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ON THE APPROXIMATION OF

INCONSISTENT INEQUALITY SYSTEMS

Elena Popescu

Abstract

In this paper is analyzed the minimal correction problem for an in-
consistent linear inequality system. By the correction we mean avoiding
its contradictory nature by means of relaxing the constraints. When the
system of inequalities Ax ≤ b has no solutions, we are interested in a vec-
tor that satisfies the system in a Least Squares (LS) sense, i.e. a vector
x ∈ Rn that minimizes the quantity

∥∥(Ax − b)+
∥∥

2
, where (Ax − b)+

is the vector whose ith component is max
{
(Ax − b)i , 0

}
. In fact, the

right-hand side (RHS) vector is corrected. Often, in the real world it
is more expedient to correct some submatrix of the augmented matrix
(A, b), i.e. the RHS vector as well as some rows and some columns of
the matrix A.

1. Correction of RHS vector. Least Squares problem for linear
inequalities

Consider the system of linear inequalities

Ax ≤ b, (1)

where A ∈ Mm×n(R), b ∈ Rm, x ∈ Rn. Because in the real life the numerical
data for the system (1) are not exactly determined, they are known by approx-
imation. Approaches to the problem of solving linear systems and different
solution concepts are presented in [PS1] . A method to obtain the minimum-
norm solution of a large-scale system of linear inequalities, when the vector
b is perturbed is included in [Po1]. When the system is inconsistent, we are
interested in vectors satisfying the system (1) in LS sense, that is, vectors
x ∈ Rn solving

Key Words: Inconsistent inequality systems, Optimal correction, Constrained least-
squares problems, QR-factorization

Mathematical Reviews subject classification: 90C25

109



110 Elena Popescu

min
1
2

∥∥(Ax − b)+
∥∥2

2
, (2)

where (Ax − b)+ is the m− vector whose ith component is max {(Ax − b)i , 0}
and ‖.‖2 is the Euclidean norm.The problem to find an LS solution to the
system (1) is a natural extension of the equality linear LS problem.
In [Ha], S. P. Han characterized the LS solutions for linear inequalities and
proposed a method for finding one of these solutions in a finite number of
iterations.
When the variables are restricted to lie in certain prescribed intervals, which
may reflect some a priori information about the desired solution, we have⎧⎨

⎩
min 1

2

∥∥(Ax − b)+
∥∥2

2
subject to

li ≤ xi ≤ ui (i = 1, ..., n) ,

(3)

where li, ui ∈ R (i = 1, ..., n).
In the papers [Po2] and [PS2] we present the constrained LS problem for

linear inequalities. Two types of constraints are considered: linear equalities
and lower and upper bounds. A direct method based on QR - decomposition
for the least-squares problems of linear inequalities with linear equality con-
straints is presented. In the case where the variables are within meaningful
intervals, the QR - factorization is updated when columns are added to, or
removed from the matrix.

2. Least Squares problem for linear inequalities with linear equal-
ity constraints.

Consider the following problem⎧⎨
⎩

min 1
2

∥∥(Ax − b)+
∥∥2

2
subject to

Bx = d,

(4)

where A ∈ Mm×n(R), b ∈ Rm, x ∈ Rn, B ∈ Mr×n(R), d ∈ Rr and
rank(B) = r.
We start by computing the QR - factorization of the matrix BT ∈ Mn×r(R) :

QT BT =
(

R
0

)
r
n − r

, (5)

where Q ∈ Mn×n(R) is an orthogonal matrix (QT Q = In) and
R ∈ Mr×r(R) is upper triangular. We partition AQ and QT x as follows:
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AQ = ( A1 A2)
r n − r

and QT x =
(

u
w

)
r
n − r

.

Then ∥∥(Ax − b)+
∥∥2

2
=

∥∥∥(
AQQT x − b

)
+

∥∥∥2

2
=

∥∥(A1u + A2w − b)+
∥∥2

2
.

On the other hand, from (5), it follows that:

B =
(
RT 0

)
QT

and

Bx =
(
RT 0

) (
u
w

)
= RT u.

Thus, u is determined by forward elimination, from the lower triangular system
RT u = d. The vector w is obtained by solving the unconstrained LS problem

min
w

∥∥(A2w − e)+
∥∥2

2
,

where e = b−A1u, i. e. w is an LS solution for the system of linear inequa-

lities A2w ≤ e. The solution of the problem (4) is x = Q

(
u
w

)
.

