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ON A MODIFIED KOVARIK ALGORITHM

FOR SYMMETRIC MATRICES ∗

Constantin Popa
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Abstract

In some of his scientific papers and university courses, professor Sil-
viu Sburlan has studied integral equations (see the list of references). Be-
side the theoretical qualitative analysis concerning the existence, unique-
ness and other properties of the solution, he was also interested in its
numerical approximation. In the case of first kind integral equations
with smooth kernel (e.g. continuous) it is well known that, by applying
classical discretization techniques (as collocation or projection methods)
we get (very) ill-conditioned symmetric positive semi- definite linear sys-
tems. This will cause big troubles for both direct or iterative solvers.
Moreover, the system matrix is usually dense, thus classical precondi-
tioning techniques, as Incomplete Decomposition can not be used. One
possibility to overcome this difficulty is to use orthogonalization algo-
rithms, which also “compress” the spectrum of the system matrix, by
transforming it into a well-conditioned one. Unfortunately, the well
known Gram-Schmidt method fails in the case of singular matrices or
is totally unstable for ill-conditioned ones. In a previous paper, the
author extended an iterative approximate orthogonalization algorithm
due to Z. Kovarik, to the case of arbitrary rectangular matrices. In the
present one, we adapt this algorithm to the class of symmetric (posi-
tive semi-definite) matrices. The new algorithm has similar convergence
properties as the initial one, but requires much less computational ef-
fort per iteration. Some numerical experiments are also described for a
“model problem” first kind integral equation.
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1 Kovarik’s original algorithm

Let A be an m×n matrix and (A)i, A
t, A+ its i-th row, transpose and Moore-

Penrose pseudoinverse (see [1]), respectively. By gk2(A) we shall denote its
generalized spectral condition number defined as the square root of the ra-
tio between the biggest and smallest singular values; 〈·, ·〉, ‖ · ‖ will be the
Euclidean scalar product and norm on some space IRq. For a square matrix
B, σ(B), ρ(B), ‖ B ‖ will denote its spectrum, spectral radius and spectral
norm, respectively. All the vectors appearing in the paper will be considered
as column vectors. Let (ak)k≥0 be the sequence of real numbers defined by
the Taylor’s series

(1− t)−
1

2 = a0 + a1t + a2t
2 + . . . , t ∈ (−1, 1), (1)

i.e.

aj =
1

22j

(2j)!

(j!)2
, j ≥ 0 (2)

and (qk)k≥0 a given sequence of positive integers. Then, the ”approximate
orthogonalization” method proposed by Z. Kovarik in [2] (Algorithm A, page
386) and extended by the author in [6] is the following.
Algorithm KOA. Let A0 = A; for k = 0, 1, . . . , do

Hk = I −AkAt
k, Ak+1 = (I + a1Hk + a2H

2
k + . . . + aqk

H
qk

k )Ak, (3)

where by I we denoted the corresponding unit matrix. Let us suppose that

‖ A ‖ < 1. (4)

Then, the following result was proved in [6].

Theorem 1 Let (Ak)k≥0 be the sequence of matrices defined by (2) − (4).
Then

lim
k→∞

Ak =
[

(AAt)
1

2

]+

A = A∞. (5)

Moreover, we have
‖ Ak −A∞ ‖ ≤ δsk , (6)

with sk given by

sk =
k−1
∏

j=0

(1 + qj) ≥ 2k, k ≥ 1 (7)

and
δ = 1− σ2, (8)

where σ is the smallest nonzero singular value of A.
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Remark 1 Relations (6) − (7) tell us that the algorithm KOA converges at
least quadratically. Moreover, the assumption (4) is not restrictive. It can be
obtained by a scaling of the matrix A, of the form

A :=
1

√

‖ A ‖∞‖ A ‖1 +1
A, (9)

where ‖ · ‖∞, ‖ · ‖1 are the well known matrix norms (see e.g. [1]).

Remark 2 If U tAV = diag(σ1, . . . , σr, 0, . . . , 0), r = rank(A) is a singular
value decomposition of A and Ĩ is the m×m matrix defined by

Ĩ = diag(1, 1, . . . , 1, 0, . . . , 0) (10)

(with 1’s in the first r positions) then, the following “approximate orthogonal-
ization” relation holds with respect to the rows of the matrix A∞ from (5) (see
[6])

〈(A∞)i, (A∞)j〉 = 〈Ĩ(U)i, (U)j〉, (11)

which for Ĩ = I (i.e. for A with linearly independent rows) becomes a classical
orthogonality (because the matrix U is orthogonal), as for the Gram-Schmidt
algorithm (see e.g. [1]). Moreover, the following result can be proved with
respect to the generalized spectral condition number of the matrices Ak

lim
k→∞

gk2(Ak) = gk2(A∞) = 1. (12)

This tells us that the generalized spectral condition number of A improves
during the application of (3), by reaching at the limit the ideal value 1.

