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ON MULTIVARIATE INTERPOLATION BY
WEIGHTS

Dana Simian and Corina Simian

Abstract

The aim of this paper is to study a particular bivariate interpola-
tion problem, named interpolation by weights. A minimal interpolation
space is derived for these interpolation conditions. An integral formula
for the remainder is given, as well as a superior bound for it. An ex-
pression for g(D) (L, (f)) is obtained.

1 Introduction

Multivariate interpolation is a problem situated in the field of interest of
many mathematicians. To find out an interpolation space for certain interpo-
lation conditions, to derive the form of interpolation operator and a formula
for the remainder are some of the problems in multivariate interpolation. The
aim of this paper is to solve the problems enumerated above, for a particular
multivariate interpolation scheme, named interpolation by weights.

To do this we need some preliminary notions, that we will present next.

Let A be a set of linear independent functionals and F be a space of
functions which includes polynomials. Multivariate polynomial interpolation
problem consists in finding a polynomial subspace P(A), such that, for a given
function f € F there exists a unique polynomial p € P(A) satisfying the con-
ditions:

A(f) = A(p), VA €A 1)

In this case we say that the interpolation problem is well-posed in P(A), the
space P(A) is an interpolation space for A or the pair (A, P(A)) is correct.
Kergin proved that always exists an interpolation space for a set of condi-
tions A, but we are interested in finding a minimal interpolation space, that
is P(A) C TI¢ with n the minimum of all possible values, or equivalent, the
interpolation problem with respect to A is not well-posed in any subspaces of
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d
I _,.
To express the interpolation operator from a minimal interpolation space
we can use a Newton formula. In multivariate case, Newton basis can be

defined using a sequence of nested sets of multiindices :

LhhchcC...Cly; Iy =9; I\ Ix_1 C{a: |of=k}; k=0,n (2)
I={ae N |a| <k}\I; k=0,n (3)
I\ I # P card I, = dim P(A); (4)

and such that the functionals in A can be reindexed in the blocks:
AR =Ny Ao €A a€l\ T}, k=0,....,n; A={X\sg: B€,}

The Newton polynomials p, € Iljo|, o € I, of P(A) have the properties
As(Pa) = 0ap; B € In; |B] < || and there exists the complementary poly-
nomials pL € Mjq), « € I, such that A(pt) = 0 and II,, = span{p, : «a €
L.} ® span{pt : a€I}.

The number of functionals in the block A®) is n, = dim Pg < k+1;
PP =P(A)NIIY.

If ker(A) is a polynomial ideal, then we say that A defines an ideal inter-
polation scheme.

Definition 1 A subspace P(A) C 11 is called a minimal interpolation space
of order n with respect to A if:

1. The pair (A,P(A)) is correct.

2. A defines an ideal interpolation scheme.

3. The interpolation scheme (A, P(A)), P(A) C TI¢ is degree reducing (or
equivalent, the interpolation problem with respect to A is not posed in any
subspaces of TI2_, ).

Theorem 1 Let A be a set of linear independent functionals. The polynomial
subspace P(A) is a minimal interpolation space of order n, with respect to A,
if and only if there exists a Newton basis of order n for P(A) with respect to
A.

The Newton basis for a minimal interpolation space can be derived using
an inductive algorithm (see [4], [6]).

If P, and P, are two minimal interpolation spaces for the set of functionals
A, then

dim(’Pl N Hk) = dim(PQ n Hk).

Moreover, the Newton basis is unique iff P(A) = IL, ( see [1], [2]).
We introduce a general divided difference, named A- divided difference:
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Definition 2 Let (p,), « € I,, be the Newton basis for the minimal interpo-
lation space of order n P(A) and A*) be the proper blocks of functionals. The
A-divided difference is defined recursively by:

do[A; f1 = A(f),
A1 [N AR N f] = dp [A©, L ABTD N f] -
= aes, R[N, AFTY N FINpa), with Jy = I\ Ir—1.