3. Least Squares problem for linear inequalities with linear equal-
ity constraints and bounds on the variables

Consider the following problem⎧⎪⎪⎨
⎪⎪⎩

min 1
2

∥∥(Ax − b)+
∥∥2

2
subject to

Bx = d
li ≤ xi ≤ ui (i = 1, ..., n),

(6)

where A ∈ Mm×n(R), b ∈ Rm, x ∈ Rn, B ∈ Mr×n(R), d ∈ Rr and
rank(B) = r. Some developments in general nonlinear optimization with
bounds on the variables have generated methods for the problem⎧⎪⎪⎨

⎪⎪⎩
min f(x)

subject to
ci(x) = 0 (i = 1, ..., r)
li ≤ xi ≤ ui (i = 1, ..., n),
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where f(x) and ci(x) are twice continuously differentiable functions. The
function

f(x) =
1
2

∥∥(Ax − b)+
∥∥2

2
(7)

is a convex continuously differentiable function. Unfortunately, it is not twice
differentiable and these methods are not applicable to the problem (6). In
the paper [MP ] is presented a method for solving convex programs subject to
linear constraints and bounds on the variables:⎧⎪⎪⎨

⎪⎪⎩
min f(x)

subject to
Bx = d
li ≤ xi ≤ ui (i = 1, ..., n) ,

(8)

where f is a convex continuously differentiable function, B is an r × n real
matrix and d ∈ Rr. It is an adaptive method for determining the constraints
that are active at optimal solution x̂, i. e. the components of x̂ which are
exactly at one of their bounds.

For any feasible point x, we denote by Nl(x) and Nu(x) the sets of indices
for which the corresponding components of the point x are fixed at one of its
bounds, that is

Nl(x) = {i/xi = li}
Nu(x) = {i/xi = ui} .

Let N(x) = Nl(x) ∪ Nu(x). If x̂ is an optimal point for the problem (8), then
x̂ is also optimal for the “restraint” problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min f (x) ,
subject to

Bx = d,
xi = li, i ∈ Nl(x̂)
xi = ui, i ∈ Nu(x̂),

i. e. the ith constraints for which li < x̂i < ui can be excluded without
no changing the optimal solution. In order to determine the sets Nl(x̂) and
Nu(x̂), the method proceeds by solving a finite number of smaller subproblems
consisting of only equality constraints, such a subproblem having the form of
convex minimization over a linear subspace.

The considered method develops on two levels. At each iteration of a higher
level it is decided which variables are fixed at one of its bounds and which of
them are free, that is, strictly between its bounds.
At lower level, a subproblem is solved at a time, only in the subspace of the
free variables while keeping the fixed variables unchanged.
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Consider the subproblem at iteration p:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min f(x)
subject to

Bx = d
xi = li, i ∈ Np

l

xi = ui, i ∈ Np
u .

(9)

If the number of fixed variables at iteration p is k, then the number of the free
variables is q = n − k. Assume that F p is the complement of Np = Np

l ∪ Np
u ,

that is, the set of indices of free variables at iteration p. We also may assume
without loss of generality, that

F p = {1, ..., q} .

Then we have the following partitions:

x =
(

z
z

)
, B = (C D),

where the subvector z contains the first q components of x (the free part), while
z contains the last n− q components (the fixed part). The matrix C ∈ Mr×q

(R) contains the first q columns of B. The columns of B which are not in C
form a matrix denoted by D.

Let g(z) = f(
z
z

).With these notations, the subproblem (9) reduces to

finding a vector z(p) ∈ Rq solving the problem⎧⎨
⎩

min g(z)
subject to

Cz = e,
(10)

where e = d − Dz. The optimal point for (9) is

yp =
(

z(p)

z

)
.

Returning to the problem (6), with f of the form (7), consider the partition
A = (G H), where G ∈ Mm×q (R) contains the first q columns of A. Then
the subproblem (10) becomes the following LS problem with linear equality
constraints: ⎧⎨

⎩
min ‖(Gz − h)+‖2

2

subject to
Cz = e,

(11)
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where h = b − Hz.
The key step in implementing the method for problem (8) is updating of

the QR - factorization of matrix CT from (11) when rows are added to, or
removed from the matrix. În the first case of method, a fixed variable leaves
a bound and becomes free. This means that a column has been appended to
C. In the second case at least one additional variable hits one of their bounds.
The columns corresponding to these variables are deleted from C. Since we
have the QR - factorization of CT , we may need to calculate the QR - fac-
torization of a matrix C

T
that is obtained by appending a row to CT or by

deleting a row from CT . Methods for modifying matrix factorizations are pre-
sented in [GL].

