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ON SOME ACTUARIAL MODELS
INVOLVING SUMS OF DEPENDENT RISK

Raluca Vernic

Abstract

This paper presents some applications to the theoretical results ob-
tained in [7], on the problem of approximating the tail probability of a
randomly weighted sum of random variables. The results are supported
by some simulation conclusions.

1 Introduction

In this paper we investigate the tail probabilities of the randomly weighted

sums

Sn (θ) =
n∑

k=1

θkXk, n ≥ 1, (1)

where (Xk)k≥1 is a sequence of independent and identically distributed (i.i.d.)

real-valued random variables (r.v.’s) with generic r.v. X, while (θk)k≥1 is

another sequence of positive r.v.’s, independent of the sequence (Xk)k≥1.

Such sums and their maxima are often encountered in actuarial and eco-

nomical situations. For example, in an insurance context, the discounted sum

of losses within a finite or infinite time period can be described as a randomly

weighted sum of a sequence of independent r.v.’s. These independent r.v.’s

(Xk)k≥1 denote the amounts of losses in successive time periods (e.g. years),

while the weights (θk)k≥1 denote the discount factors and are modelled by

r.v.’s that can be independent or dependent. There is an increasing literature
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on the problem of approximating the tail probability of such weighted sums

(see e.g. [3], [7], [8], [9], [10], etc.). Some advanced results can be found in [7],

which considers the case when the losses (Xk)k≥1 are Pareto-like distributed

and the weights (θk)k≥1 are dependent r.v.’s. The present paper presents some

applications to these results, supported by some simulation conclusions.

The structure of the paper is as follows: in section 2 we recall the results

from [7], while in section 3 we present three applications. The first two appli-

cations compare the approximated and the exact (simulated) tail probabilities

for some actuarial models, while the third application compares some upper

and lower bounds for (1) from an asymptotic point of view.

2 Some theoretical results

We start by introducing some notations. For any real number x, we write its

positive part by x+ = max{x, 0}. For two positive infinitesimals a(x) and b(x),

we write a(x) ∼ b(x) if lim sup
x→∞

a(x)
b(x)

= 1.

The distribution function (d.f.) of the r.v. X from (1) will be denoted

by F (x) = 1 − F (x) = Pr(X ≤ x) for x ∈ (−∞,∞). We assume that the

right tail of F is regularly varying in the sense that there exists some constant

0 < α < ∞ and a positive slowly varying function L(·) such that

F (x) = x−αL(x), x > 0. (2)

For simplicity we designate the fact (2) by F ∈ R−α. This class contains the

famous Pareto distributions, widely use in insurances to model the losses. For

more details on this class see [1], [2] or [6].

The following results are from [7]. The first result deals with the case of

randomly weighted sums of finite summands.

Theorem 2.1 Consider the randomly weighted sum (1) and let F ∈ R−α for
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some α > 0. We have

Pr

(
max

1≤m≤n

m∑
k=1

θkXk > x

)
∼ Pr

(
n∑

k=1

θkXk > x

)
∼ F (x)

n∑
k=1

Eθα
k (3)

if there exists some δ > 0 such that

(1) Eθα+δ
k < ∞ for each 1 ≤ k ≤ n.

The following result extends Theorem 2.1 to the case of infinite summands.

Theorem 2.2 For the randomly weighted sum (1) with F ∈ R−α for some

α > 0, we have

Pr

(
max

1≤n<∞

n∑
k=1

θkXk > x

)
∼ Pr

( ∞∑
k=1

θkX+
k > x

)
∼ F (x)

∞∑
k=1

Eθα
k (4)

if one of the following assumptions holds:

(2) 0 < α < 1 and

∞∑
k=1

Eθα+δ
k < ∞ and

∞∑
k=1

Eθα−δ
k < ∞ for some δ > 0; (5)

(3) 1 ≤ α < ∞ and

∞∑
k=1

(
Eθα+δ

k

) 1
α+δ < ∞ and

∞∑
k=1

(
Eθα−δ

k

) 1
α+δ < ∞ for some δ > 0.

