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Abstract

The behavior of the incremental fields near the crack tips of a pre-

stressed monoclinic material in antiplane state is presented. Incremen-

tal displacement and stress fields are obtained using complex potentials.

Using Griffith’s energy criterion are given the critical values of the incre-

mental stress which produces crack propagation. The occurance of the

resonance phenomenon for monoclinic and for orthotropic composites is

studied in the paper.

1 Introduction

We consider a prestressed monoclinic linear elastic material representing a
fiber reinforced composite. We assume that the loss of internal stability for
the prestressed equilibrium state cannot take place. We suppose that the
monoclinic material is unbounded and contains a crack of length 2a, parallel
to the reinforcing fibers and to the initial applied stresses. We assume that
the crack faces are acted by antiplane tearing incremental stresses.

Using the theories of the Riemann-Hilbert function and Cauchy’s integral
we give the solution to our mathematical problem. Our first aim is to deter-
mine the behavior of incremental fields of our monoclinic material containing
a crack. The obtained results are presented in the Section 2 and 3. In Section
4 are presented the asymptotical behavior of the incremental fields necessary
to determine the values of the critical tearing stresses which are producing the
crack propagation; and this represents our second aim. In Section 5, our third
and last aim represents the study of the resonance phenomenon in monoclinic
composites containing a crack and particularly in orthotropic materials.
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2 Incremental fields equations for a monoclinic material.

We suppose that the whole space is occupied by a monoclinic material having
the initial deformed equilibrium configuration homogenous and locally stable.

Let
◦
σ be initial applied stress acting in the direction of reinforcing fibers of

our monoclinic material.
The constitutive matrix equation of a monoclinic material has the following

form (see [1],Chap.2) :


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. (2.1)

In Eq.(2.1) we used Voigt’s convention by which the tensional indices are re-
placed by matrix indices in the expressions of the stress and shear components
σi and εi, i = 1, 6. The elements Cij , i, j = 1, 6 of the stiffness matrix from
(2.1) represent the elasticities of the monoclinic material.

The fields equations of a monoclinic material in antiplane strain equilibrium
state are:
-displacement Eqs.

u1 = u2 = 0, u3 = u3(x1, x2); (2.2)

-strain Eqs.

ε11 = ε22 = ε33 = ε12 = 0, ε13 =
1

2
u3,1, ε23 =

1

2
u3,2; (2.3)

-stress Eqs.

σ11 = σ22 = σ33 = 0, σ23 = C44u3,2+C45u3,1, σ31 = C45u3,2+C55u3,1. (2.4)

Consequently, Cauchy’s first two equations are identically satisfied and the
third equation becomes:

σ13,1 + σ23,2 = 0. (2.5)

Using Eqs.(2.4)1 and (2.5) the equilibrium equation satisfied by u3 can be
written in the following form:

u3,22 + 2
C45

C44
u3,12 +

C55

C44
u3,11 = 0. (2.6)
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In the case of a prestressed monoclinic material by initially applied stress
◦
σ acting in the direction of the reinforcing fibers the incremental fields equa-
tions are obtained form Eq.(2.6) replacing the elasticity C55 by the coefficient

C55+
◦
σ

Equation (2.6) can be factorized as follows:

(
∂

∂x2
− µ1

∂

∂x1
)(

∂

∂x2
− µ2

∂

∂x1
)u3 = 0, (2.7)

where µ1 and µ2 are constant quantities.
The specific strain energy w of our monoclinic composite in antiplane state

has the following expression:

w = (C55+
◦
σ)ε2

13 + 2C45ε12ε23 + C44ε
2
23. (2.8)

Since the reference configuration of the material is locally stable, w is a

quadratic form. Hence the elasticities C44, C55 and C55+
◦
σ must satisfy

the following restrictions:

C44 > 0, C55 > 0, C44(C55+
◦
σ)− C2

45 > 0. (2.9)

The Eqs.(2.7) and (2.8) are equivalent and we have the following relations
between the coefficients µ1 and µ2 :