4. Correction of the augmented matrix (A, b)
Consider the linear inequality system:{ 〈ai, x〉 ≤ bi, i ∈ M0 ∪ M1

xj ≥ 0, j = 1, ..., n,
(12)

where aT
i , i = 1, ..., m, forms the ith row of the matrix A, bi is the ith compo-

nent of b, M0, M1 are finite index sets and 〈., .〉 stands for the standard inner
product in Rn.
With system (12) we associate the corrected system:⎧⎨

⎩
〈ai, x〉 ≤ bi, i ∈ M0

〈ai + h′
i, x〉 ≤ bi − hi,n+1, i ∈ M1

xj ≥ 0, j = 1, ..., n,
(13)

where h′
i ∈ Rn and hi,n+1 ∈ R. Let hi ∈ Rn+1, hi = (h′

i, hi,n+1) = (hi1,...,hi,n+1)
be the vector correcting the ith row of system (12), i ∈ M1.
The rows with indices i ∈ M0 are not corrected (are assumed to be fixed). We
can fix also arbitrary columns of the augmented matrix (A, b), with indices
j ∈ J0 ⊂ {1, ..., n + 1} . Thus we set hij = 0, i ∈ M1, j ∈ J0.
Let M1 = {i1, ..., ip} and J1 = {1, ..., n + 1}�J0 be the complement of J0, i.e.
the set of indices of columns to be corrected.

The correction problem of system (12) may be expressed as

min {Φ(H)/H ∈ S} (14)

where H(hij)p×(n+1) is the matrix whose entries are hij ,

S = {H/hij = 0, i ∈ M1, j ∈ J0 and system (13) is consistent} .

Φ (H) is the correction criterion estimating the quality of correction.
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In [V a] A.A. Vatolin proposed an algorithm based on linear programming,
which finds minimal corrections of the constraint matrix and RHS vector.

5. The LP-based algorithm for solving correction problem (14).
The main difficulties in solving the problem (14) is that left-hand sides of

system (13) are bilinear in hi and x. The idea of Vatolin algorithm is to take
hi of the form:

hi = tic, i ∈ M1, ti ∈ R,

where c ∈ Rn+1, c = (c1,...,cn+1) is defined bellow.
Thus, the problem (13) is also bilinear, but it can be converted into a linear

one by:
a) changing variable x ∈ Rn for variable h0 ∈ Rn+1 so that

x = h−1
0,n+1(h01, ..., h0,n)T ,

where it is assumed that 0 /∈ M1, h0 = (h01, ..., h0,n, h0,n+1), h0,n+1 > 0 and
by

b) introducing an additional constraint

〈c, h0〉 = −1.

Consequently, the algorithm reduces solving correction problem (14) to solving
a linear programming problem.
In [Po4] the correction problem is analyzed by using two criteria ‖.‖∞ and
‖.‖1 . If Φ(H) takes form:

Φ(H) = max
i,j

|hij | (15)

then the vector c ∈ Rn+1 is of the form

cj =
{

0, j ∈ J0

−1, j ∈ J1.

We have to solve one linear program:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min θ

subject to
〈di, h0〉 ≤ 0, i ∈ M0

〈di, h0〉 ≤ ti, i ∈ M1

0 ≤ ti ≤ θ, i ∈ M1∑
j∈J1

h0,j = 1

h0,j ≥ 0, j = 1, ..., n + 1,

(16)
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where di = (ai,−bi) ∈ Rn+1, i ∈ M0 ∪ M1. Using the criterion (15), the rows
i ∈ M1 and all columns j ∈ J1 are effectively corrected.

If Φ(H) takes form:
Φ(H) =

∑
i,j

|hij | ,

then the number of linear programming problems which will be solved is |J1| .
At each linear programming problem, only a column of augmented matrix
(A, b) is corrected. (See [Po4]).

Let K be the set of feasible solutions (θ, t, h0) of problem (16), where vector
t is composed of components ti, i ∈ M1. If K = φ then S=φ. Else, for each
optimal solution (θ, t, h0) of the problem (16) it is obtained the optimal value
σ = θ, the optimal correction matrix H = H(t) with (i, j) component

hij =
{

0, j ∈ J0

−ti, j ∈ J1
, i ∈ M1

and the solution x of the corrected system

x = h−1
0,n+1(h01, ..., h0,n)T .

In the paper [Po3] we use interior-point techniques for solving the associ-
ated linear program.

Interior-point methods are iterative methods that compute a sequence of
strict nonnegative iterates (it is assumed that h0,n+1 > 0) and converging to
an optimal solution. This is completely different from the simplex method
which explores the vertices of the polyhedron and an exact optimal solution
is obtained after a finite number of steps.

Interior-point iterates tend to an optimal solution but never attain it. Yet
an approximate solution is sufficient for our purpose. In addition, these meth-
ods are practically efficient and can be used to solve large-scale problems. For
such of problems, the chances that the system is self-contradictory (inconsis-
tent) are high.
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[PS1] E. Popescu, Mirela Ştefănescu, Sisteme liniare inconsistente, An. Şt.
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