(6)

The following remarks hold:

Remark 2.1. Both Theorems 2.1 and 2.2 do not require any information

about the dependence structure of the sequence (θk)k≥1. �

Remark 2.2. Assume that the r.v. Xk is the net payout during year k and

the random variables θk in (1) are interpreted as discount factors from time
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k to time 0. If Yn is the nonnegative r.v. discount factor from year n to year

n− 1, n = 1, 2, . . . , then θk can be expressed as

θk =
k∏

j=1

Yj , k = 1, 2, . . . (7)

As in the terminology of [10], we call (Xk)k≥1 the insurance risks and (Yk)k≥1

the financial risks. If we also assume that (Yk)k≥1 are i.i.d., then clearly, in

this standard case, assumption (1) of Theorem 2.1 is equivalent to

(4) EY α+δ
1 < ∞ for some δ > 0,

and assumptions (2) and (3) of Theorem 2.2 are equivalent to

(5) EY α±δ
1 < 1 for some δ > 0.

The following corollary will be useful in the first application.

Corollary 2.1 Under the assumptions of Theorem 2.2, if M is a nonnegative,

integer-valued and nondegenerate at 0 r.v., with EM < ∞, independent of

(Xk)k≥1 and of (θk)k≥1 , then

Pr

(
M∑

k=1

θkX+
k > x

)
∼ F (x)

∞∑
k=1

Eθα
k Pr (M ≥ k) .

Proof. We rewrite
M∑

k=1

θkX+
k =

∞∑
k=1

θ̃kX+
k ,

where θ̃k = θkI(M≥k). Applying now Theorem 2.2, we get

Pr

(
M∑

k=1

θkX+
k > x

)
∼ F (x)

∞∑
k=1

Eθ̃α
k = F (x)

∞∑
k=1

Eθα
k Pr (M ≥ k) ,

which completes the proof.
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3 Applications

The results presented in the previous section are exemplified in [7] for differ-

ent choices of a multivariate distribution for (Yk)k=1,...,n (e.g. lognormal and

logelliptical). In the following two applications, we will consider more com-

plex models than (1), models that are very common in insurances. The third

application compares some upper and lower bounds derived in [8] for the sum

Sn (θ) with the sum itself, from an asymptotic point of view.

3.1 A first application

We will now interpret

SM (θ) =
M∑

k=1

θkXk

as the total discounted claims of a policy that expires after M years. A natural

assumption is that the r.v. M should be bounded above, so it can be written as

M

(
1 2 ... m
p1 p2 ... pm

)
, with 0 ≤ pi ≤ 1 and

m∑
i=1

pi = 1. Hence the Corollary

2.1 gives in this case

Pr

(
M∑

k=1

θkX+
k > x

)
∼ F (x)

m∑
k=1

Eθα
k Pr (M ≥ k) = F (x)

m∑
k=1

Eθα
k

m∑
i=k

pi. (8)

Numerical results

In order to illustrate the above result, we consider (Xk)k≥1 to be i.i.d.

Pareto (α, β) , α > 1, β > 0, with density

fX (x) =
αβα

xα+1
, x > β.

We also take Θ = (θn)n=1,...,m to be a sequence of lognormal dependent

r.v.’s defined as lnΘ =(ln θ1, ..., ln θm) to follow an m−dimensional Normal

distribution Nm (µ,Σ) , with parameters µ = (µi)i=1,...,m ∈ Rm and Σ =

(σij)i,j=1,...,m being a positive defined matrix. Then in this particular case,
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from [7] we have

Eθα
k = e

−α(µ1+...+µk)+ α2
2

∑
1≤i,j≤k

σij

, (9)

so that formula (8) becomes

Pr

(
M∑

k=1

θkXk > x

)
∼
(

1−
(

β

x

)α) m∑
k=1

e
−α(µ1+...+µk)+ α2

2

∑
1≤i,j≤k

σij

(
m∑

i=k

pi

)
.

