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ON MULTIVARIATE INTERPOLATION BY

WEIGHTS

Dana Simian and Corina Simian

Abstract

The aim of this paper is to study a particular bivariate interpola-
tion problem, named interpolation by weights. A minimal interpolation
space is derived for these interpolation conditions. An integral formula
for the remainder is given, as well as a superior bound for it. An ex-
pression for g(D)(Ln(f)) is obtained.

1 Introduction

Multivariate interpolation is a problem situated in the field of interest of
many mathematicians. To find out an interpolation space for certain interpo-
lation conditions, to derive the form of interpolation operator and a formula
for the remainder are some of the problems in multivariate interpolation. The
aim of this paper is to solve the problems enumerated above, for a particular
multivariate interpolation scheme, named interpolation by weights.

To do this we need some preliminary notions, that we will present next.
Let Λ be a set of linear independent functionals and F be a space of

functions which includes polynomials. Multivariate polynomial interpolation
problem consists in finding a polynomial subspace P(Λ), such that, for a given
function f ∈ F there exists a unique polynomial p ∈ P(Λ) satisfying the con-
ditions:

λ(f) = λ(p), ∀λ ∈ Λ (1)

In this case we say that the interpolation problem is well-posed in P(Λ), the
space P(Λ) is an interpolation space for Λ or the pair (Λ,P(Λ)) is correct.

Kergin proved that always exists an interpolation space for a set of condi-
tions Λ, but we are interested in finding a minimal interpolation space, that
is P(Λ) ⊂ Πd

n with n the minimum of all possible values, or equivalent, the
interpolation problem with respect to Λ is not well-posed in any subspaces of
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Πd
n−1.

To express the interpolation operator from a minimal interpolation space
we can use a Newton formula. In multivariate case, Newton basis can be
defined using a sequence of nested sets of multiindices :

I0 ⊂ I1 ⊂ . . . ⊂ In; I−1 = Φ; Ik \ Ik−1 ⊂ {α : |α| = k}; k = 0, n (2)
I ′k = {α ∈ Nd : |α| ≤ k} \ Ik; k = 0, n (3)
In \ In−1 �= Φ; card In = dim P(Λ); (4)

and such that the functionals in Λ can be reindexed in the blocks:
Λ(k) = {λα : λα ∈ Λ; α ∈ Ik \ Ik−1}, k = 0, . . . , n; Λ = {λβ : β ∈ In}

The Newton polynomials pα ∈ Π|α|, α ∈ In of P(Λ) have the properties
λβ(pα) = δα,β; β ∈ In; |β| ≤ |α| and there exists the complementary poly-
nomials p⊥α ∈ Π|α|, α ∈ I ′n such that Λ(p⊥α ) = 0 and Πn = span{pα : α ∈
In} ⊕ span{p⊥α : α ∈ I ′n}.

The number of functionals in the block Λ(k) is nk = dim P0
k ≤ k + 1;

P0
k = P(Λ) ∩ Π0

k.
If ker(Λ) is a polynomial ideal, then we say that Λ defines an ideal inter-

polation scheme.

Definition 1 A subspace P(Λ) ⊂ Πd
n is called a minimal interpolation space

of order n with respect to Λ if:
1. The pair (Λ,P(Λ)) is correct.
2. Λ defines an ideal interpolation scheme.
3. The interpolation scheme (Λ,P(Λ)), P(Λ) ⊂ Πd

n is degree reducing (or
equivalent, the interpolation problem with respect to Λ is not posed in any
subspaces of Πd

n−1).

Theorem 1 Let Λ be a set of linear independent functionals. The polynomial
subspace P(Λ) is a minimal interpolation space of order n, with respect to Λ,
if and only if there exists a Newton basis of order n for P(Λ) with respect to
Λ.

The Newton basis for a minimal interpolation space can be derived using
an inductive algorithm (see [4], [6]).

If P1 and P2 are two minimal interpolation spaces for the set of functionals
Λ, then

dim(P1 ∩ Πk) = dim(P2 ∩ Πk).