µ1 + µ2 = −2
C45

C44
, µ1µ2 =

C55+
◦
σ

C44
. (2.10)

Hence µ1 and µ2 are the roots of the algebraic equation

µ2 + 2
C45

C44
µ +

C55+
◦
σ

C44
= 0. (2.11)

Accordingly, we get

µ1,2 =
1

C44
(−C45 ± i

√
C44(C55+

◦
σ)− C2

45). (2.12)

From (2.9)3 we obtain that µ1 and µ2 are conjugate complex numbers.We
denote by µ the root µ1 and we have

µ = µ1 = µ2, (2.13)

where bar represents complex conjugation.
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The differential Eq.(2.7) satisfied by u3 becomes

(
∂

∂x2
− µ

∂

∂x1
)(

∂

∂x2
− µ

∂

∂x1
)u3 = 0. (2.14)

Introducing the complex variable z3 defined as below

z3 = x1 + µx2, (2.15)

the above differential equation (2.14) takes the following form:

∂2u3

∂z3∂z3
= 0. (2.16)

Thus we conclude that the antiplane elastic state can be represented in the
following way due to Guz (see[2]):

u3 = 2Ref(z3)

σ13 = 2Re(ρ1f
′(z3)) with ρ1 = C55+

◦
σ +C45µ

σ23 = 2Re(ρ2f
′(z3)) with ρ2 = C45 + C44µ, (2.17)

f3 = f3(z3) being an arbitrary analytic function depending by the complex
variable z3.

Introducing the analytic function

Φ(z3) = ρ2f(z3) (2.18)

we get the following representation of the incremental fields by the complex
potentials Φ(z3) and Ψ(z3):

u3 = 2Re ρ−1
2 Φ(z3)

σ13 = 2Re qΨ(z3); σ23 = 2Re Φ(z3), (2.19)

where
Ψ(z3) = Φ′(z3) and q =

ρ1

ρ2

. (2.20)

3 Antiplane crack in a prestressed monoclinic composite

We assume that the material contains a crack. Let be k = k(x1) the given
value of the applied incremental tearing stress antisymmetrical distributed
relative to the plane x2 = 0 and having the direction of x3 axis. Accordingly
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to the assumptions made in previous Sections the incremental state of the
composites will be an antiplane state relative to x1x2 plane.

The involved nominal stress σ23 must satisfy the following boundary con-
ditions on the two faces of the crack:

σ23(x1, 0
+) = σ23(x1, 0

−) = −k(x1), for |x1| < a, (3.1)

where k = k(x1) is the given value of the applied incremental tearing tangential
surface stress and plus (+) and minus (-) signs refer to the boundary values on
the upper and the lower faces of the crack. Also we must have the following
far fields conditions:

lim
r→∞

{u3(x1, x2), σ13(x1, x2), σ23(x1, x2)} = 0,

r =
√

x2
1 + x2

2. (3.2)

From the conditions (3.1) and (3.2) we obtain that on the two faces of the crack,
the complex potential Ψ(z3) define in (2.20), must to satisfy the equations:

Ψ+(x1) + Ψ
−

(x1) = −k(x1),

Ψ+(x1) + Ψ
+
(x1) = −k(x1), for |x1| < a. (3.3)

Using Eqs. (2.19), (2.20) and the conditions (3.2) we obtain:

lim
|z3|→∞

{Φ(z3),Ψ(z3)} = 0. (3.4)

Adding and substracting Equations (3.3) we get
(
Ψ+ + Ψ

)+
(x1) +

(
Ψ + Ψ

)−
(x1) = −2k (x1) ,

(
Ψ−Ψ

)−
(x1) +

(
Ψ−Ψ

)−
(x1) = 0, for |x1| < a. (3.5)

From the second condition we have

Ψ(z3) = Ψ(z3) for any z3 = x1 + µ1x2. (3.6)

and taking into account that the first boundary condition(3.5), represents a
homogenous Riemann-Hilbert problem (see[3], Chapter 6) the general solution
satisfy the far field conditions is