2 The case of symmetric matrices

Let us now suppose that A is an n×n symmetric matrix. Then, if A satisfies (4)
the above algorithm KOA applies for it and all the results from the previous
section rest true. Moreover, it can be easily proved that all the matrices Ak

will be symmetric, thus (3) will become

Hk = I −A2
k, Ak+1 = (I + a1Hk + a2H

2
k + . . . + aqk

H
qk

k )Ak. (13)

Unfortunately, a big computational effort will be required for the product A2
k.

We can eliminate this by considering the following modified version.
Algorithm KOAS. Let A0 = A; for k = 0, 1, . . . , do

Hk = I −Ak, Ak+1 = (I + a1Hk + a2H
2
k + . . . + aqk

H
qk

k )Ak (14)
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Remark 3 We have to observe that the above algorithm can not be derived
from the former KOA; indeed Hk from (14) is different from Hk in (3), but
Ak+1 is computed with a similar formula as

Ak+1 = f(Hk)Ak, (15)

with fk : IR −→ IR the function defined by

fk(x) = 1 + a1x + · · ·+ aqk
xqk , k ≥ 0. (16)

Concerning the convergence of the new algorithm KOAS, we have the
following main result of the paper.

Theorem 2 Let us suppose that A is symmetric, satisfies (4) and is positive
semi-definite, i.e.

〈Ax, x〉 ≥ 0, ∀x ∈ IRn. (17)

Then, the sequence (Ak)k≥0 generated with the algorithm KOAS converges
and

lim
k→∞

Ak = A+A. (18)

Proof. Because A is symmetric it exists an orthogonal n × n matrix Q

such that

QtAQ = QtA0Q = D0 = diag(λ1, . . . , λr, 0, . . . , 0), (19)

where r = rank(A) and (see(4) and (17))

λi ∈ (0, 1),∀i = 1, . . . , r. (20)

Then, by using (14)-(16) and (19) we obtain

Qt(f0(H0))Q = diag(f0(δ1), . . . , f0(δr), f0(1), . . . , f0(1)) (21)

with δi given by
δi = 1− λi ∈ (0, 1),∀i = 1, . . . , r. (22)

Thus, from (21) and (15) (for k = 0) we get

A1 = f0(H0)A0 = QD1Q
t, (23)

with
D1 = diag(f0(δ1)λ1, . . . , f0(δr)λr, 0, . . . , 0). (24)

From (19)-(24), by mathematical induction we get that, if

Ak = QDkQt, (25)
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with
Dk = diag(λ

(k)
1 , . . . , λ(k)

r , 0, . . . , 0), (26)

then
Ak+1 = QDk+1Q

t, (27)

with

Dk+1 = diag(fk(1− λ
(k)
1 )λ

(k)
1 , . . . , fk(1− λ(k)

r )λ(k)
r , 0, . . . , 0). (28)

Thus, for the convergence of the sequence (Ak)k≥0 it suffices to analyse the
behaviour of the sequence of real numbers (xk)k≥0, recursively defined by

x0 ∈ (0, 1), xk1 = fk(1− xk)xk, k ≥ 0. (29)

Because x0 > 0 and fk(x) > 1,∀x > 0, k ≥ 0 we obtain

x1 − x0 = (f0(1− x0)− 1)x0 > 0.

Now, because fk(x) < 1√
1−x

,∀x ∈ (0, 1), k ≥ 0 we obtain

x1 − 1 = f0(1− x0)x0 − 1 <
x0

√

1− (1− x0)
− 1 =

√
x0 − 1 < 0,

thus
x1 > x0 and x1 ∈ (0, 1). (30)

Then, by an induction argument we get

x0 ≤ xk < xk1 < 1, ∀k ≥ 0, (31)

thus
∃ lim

k→∞
xk = x∗ ∈ (0, 1]. (32)

We shall prove that x∗ = 1. Let us suppose that this is not true, i.e.

x∗ < 1 (33)

and let q∗ be the integer defined by

q∗ = min{qk, k ≥ 0} ≥ 1. (34)

Let gk(x) = 1 + a1x + · · ·+ akxk, x ∈ IR, k ≥ 0. Then (see (1))

lim
k→∞

gk(x) =
1√

1− x
, gk(x) <

1√
1− x

, k ≥ 0, x ∈ (−1, 1). (35)
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Then, for an arbitrary fixed k ≥ 0 and yk = 1 − xk ∈ (0, 1) we would obtain
(by also using (16) and (34))

fk(yk) ≥ 1 + a1yk + · · ·+ aq∗(yk)q∗ = gq∗(yk), (36)

thus

xk1− xk = (fk(yk)− 1)xk ≥ (gq∗(yk)− 1)xk = (gq∗(1− xk)− 1)xk. (37)

By taking the limit in (37) we would obtain (also using (32))

0 = x∗ − x∗ ≥ (gq∗(1− x∗)− 1)x∗ > 0, (38)

where the last strict inequality holds because x∗ > 0 and x∗ < 1 (and thus
gq∗(1 − x∗) > 1). But, the conclusion (38) is false, thus our assumption (33)
is so. It then results that x∗ = 1 and (see (25) - (28))

lim
k→∞

Ak = Qdiag(1, . . . , 1, 0, . . . , 0)Qt. (39)

But, from (19) we obtain that (see also [1])

A+ = Qdiag(
1

λ1
, . . . ,

1

λr

, 0, . . . , 0)Qt, (40)

thus A+A will be exactly the matrix in the right hand side of (39) and the
proof is complete.