Moreover, the Newton basis is unique iff P(Λ) = Πn( see [1], [2]).
We introduce a general divided difference, named λ- divided difference:
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Definition 2 Let (pα), α ∈ In be the Newton basis for the minimal interpo-
lation space of order n P(Λ) and Λ(k) be the proper blocks of functionals. The
λ-divided difference is defined recursively by:
d0[λ; f ] = λ(f),
dk+1[Λ(0), . . . , Λ(k), λ; f ] = dk[Λ(0), . . . , Λ(k−1), λ; f ] −
− ∑

α∈Jk
dk[Λ(0), . . . , Λ(k−1), λα; f ]λ(pα), with Jk = Ik \ Ik−1.

Taking λ = δx and Λ = {δθ : θ ∈ Θ ⊂ Rd}, we obtain the divided
difference uses by T. Sauer in [3], from which, in the univariate case, we obtain
the classical divided difference multiplied with the knots polynomial:

dn+1[θ0, . . . , θn, x; f ] = [θ0, . . . , θn, x; f ] · (x − θ0) · · · (x − θn)

Theorem 2 ([5]) With the notations in the Definition 2 and considering Ln

as the corresponding interpolation operator, the following equalities hold:

λ(Ln(f)) =
∑
α∈In

d|α|[Λ(0), . . . , Λ(|α|−1), λα; f ] · λ(pα); λ ∈ (Πd)′, (5)

λ(f − Ln(f)) = RΛ,λ(f) = dn+1[Λ(0), . . . , Λ(n), λ; f ]. (6)

We call λ- remainder the value RΛ,λ, for a certain linear functional Λ.

In [1] C. de Boor and A. Ron proves that, for a given set of points, Θ,
always exists a minimal interpolation space,

ΠΘ = (ExpΘ)↓= span{g↓; g ∈ ExpΘ}, (7)

with ExpΘ = span{eθ; θ ∈ Θ} and f↓= Tjf , with j the smallest integer for
which Tjf � =0, Tjf being the Taylor polynomial of degree ≤ j and eθ(z) =
eθ·z.

In the case of an arbitrary set of functionals, Λ, a minimal interpolation
space is given by

HΛ↓= span{g↓; g ∈ HΛ}, with HΛ = span{λν ; λ ∈ Λ}. (8)

We denoted by λν the generating function of the functional λ ∈ Λ.

2 Interpolation by weights

Definition 3 Let X = {x1, . . . , xN} ⊂ R2 be a set of different points and

W = {(w1
1 , . . . , w

1
N ), . . . , (wN

1 , . . . , wN
N )} ⊂ ZN

+ (9)
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be a set of weights, such that the of functionals

Λ = {λk | λk = δyk
, yk =

N∑
i=1

wi
kxi; k = 1, . . . , N}, (10)

be linear independent.

We name the interpolation problem given by the set of conditions Λ inter-
polation by weights.

Our aim is to find a minimal interpolation space for the conditions (10)
and to derive a formula for the remainder in the interpolation by weights.

Proposition 1 The weights used in the interpolation by weights satisfy the
equality:

N∑
i=1

(wk
i − wk

l )xi �= 0, ∀k �= l, k, l ∈ {1, . . . , N}. (11)

The conditions (7) express linear independence of functionals from (10).

Proposition 2 The interpolation by weights scheme is an ideal interpolation
scheme.

Theorem 3 A minimal interpolation space for the conditions of the interpo-
lation by weights is

HΛ↓= ΠY = span{eyk
= | yk ∈ Y ; k = 1, . . . , N}, (12)

Y = {yk =
N∑

i=1

wi
kxi; k = 1, . . . , N}. (13)

Proof: We use the relations (8) and the fact that, for the functionals in
the interpolation by weights, the generating function is λν

k = eyk
.