For simulation we considered m = 10 (i.e. ten years),

M

(
1 2 3 4 5 6 7 8 9 10
1
2

1
4

1
8

1
16

1
32

1
160

1
160

1
160

1
160

1
160

)
,

µ1 = ... = µ10 = 0.1 and

Σ =



0.05 0.01 0.01 0 0 0 0 0 0 0
0.01 0.1 0.01 0.02 0 0 0 0 0 0
0.01 0.01 0.1 0.01 0.02 0 0 0 0 0
0 0.02 0.01 0.05 0.05 0.01 0 0 0 0
0 0 0.02 0.05 0.1 0.01 0.01 0 0 0
0 0 0 0.01 0.01 0.1 0.02 0.01 0 0
0 0 0 0 0.01 0.02 0.05 0.01 0.01 0
0 0 0 0 0 0.01 0.01 0.02 0.01 0.01
0 0 0 0 0 0 0.01 0.01 0.1 0.05
0 0 0 0 0 0 0 0.01 0.05 0.05


.

Table 1. Simulated versus asymptotic values of the tail probability for

Pareto claim sizes with lognormal discounting factors

Some results are given in Table 1. The number of simulation was 1,000,000.

The considered values of α, 1.2 and 1.5, are realistic in fire insurance, see [1].

Apart from the values of x, of the simulated and asymptotic tail probabilities,

we also display the values of 1− asymptotic
simulated . Theoretically, this values must tend

to 0 when x →∞, which seems to be the case from Table 1.

We can conclude that when α decreases, i.e. the distribution of X becomes

more heavy-tailed, the asymptotic results perform better. This is a reason-

able conclusion, since the theoretical results are established for heavy-tailed

distributions.
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3.2 A second application: the compound model

We will now assume that every loss Xk results from a compound process, i.e.

Xk =
Nk∑
i=0

Cki,

where Nk is the r.v. number of claims for year k and Ck1, Ck2, ... are i.i.d.

claim amounts, independent of Nk. We take Ck0 = 0. We will also assume

that Cki are i.i.d. for any k and i, with d.f. FC ∈ R−α, while N1, ..., Nn are

independent, but not necessarily identically distributed. Then using first a

step from the proof of Theorem 2.1 (see [7]) and secondly Theorem 2 in [3], it

holds that

Pr

[
n∑

k=1

Xkθk > x

]
∼

n∑
k=1

E (θα
k ) FXk

(x) ∼ FC (x)
n∑

k=1

E (Nk) E (θα
k ) . (10)

On the other hand, we can rewrite

Sn (θ) =
n∑

k=1

θkXk =
M∑

k=1

θ̃kC̃k,

where M =
∑n

i=1 Ni, the sequence
(
θ̃k

)
k≥1

is defined as θ̃1 = ... = θ̃N1 =

θ1, ..., θ̃M−Nn+1 = ... = θ̃M = θn and the r.v.’s
(
C̃k

)
k≥1

are i.i.d., with the

same d.f. FC . Then from Corollary 2.1 we have

Pr

(
n∑

k=1

Xkθk > x

)
= Pr

(
M∑

k=1

θ̃kC̃k > x

)
∼ FC (x)

∞∑
k=1

Eθ̃α
k Pr (M ≥ k) ,

and we are back again in the context of the previous application.

Numerical results

We will illustrate the result (10) considering as before (Xk)k=1,...,n i.i.d.

Pareto (α, β) , α > 1, β > 0, Θ = (θk)k=1,...,n lognormal dependent r.v.’s,

and (Nk)k=1,...,n i.i.d. Poisson(λ) , λ > 0. Then using again (9), the formula
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becomes

Pr

(
M∑

k=1

θkXk > x

)
∼
(

1−
(

β

x

)α)
λ

m∑
k=1

e
−α(µ1+...+µk)+ α2

2

∑
1≤i,j≤k

σij

.