Ψ(z3) = Φ′(z3) = −X(z3)

2πi

∫ a

−a

k(t)

X+(t)(t− z3)
dt. (3.7)

In above relation X = X(z) represent Plemelj function and it has the following
expression:

X(z) =
1√

z2 − a2
and X+(t) =

1

i
√

a2 − t2
, for t ∈ (−a, a). (3.8)
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4 Asymptotic behavior of the incremental fields

For a small neighborhood of the crack tip consider that x1 ≈ a, x2 ≈ 0 and
obviously we have that z3 ≈ a. Consequently the Plemelj functions may be
approximated by

√
z2
3 − a2 =

√
2arχ(ϕ) (4.1)

with

χ(ϕ) =
√

cos ϕ + µ sinϕ (4.2)

and we obtain the following values of the involved complex potentials:

Ψ(z3) = − KIII

2
√

2πr

1

χ(ϕ)
,

Φ(z3) = −KIII

√
r

2π
χ(ϕ). (4.3)

In the Equations (4.3) KIII represents the stress intensity factor corresponding
to the third fracture mode and it has the following form:

KIII =
1

πa

a∫

−a

k(t)

√
a + t

a− t
dt. (4.4)

This quantity has the same expression as in the classical theory of brittle
fracture mechanics of elastic materials without initial stresses. Taking into
account the representation of incremental fields (2.19)-(2.20) and equations
(4.3)-(4.4) we obtain the following asymptotical representation:

u3 = −KIII

√
r

2π
Re

χ(ϕ)

ρ2

σ13 = − KIII√
2πr

Re
q

χ(ϕ)
and σ23 = − KIII√

2πr
Re

1

χ(ϕ)
. (4.5)

In that follows we shall assume that the given incremental stresses acting on
the crack forces have a constant value; i.e

k(x1) = k = const. > 0, for | x1 |< 0. (4.6)
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The expressions of the complex potentials and of the incremental fields become

Ψ (z3) =
κ

2

(
z3√

z2
3 − a2

− 1

)
,Φ(z3) =

κ

2

(√
z2
3 − a2 − z3

)
,

u3 = κReρ−1
2

(√
z2
3 − a2 − z3

)
,

σ13 = κReq

(
z3√

z2
3 − a2

− 1

)
, σ23 = κRe

(
z3√

z2
3 − a2

− 1

)
. (4.7)

Taking into account the Equations (4.1)-(4.2) and (4.7)3−5 we obtain the fol-
lowing asymptotic expressions of the incremental fields:

u3 = k
√

2arRe

√
cos ϕ + µ sin ϕ

ρ2

σ13 =
k
√

a√
2r

Re
q√

cosϕ + µ sin ϕ
, σ23 =

k
√

a√
2r

Re
1√

cosϕ + µ sin ϕ
. (4.8)

We observe that the incremental displacement u3 behaves like
√

r and the
stresses σ13 and σ23 like 1/

√
r near the crack tip. Now, we shall analyze the

behavior of the incremental fields of the crack line x2 = 0 behind and ahead the
crack. From Equations (2.12) and (2.17)3 we obtain that ρ2 is an imaginary
and it has the following expression:

ρ2 = i

√
C44(C55+

o
σ)− C2

45. (4.9)

According to Equations (4.8)1 and(4.9) we have the following asymptotic ex-
pression of the incremental displacement u3 for a monoclinic composite:

u3 (x1, x2) =
k√

C44(C55+
o
σ)− C2

45

Im(z3 −
√

z2
3 − a2). (4.10)

Consequently we get the following asymptomatic expression of the incremental
displacement u3 of the crack line

u3(x1, 0) = 0, for|x1| > a,

u3

(
x1, 0

+
)

=
κ√

C44(C55+
o
σ)− C2

45

√
a2 − x2

1, for |x1| < a,

u3

(
x1, 0

−
)

= − κ√
C44(C55+

o
σ)− C2

45

√
a− x2

1, for |x1| > a. (4.11)
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In the particular case of an orthotropic material, with the elasticity C45 = 0,
the same expressions of u3 rest valid.