Let us denote by n the order of the minimal interpolation space ΠY . For
this minimal interpolation space, there exists a Newton basis, that is, the
functionals in Λ can be reindexed and put into blocks, using the sequence of
index sets {I0, . . . , In}. Let Λ(k) = {λ[k]

r }, k ∈ {0, . . . , n}, r ∈ {1, . . . , nk},
nk = #Ik, the functionals corresponding to the set of multiindices Ik. We
associate to the blocks Λ(k) the corresponding blocks of points

Y (k) = {y[k]
r }, k ∈ {0, . . . , n}, r ∈ {1, . . . , nk}. (14)
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Polynomials pα, with α ∈ Jk = Ik\Ik−1, are denoted by p
[k]
i , k ∈ {0, . . . , n}; i ∈

{1, . . . , nk}.
Then the followings relations hold:

λ
[k]
i (p[k]

j ) = δi,j ⇒ δ
y
[k]
i

(p[k]
j ) = δi,j , ∀k = 0, n; i, j = 1, nk, (15)

λ
[l]
i (p[k]

j ) = 0 ⇒ δ
y
[l]
i

(p[k]
j ) = 0, ∀l < k; i = 1, nk; j = 1, nl. (16)

Proposition 3 If we reindex the weights from (9), such that

y
[k]
i =

N∑
j=1

c
[k]
i,jxj , (17)

and denote by

C [k] = (c[k]
j,i); P [k] = (p[k]

i (xj)); k = 0, . . . n; j = 1, . . . , N ; i = 1, . . . , nk

the blocks matrix C [k] and P [k], with nk columns, then the matrix

M = CT · P (18)

is a block matrix of the same type with C and P , left triangular and with
unitary diagonal .

Proof: Obviously results from (15), (16) and (17).
Taking in Definition 2, Λ = {δyλ

: λ ∈ Λ} and λ = δx, we can formally
write

dk+1[Λ(0), . . . , Λ(k), λ; f ] = dk+1[Y (0), . . . , Y (k), x; f ]. (19)

We want to give an integral form for the divided difference given in Defi-
nition 2, that is for the remainder in the interpolation by weights.

Using the model in [3] we introduce the notion of path in a multiindices
set and consider the following elements:

1. A path, µ ’in In is µ = (µ0, . . . , µn); µk ∈ Jk = Ik \ Ik−1; k = 0, n;

2. Cn is the set of all paths. The number of path is Nc =
∏n

k=0 nk, nk =
card Jk;

3. Cn(α) is the set of paths µ ∈ Cn having the property that µn = α;

4. The set of functionals according to a path µ ∈ Cn: Λµ = {λµ0 , . . . , λµn};
(µ0, . . . , µn) ∈ Cn;

5. The set Y µ = {yλµ0
, . . . , yλµn

} = {yµ0 , . . . , yµn}; (µ0, . . . , µn) ∈ Cn;
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6. The points blocks Y (k) = {yλ| λ ∈ Λ(k)};

7. The number Πµ(Λµ) = Πµ(Y µ) =
∏n−1

i=0 pµi(yµi+1);

8. The differential operator Dn
Y µ = Dyµn−yµn−1

. . . Dyµ1−yµ0
.

We will need the application f → ∫
Θ

f , Θ = {θ0, . . . , θk} ⊂ R2, where

∫

Θ

f =

1∫

0

s1∫

0

· · ·
sk−1∫

0

f (θ0 + s1(θ1 − θ0) + · · · + sk(θk − θk−1)) · dsk . . . ds1.

Theorem 4 Let Y be the set of the associated points given in (14). Then

dn+1[Y (0), . . . , Y (n), x; f ] =
∑

µ∈Cn

pµn(x)Πµ(Y µ)
∫

[Y µ,x]

Dx−yµn
Dn

Y µf +(20)

+
n∑

j=1

∑
µ∈Cj−1

∑
β∈I′

j

p⊥β (x)Πµ(Y µ)
∫

[Y µ,x]

Ddµj−1,β
Dj−1

Y µ f, ∀n ∈ N, x ∈ R2.

Proof: We use the definition of the interpolation by weights, the Theorem
3 from [3] and the equality:

n∑
j=1

∑
µ∈Cj−1

∑
β∈I′

j

p⊥β (x)Πµ(Y µ)
∫

[Y µ,x]

Ddµj−1,β
Dj−1

Y µ f =

=
∑
β∈I′

n

p⊥β (x)
∑

j=|β|

∑
µ∈Cj−1

Πµ(Y µ)
∫

[Y µ,x]

Ddµj−1,β
Dj−1

Y µ f, ∀n ∈ N, x ∈ R2.

