac{\|f\|_{n+1, \Omega}}{(n+1)!} \sum_{\alpha \in J_{n}} \sum_{i=1}^{2}\left|p_{\alpha}(x)\left(\xi_{i}-\left(\xi_{\alpha}\right)_{i}\right)\right| c_{\alpha}+ \tag{23}\\
& +\sum_{j=1}^{n} \frac{\|f\|_{j, \Omega}}{j!} \sum_{\beta \in I_{j}^{\prime}}\left|p_{\beta}^{\perp}(x)\right| b_{j, \beta} ; x=\left(\xi_{1}, \xi_{2}\right) \in \Omega
\end{align*}
$$

$c_{\alpha}, b_{j, \beta} \in R$ are constants independent of x, given by:

$$
\begin{aligned}
& c_{\alpha}= \sum_{\mu \in \mathcal{C}_{n}(\alpha)}\left|\Pi_{\mu}\left(Y^{\mu}\right)\right| \sum_{\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{1,2\}^{n}}\left|\left(y_{\mu_{n}}-y_{\mu_{n-1}}\right)_{\beta_{n}} \ldots\left(y_{\mu_{1}}-y_{\mu_{0}}\right)_{\beta_{1}}\right| \\
& b_{j, \beta}=\sum_{\mu \in \mathcal{C}_{j-1}}\left|\Pi_{\mu}\left(Y^{\mu}\right)\right| \cdot \\
& \cdot \sum_{\left(\gamma_{1}, \ldots, \gamma_{j}\right) \in\{1,2\}^{j}}\left|\left(d_{\mu_{j-1}, \beta}\right)_{\gamma_{j}}\left(y_{\mu_{j-1}}-y_{\mu_{j-2}}\right)_{\gamma_{j-1}} \ldots\left(y_{\mu_{1}}-y_{\mu_{0}}\right)_{\gamma_{1}}\right|
\end{aligned}
$$

and

$$
\|f\|_{j, \Omega}=\sup _{y \in \Omega} \max _{|\beta|=j}\left|\frac{\partial^{j}}{\partial y^{\beta}} f(x)\right|, \beta \in N^{2}
$$

Proof:

$$
\sum_{\mu \in \mathcal{C}_{n}} p_{\mu_{n}}(x) \Pi_{\mu}\left(Y^{\mu}\right) \int_{\left[Y^{\mu}, x\right]} D_{x-y_{\mu_{n}}} D_{Y^{\mu}}^{n} f+
$$

$$
\begin{gathered}
\sum_{j=1}^{n} \sum_{\mu \in \mathcal{C}_{j-1}} \sum_{\beta \in I_{j}^{\prime}} p_{\beta}^{\perp}(x) \Pi_{\mu}\left(Y^{\mu}\right) \int_{\left[Y^{\mu}, x\right]} D_{d_{\mu_{j-1}, \beta}} D_{Y^{\mu}}^{j-1} f= \\
=\sum_{\alpha \in J_{n}} \sum_{i=1}^{2} p_{\alpha}(x)\left(\xi_{i}-\left(\xi_{\alpha}\right)_{i}\right) \sum_{\mu \in \mathcal{C}_{n}(\alpha)} \Pi_{\mu}\left(Y^{\mu}\right) \int_{\left[Y^{\mu}, x\right]} D_{e^{i}} D_{Y^{\mu}}^{n} f+ \\
\quad+\sum_{\beta \in I_{n}^{\prime}} p_{\beta}^{\perp}(x) \sum_{j=|\beta|}^{n} \sum_{\mu \in \mathcal{C}_{j-1}} \Pi_{\mu}\left(Y^{\mu}\right) \int_{\left[Y^{\mu}, x\right]} D_{d_{\mu_{j-1}, \beta}} D_{Y^{\mu}}^{j-1} f .
\end{gathered}
$$

But, for $x=\left(\xi_{1}, \xi_{2}\right) \in R^{2}$, we have:

$$
D_{Y^{\mu}}^{n} f=\sum_{\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{1,2\}^{n}}\left(y_{\mu_{n}}-y_{\mu_{n-1}}\right)_{\beta_{n}} \ldots\left(y_{\mu_{1}}-y_{\mu_{0}}\right)_{\beta_{1}} \cdot \frac{\partial^{n} f}{\partial \xi_{\beta_{1}} \ldots \partial \xi_{\beta_{n}}}
$$

We can act similarly for $D_{Y^{\mu}}^{j-1} f$. Taking into account $\int_{\Theta} f=\frac{1}{k!} f(\xi)$, we obtain (23).

References

[1] de Boor C. (1992), Polynomial interpolation in several variables, Math. Z., 210, 347-378.
[2] Gasca M., Sauer T. (1999), Polynomial interpolation in several variables, Advances in Computational Mathematics.
[3] Sauer T. (1997), Polynomial interpolation of minimal degree, Numer. Math., 78, 59-85.
[4] Sauer T. (1995), Computational aspects of multivariate polynomial interpolation, Advances in Comp. Math., 3, 219-238.
[5] Simian D. (2001), Ideal interpolation schemes, Proceedings of "The 9-th Symposium of Mathematics and its Applications", Timişoara, 145-153.
[6] Simian D., Ene M. (2003), Algorithmical Aspects of Multivariate Interpolation, Proceedings of the 7-th Annual Conference of the Romanian Society of Mathematical Sciences, Bistriţa, to appear.
"Lucian Blaga" University
5-7 dr. Ratiu St., 550012, Sibiu, Romania
"Babes -Bolyai" University
1 M. Kogalniceanu St., 400084, Cluj-Napoca, Romania