Concerning the above results we make the following remarks:
1. The antiplane displacements u3 of the crack lines behind and ahead the
crack is zero.
2. The antiplane displacements of the two faces of the crack are symmetric
relative to the line x2 = 0.
The same conclusions were obtain also for an orthotropic material (see[5]). We
explain these results due to the fact that the tearing loads are antisymmetricaly
applied relative to the plane x1, x2 representing the symmetry plane for our
monoclinic material.

5 Griffith’s energy criterion. Resonance

In this Section we shall use an energetic criterion due to Griffith, necessary
to find the critical value of incremental tearing stress which produces crack
propagation. Also, following Soós (see[6]) we shall study the resonance phe-
nomenon.
Let us denote by U(a) the elastic energy of the body when the length of the
crack is 2a and let U(a + δa) its elastic energy when the length of the crack
is 2(a + δa). According to Griffith’s criterium a necessary condition for crack
propagation is that the change in strain energy must satisfy the inequality

U(a)− U(a + δa) ≥ 4γδa, (5.1)

γ representing the specific surface, energy of the body. Expanding in Taylor’s
series the function U(a+ δa) and neglecting the terms of higher order then δa,
we get

δU = U(a)− U(a + δa) = −∂U

∂a
(a)δa. (5.2)

The strain energy release rate G(a) is defined by the equation

GIII(a) = −1

2

∂U

∂a
(a). (5.3)

Consequently, from Eqs. (5.2.) and (5.3) the crack instability condi-
tion (5.1) takes the equivalent form called Griffith’s energy criterion

GIII(a) ≥ 2γ. (5.4)

The energy release rate GIII(a) , which may be regarded as the force
tending to open the crack, represents the work done in this process by the
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incremental nominal stress σ23(δa − t, 0) acting by incremental displacement
u3(t, 0

+) provided that δa is very small such that in the limit as δ1 −→ 0 the
conditions u2(t, 0

+) −→ u2(δ − t′, 0+) and t −→ t′ are fulfilled. The involved
strain energy release rate GIII(a) can be obtained using Irwin’s relation (see
for instance [7],[8]):

GIII(a)δa =

δa∫

0

σ23(δa− t, 0)u3(t, 0
+)dt. (5.5)

Using the Eqs. (4.8) and (4.9) we obtain the following asymptotic
behavior of the incremental displacement and stress fields u3 and σ23 :

u3 =
k√

C44(C55+
o
σ −C2

45

√
2arIm

√
cosϕ + µ sinϕ

σ23 =
k
√

a√
2r

Re
1√

cosϕ + µ sin ϕ
. (5.6)

The incremental stress σ23(δa− t, 0) can be obtained taking in its asymptotic
expression (4.7)5

r = δa− t > 0 and ϕ = 0.

We get :

σ23(δa− t, 0) =
k
√

a√
2(δa− t)

. (5.7)

The antiplane incremental displacement u3(t, 0
+) can be obtained taking

in its asymptotic expression (4.7)3 r = t > 0 and ϕ = π.
We get :

u3(t, 0
+) =

k√
C44(C57+

o
σ)− C2

45

√
2at. (5.8)

Using the Eqs. (5.5),(5.7) and (5.8) we obtain that the strain energy
release rate has the following value:

GIII(a) =
πak2

2

√
C44(C55+

o
σ)− C2

45

. (5.9)

According to Griffith’s energy criterion, the crack will propagate if:

GIII(a) = 2γ. (5.10)
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Hence, the crack propagation starts when the applied tearing stress k
reaches its critical value kc given by the following relation:

k2
c = k2

c (
o
σ) =

4γ

πa

√
C44(C55+

o
σ)− C2

45. (5.11)

We denote by k̂c the critical value corresponding to the case when
◦
σ= 0

From Eq (5.11) we obtain :

k̂2
c = k2

c (0) =
4γ

πa

√
Γ, (5.12)

where we denoted by

Γ = C44C55 − C2
45.