Corollary 1 Let g ∈ Π2 and g(D) be the differential operator with constant
coefficients associated to it. The following equality holds

(g(D) (Ln(f))) (x) = (21)

=
n∑

j=1

∑
α∈Ij

∑
µ∈Cj−1

(g(D)pα)(x)pµj−1 (yα)Πµ(Y µ)
∫

[Y µ,yα]

Dyα−yµj−1
Dj−1

Y µ f.

Proof: We take in Theorem 2 the functional λ by λg = g(D), we apply
Theorem 4 , we replace n + 1 by |α|, x with yα and take into account that
p⊥β (yα) = 0, ∀yα ∈ Y . We obtain:
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(g(D) (Ln(f))) (x) =
∑

α∈In

(g(D)pα)(x)
∑

µ∈C|α|−1

pµ|α|−1(yα)Πµ(Y µ)·

· ∫
[Y µ,yα]

Dyα−yµ|α|−1
D

|α|−1
Y µ f.

Rearranging the sums, we obtain (21).

Corollary 2 f(yγ) =
∑

|α|=|γ|+1

pα(yγ)d|α|[Y (0), . . . , Y (|α|−1), yα; f ]+

+d|γ|[Y (0), . . . , Y (|γ|−1), yγ ; f ]. (22)

Proof: pα(yβ) = 0, ∀α �= β, |β| ≤ |α| and pα(yα) = 1.
Using the equality (Ln(f))(yγ) = f(yγ), ∀yγ ∈ Y , and (5) we obtain (22).

Theorem 5 Let f ∈ Cn+1(R2) and Ω ⊂ R2 be a convex domain containing
the associated points yk, k ∈ {1, . . . , n} in the interpolation by weights. Then,
for every x ∈ Ω, the following inequality holds:

|(f − Ln(f))(x)| ≤ ‖f‖n+1,Ω

(n + 1)!

∑
α∈Jn

2∑
i=1

|pα(x)(ξi − (ξα)i)| cα + (23)

+
n∑

j=1

‖f‖j,Ω

j!

∑
β∈I′

j

|p⊥β (x)|bj,β ; x = (ξ1, ξ2) ∈ Ω,

cα, bj,β ∈ R are constants independent of x, given by:

cα =
∑

µ∈Cn(α)

|Πµ(Y µ)|
∑

(β1,...,βn)∈{1,2}n

∣∣(yµn − yµn−1)βn . . . (yµ1 − yµ0)β1

∣∣

bj,β =
∑

µ∈Cj−1

|Πµ(Y µ)|·

·
∑

(γ1,...,γj)∈{1,2}j

∣∣(dµj−1,β)γj (yµj−1 − yµj−2 )γj−1 . . . (yµ1 − yµ0)γ1

∣∣

and

‖f‖j,Ω = sup
y∈Ω

max
|β|=j

∣∣∣∣ ∂j

∂yβ
f(x)

∣∣∣∣ , β ∈ N2.

Proof: ∑
µ∈Cn

pµn(x)Πµ(Y µ)
∫

[Y µ,x]

Dx−yµn
Dn

Y µf+
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n∑
j=1

∑
µ∈Cj−1

∑
β∈I′

j

p⊥β (x)Πµ(Y µ)
∫

[Y µ,x]

Ddµj−1,β
Dj−1

Y µ f =

=
∑

α∈Jn

2∑
i=1

pα(x) (ξi − (ξα)i)
∑

µ∈Cn(α)

Πµ(Y µ)
∫

[Y µ,x]

DeiDn
Y µf+

+
∑
β∈I′

n

p⊥β (x)
n∑

j=|β|

∑
µ∈Cj−1

Πµ(Y µ)
∫

[Y µ,x]

Ddµj−1,β
Dj−1

Y µ f.

But, for x = (ξ1, ξ2) ∈ R2, we have:

Dn
Y µf =

∑
(β1,...,βn)∈{1,2}n

(yµn − yµn−1)βn . . . (yµ1 − yµ0)β1 ·
∂nf

∂ξβ1 . . . ∂ξβn

.

We can act similarly for Dj−1
Y µ f . Taking into account

∫
Θ

f = 1
k!f(ξ), we

obtain (23).
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