Taking A\ = 6, and A = {dy : 6 € © C R?}, we obtain the divided
difference uses by T. Sauer in [3], from which, in the univariate case, we obtain
the classical divided difference multiplied with the knots polynomial:

dn+1[907"'70nax;f] = [90,,9n,$,f]($—90)($—9n)

Theorem 2 (/5]) With the notations in the Definition 2 and considering Ly,
as the corresponding interpolation operator, the following equalities hold:

AMLn(£) =D dia[AO, . AITD NG T Apa); A € (T, (5)

a€cl,

We call X\- remainder the value Ry x, for a certain linear functional A.

In [1] C. de Boor and A. Ron proves that, for a given set of points, O,
always exists a minimal interpolation space,

Ile = (Expe)l= span{gl; g € Expe}, (7)
with Expe = span{eg; 6 € ©} and f|= T, f, with j the smallest integer for
which T f /0, T, f being the Taylor polynomial of degree < j and eg(z) =
60'2

In the case of an arbitrary set of functionals, A, a minimal interpolation
space is given by

Hpl= span{gl;g € Hp}, with Hy = span{\”; X € A}. (8)

We denoted by A” the generating function of the functional A € A.

2 Interpolation by weights
Definition 3 Let X = {z1,...,2x} C R? be a set of different points and

W:{(w%a'~'7w11\/)7~'~7(w{\]a'~'7w]]\\77)}CZ-]i-v (9)
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be a set of weights, such that the of functionals

N
A={X | A =0y, yp=) wizs; k=1,...,N}, (10)

i=1

be linear independent.

We name the interpolation problem given by the set of conditions A inter-
polation by weights.
Our aim is to find a minimal interpolation space for the conditions (10)
and to derive a formula for the remainder in the interpolation by weights.

Proposition 1 The weights used in the interpolation by weights satisfy the
equality:

N

> (wf —wp)wi #0, VE £ 1Lk 1e{l,...,N}. (11)

i=1
The conditions (7) express linear independence of functionals from (10).

Proposition 2 The interpolation by weights scheme is an ideal interpolation
scheme.

Theorem 3 A minimal interpolation space for the conditions of the interpo-
lation by weights is

Hpl=Ty = spanf{ey,, = |y €Y; k=1,...,N}, (12)
N

Y ={ye =) wjzi; k=1,...,N} (13)
i=1

Proof: We use the relations (8) and the fact that, for the functionals in
the interpolation by weights, the generating function is A} = ey, .

Let us denote by n the order of the minimal interpolation space IIy. For
this minimal interpolation space, there exists a Newton basis, that is, the
functionals in A can be reindexed and put into blocks, using the sequence of
index sets {Ip,...,I,}. Let A(®) = {)\[Tk]}, ke {0,....,n}, r € {1,...,n},
ng = #Ij, the functionals corresponding to the set of multiindices I. We
associate to the blocks A®) the corresponding blocks of points

YR = (gl ke qo,...,n}, re{l,...,n}. (14)
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Polynomials p,, with « € J, = I\ I—1, are denoted by pgk], ke{0,...,n};i¢€
{1, ceey nk}.
Then the followings relations hold:

M) =65 = 6,0 @) =60 VB =005 6,5 = Toe, (1)

J

Ml =0 = 5@l =0, Vi <k i=Tmg j=Tm. (16)

Proposition 3 If we reindex the weights from (9), such that
N
k k
w = el a7
j=1

and denote by

= (', PH = M (@) k=0,...n; j=1,... Ny i=1,...,n

7

the blocks matriz C™* and P, with ni, columns, then the matriz
M=ct.p (18)

is a block matrix of the same type with C' and P, left triangular and with
unitary diagonal .

Proof: Obviously results from (15), (16) and (17).
Taking in Definition 2, A = {d,, : A € A} and A = J,, we can formally
write

dk-‘rl[A(O)) s 7A(k)7)‘; f] = dk-‘rl[Y(O)? e 7Y(k)7x7f] (19)

We want to give an integral form for the divided difference given in Defi-
nition 2, that is for the remainder in the interpolation by weights.