Corollary 3 If the matrix A is not positive semi-definite, then the sequence
(Ak)k≥0 generated with the KOAS algorithm is divergent.

Proof. In this case, at least one eigenvalue λi in (19)-(20) will be in (−1, 0).
This means that in the recursion (29) we shall start with x0 ∈ (−1, 0), thus

1− x0 > 1. (41)

Then, by using (16), (41) and (34) we shall obtain

f0(1− x0) = 1 + a1(1− x0) + · · ·+ aq0
(1− x0)

q0 ≥

1 + a1(1− x0) + · · ·+ aq∗(1− x0)
q∗ ≥ 1 + a1(1− x0) > 1 + a1 > 1. (42)

From (41)-(42) we shall get

x1 = f0(1− x0)x0 < (1 + a1)x0 < x0 < 0.
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Then, using similar arguments as before we shall obtain

f1(1− x1) ≥ 1 + a1(1− x1) + · · ·+ aq∗(1− x1)
q∗ ≥ 1 + a1(1− x1) > 1 + a1

and
x2 = f1(1− x1)x1 < (1 + a1)x1 < (1 + a1)

2x0.

A recursive argument will give us that

xk < (1 + a1)
kx0 < 0, ∀k ≥ 1,

from which we shall obtain

lim
k→∞

xk = −∞,

i.e. (xk)k≥0 diverges and the proof is complete.

Corollary 4 For the generalized spectral conditions numbers of the matrices
Ak, k ≥ 0 generated with the algorithm KOAS, the following holds

lim
k→∞

gk2(A) = gk2(A
+A) = 1. (43)

Proof. It results directly from Theorem 1 and the definition of gk2(A).

Remark 4 A similar approximate orthogonalization property as in (11) holds
for the rows of the limit matrix A+A from (18).

Remark 5 Unfortunately, we have not yet a theoretical analysis of the con-
vergence rate of the algorithm KOAS. But, numerical experiments show that it
is of an order smaller with one unit than that of the original KOA algorithm.

3 Numerical experiments

We considered in our tests the following first kind integral equation: for a
given function y ∈ L2([0, 1]), find x∗ ∈ L2([0, 1]) such that

∫ 1

0

k(s, t)x(t)dt = y(s), s ∈ [0, 1], (44)

with

k(s, t) =
1

1 + |s− t| , y(s) = ln[(1 + s)(2− s)]. (45)

Remark 6 The equation (44)− (45) has the solution x(t) = 1,∀t ∈ [0, 1].
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We discretized (44)-(45) by a collocation algorithm (see [3]) with the col-
location points

si = (i− 1)
1

n− 1
, i = 1, 2, . . . , n. (46)

Thus, we obtained the symmetric (positive definite) system

Ax = b, (47)

with the n× n matrix A and b ∈ IRn given by

Aij =

∫ 1

0

k(si, t)k(sj , t)dt, bi = y(si). (48)

The values gk2(A)), for different values of n are presented in Table 1. They in-
dicate that, for relatively small values of n the matrix A is very ill-conditioned.
We then tested the algorithms KOA and KOAS with

qk = 2, ∀k ≥ 0 (49)

and using the following three stopping rules

‖ Ak+1 −Ak ‖∞ ≤ 10−6, (50)

gk2(A) ≤ 10, (51)

gk2(A) ≤ 100. (52)

Because of its symmetry, the matrix A was scaled by (see (19))

A :=
1

‖ A ‖∞ +1
A, (53)

in order to obtain (4). The numbers of iterations neccessary to fulfill one the
stopping rules (50)-(52) are described in Tables 2 and 3.
Note. All the computations have been made with the Numerical Linear Alge-
bra software package OCTAVE, freely available under the terms of the GNU
General Public License, see www.octave.org.

Table 1. Conditioning of of A

n gk2(A)
16 3.7 105

32 6.7 106

64 1.14 108

128 1.8 109

256 3.0 1010
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Table 2. Results for algorithm KOA

n stop (50) stop (51) stop (52)
16 18 10 8
32 21 14 10
64 24 17 13
128 27 20 16

Table 3. Results for alg. KOAS

n stop (50) stop (51) stop (52)
16 37 14 11
32 41 18 15
64 45 22 19
128 49 26 23
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