The inequalities (2.9) rest true also in this case for
◦
σ= 0 and we have that:

C44 > 0, C55 > 0 and C44C55 − C2
45 > 0. (5.13)

Using the Eqs. (5.11) and (5.12) we obtain :

k2
c (

o
σ) = k̂2

c

√

1 +
C44

o
σ

C44C55 − C2
45

(5.14)

So, we obtain the following conclusion:

kc(
o
σ) > k̂c if

o
σ> 0;

kc(
o
σ) < k̂c if

o
σ< 0. (5.15)

Consequently, an initial applied extensional stress
◦
σ acting in the direction

of the reinforcing fibers of an monoclinic composite material improves the crack

instability and applied compresive stress
o
σ< 0 acting in the fiber direction

diminishes the stability of the crack.
Now, can arise the following question :

May exist a critical value
o
σc of the initial applied stress such that when

o
σ

starts from zero to
o
σc , the coefficient Γ converges to infinity?

But, from Eq. (5.11) we have that :

kc(
o
σ) −→ 0 if

o
σ−→o

σ
c
= −C2

45 − C44C55

C44
. (5.16)

Hence, when the applied compressive stress
o
σ reaches the critical value .

o
σ

c
= −C2

45 − C44C55

C44
, (5.17)
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the crack becomes completely unstable and it’s propagation can start without

any incremental tearing stress applied on the two faces of the crack.
In what follows we particularize our study regarding the resonance of the

pressed fiber reinforced elastic composite to the case of an prestressed elastic
orthotropic material; i.e.

C45 = 0. (5.18)

Using the above condition (5.18) in Eq. (5.14) we observe that the con-
clusions (5.15) rest valid. From Eq. (5.11) we obtain that the initial applied

compressive stress
o
σ reaches the critical value.

o
σ

c
= −C55.

We recall that for a fiber reinforced elastic material we have

C55 = G13 and G13 << E1.

there G13 and E1 represent the shear modulus in x1x3 plane and respectively
Young’s modulus in the direction of x1 axis.

Hence

o
σc= −G13 and | o

σc | << E1, (5.19)

and we observe that the critical value of compression stress produces only
infinitesimal strains in the prestressed composite. The value of the coefficient Γ
becomes very large in the domain of infinitesimal strains. If condition (5.21) is
fulfilled the complete instability of the crack occurs in our orthotropic material.

Also, using Eq. (5.18) in Eqs. (2.10)2, (2.12) and (5.19) we observe that

µ = 0 if
o
σc =

o
σ. Hence, if the compressive stress

o
σ reaches its critical value

the differential equation obtained using (5.18) in (2.6) losses its ellipticity. In
other words internal instability of the prestressed fiber reinforce orthotropic
composite occurs. The simultaneous appearance of the internal instability
and of the complete instability of the crack are the direct consequences of the
internal structure of the fiber reinforced orthotropic composite.

6 Final remarks

The behavior of the incremental fields for a monoclinic composite con-
taining a crack supposed to antiplane tearing stress was studied.
The following main conclusion arises:
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- the antiplane incremental displacement of the crack lines behind and
ahead the crack are zero, as for an orthotropic composite;

- the antiplane incremental displacement of the two faces are symmet-
ric relative to the line x2 = 0 , as for an orthotropic composite.

The value of incremental antiplane stress which produces crack propa-
gation were obtained and we can conclude that an initial applied compressive,
respectively extensional, stress acting in the direction of the reinforcing fibers
diminishes, respectively improves, the crack instability. In our opinion the
results are plausible and in good agreement with the experimental crack be-
havior.

We conclude that just due to its internal structure in a fiber reinforced
composite material can occur dangerous situation if the initial applied forces
are not adequately limited. To avoid such dangerous situation of resonance
phenomenon leading to the total rupture of composite, the initial applied com-
pression force must drastically limited.
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