Using the model in [3] we introduce the notion of path in a multiindices
set and consider the following elements:

1. A path, p’in I, is p = (o, - - -y pin); pk € Jp = I \ Ix—1; K =0,n;

2. Cy is the set of all paths. The number of path is N, = [[}_, nk, nk =
card Jg;

3. Cp(a) is the set of paths u € C,, having the property that u, = «;

4. The set of functionals according to a path p € Cp: A* = {4, .., A 1
(/’1/05 cee 7””) S Cny

5. The set Y* ={yx,., - Unu } = Wpor -+ > Yun b3 (H0s -5 fin) € C;
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6. The points blocks Y(F) = {yy| A € AW},

7. The number II,,(A*) = II,(Y*) = H?;ol Pus Ypiin );

8. The differential operator Dy, = D

Yun —Ypp_1 " 7 Yuy ~Yug*

.,0r} C R?, where

/f_/l]"'/f(90+81(91—9o)+"'+8k(9k—9k1))'d8k~~d81.
) 0

0 0

We will need the application f — [ f, © = {fy,..
e

Theorem 4 Let Y be the set of the associated points given in (14). Then

At VO, Y™ ] = 3 p ()T (V#) / D,_,, D, f (20)

HECn [Yi,a]

+zn: Z Zpé(x (Y'*H) / Da,, .. JDIf, YneN, x e R
Y,z

Yy
j=1p€C; 1 Bl

Proof: We use the definition of the interpolation by weights, the Theorem
3 from [3] and the equality:

> D D ri@m() / Da,, oDyl f =

Jj=1peC;_1 BEIJ’. [Yi,2)

=D ppla) Y Y Iy / defl,[,Dg’/;lf, Vn e N, z € R2.
Bel;, J=IBl neCj-1 [Y#,x)

Corollary 1 Let g € I? and g(D) be the differential operator with constant
coefficients associated to it. The following equality holds

(9(D) (Ln(f))) () = (21)
= S GO @ L) [ Dy, D
j=la€l; neCj_1

[YH,yq]

Proof: We take in Theorem 2 the functional A by A\, = ¢g(D), we apply

Theorem 4 , we replace n + 1 by |a|, z with y, and take into account that
p5(Ya) =0, Yya € Y. We obtain:
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(D) (Ln(f)) () = > (9(D)pa)(@) 32 Puja—y (Ya) I (YH)-

acl, HEC|a|—1
la]—1
[Yufy ] qu*y“\a\—lDY"’ f

Rearranging the sums, we obtain (21).

Corollary 2 f(yy) = Y p(y(yv)dm[Y(O), oY Uel= e ]
la|=]y[+1
) YO,y ) (22)

Proof: pa(ys) =0, Va # 3, |8] < |a] and pa(ya) = 1.
Using the equality (L»(f))(yy) = f(yy), Yy, € Y, and (5) we obtain (22).

Theorem 5 Let f € C"TY(R?) and Q C R? be a convex domain containing
the associated points yi, k € {1,...,n} in the interpolation by weights. Then,
for every x € Q, the following inequality holds:

(f = La()@)] < ”J;”flm S S e @6 - €)lea+ (23)
a€cd, i=1
+ Z I#lz0 Z I Pz (2)|bj 5 ©=(£1,82) €
7! per;

ca, bj3 € R are constants independent of x, given by:

Ca = Z |HM(YH)| Z |(yun - yl"nfl)ﬁn cee (ym - yuo)61|

HEC, (o) (B1,--Bn)e{1,2}"
big= Y [M(")
neCj—1
Z ‘(duj—lyﬁ)%' (yuj—l - yuj—z)“/j—1 cee (yul - yuo)%‘
(V15eey5)€{1,2}9
and '
P i@)|. en?
= sup max |— f(z)|, .
vet 1B1mg | Dy
Proof:

Sy ()L, (V) / Doy, Dy f+
HECH [Y#,2]
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> Y e [ by, DR =
[Yr,a]

Jj=1peC;_ BEI; Vi

= 3 Y n@ @ €)Y WO [ DDy

a€d, i=1 ueCn(a) [Y/A,J/-]
n
i—1
IDED D D U RN o
BEI], =Bl neCji—1 [Ye,]

But, for z = (&1,&) € R?, we have:

DYuf = Z (yMn - yﬂn—1)ﬁn C.. (yﬂl — yuo)ﬁ1 . W
(B1,...,Bn)€{1,2}" 8, ---083,

We can act similarly for D{,_,‘,l f. Taking into account [ f = % f(€), we
e

obtain (23).
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