Using 1,000,000 simulations, we obtained the results in Tables 2 and 3.

Table 2. Simulated versus asymptotic values of the tail probability for

the compound Poisson-Pareto model with lognormal discounting factors

(β = 2, λ = 5)

Table 3. Simulated versus asymptotic values of the tail probability for

the compound Poisson-Pareto model with lognormal discounting factors

(α = 1.5, β = 2)

We can conclude that:

- For fixed β, λ, when α decreases, the asymptotic results perform better again.

It is not recommended to consider α > 2, i.e. the claim distribution must

not be too light-tailed.

- For fixed β, α, when λ decreases, the asymptotic results perform better.

- When using these asymptotic results, one should be very careful with the

choice of x. We can see that if x is too small, then the differences between

the simulated reality and asymptotics can be very important (see e.g.

x = 100). This is also reasonable since an asymptotic result involves the

limit for x →∞.

3.3 Upper and lower bounds for discounted amounts of claims

Consider two r.v.’s X and Y. Then X is said to precede Y in the convex order

sense, denoted X ≤cx Y , if we have

E [v (X)] ≤ E [v (Y )]
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for all convex real functions v such that the expectations exists.

Kaas et al. [8] derived upper and lower bounds in the convex order for

the sum Sn (θ), when X1, ..., Xn are deterministic values of arbitrary sign,

θk = e−(Z1+...+Zk) for k = 1, ..., n, and (Z1, ..., Zn) has a multivariate normal

distribution (see also the reviews [4], [5]). Assuming that Xk = xk, k = 1, ..., n,

denoting by Z (k) = Z1 + ... + Zk and by Λ =
∑n

k=1 βkZk a conditioning r.v.,

then in [8] it was proved that

Sl
d ≤cx Sn (θ) ≤cx Su

d ≤cx Sc
d.

The above bounds are defined as follows

Sl
d = E [Sn (θ) |Λ] =

n∑
k=1

xk exp
{
−E [Z (k)]− rkσZ(k)W +

1
2
(
1− r2

k

)
σ2

Z(k)

}
,

Su
d =

n∑
k=1

xk exp
{
−E [Z (k)]− rkσZ(k)W + sign (xk)

√
1− r2

kσZ(k)V

}
,

Sc
d =

n∑
k=1

xk exp
{
−E [Z (k)] + sign (xk)σZ(k)V

}
,

where W and V are independent N (0, 1) distributed r.v.’s and rk =
cov [Z (k) ,Λ]

σZ(k)σΛ
.

This result can be extended to X1, ..., Xn non-negative r.v.’s as follows:

Proposition 3.1 If X1, ..., Xn are non-negative r.v.’s and (Z1, ..., Zn) has a

multivariate normal distribution, then the following order hold

Sl ≤cx Sn (θ) ≤cx Su ≤cx Sc,

where

Sl =
n∑

k=1

Xkθl
k =

n∑
k=1

Xk exp
{
−E [Z (k)]− rkσZ(k)W +

1
2
(
1− r2

k

)
σ2

Z(k)

}
,(11)

Su =
n∑

k=1

Xkθu
k =

n∑
k=1

Xk exp
{
−E [Z (k)]− rkσZ(k)W +

√
1− r2

kσZ(k)V

}
,(12)

Sc =
n∑

k=1

Xkθc
k =

n∑
k=1

Xk exp
{
−E [Z (k)] + σZ(k)V

}
, (13)
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with W and V independent N (0, 1) distributed r.v.’s and rk defined above.

Proof. For example, we will prove the middle inequality, the others re-

sulting using similar arguments. Let φ be any convex function such that the

following expectations exists. Then we have

E [φ (Sn (θ))] = E

{
E

[
φ

(
n∑

k=1

Xkθk

)
|X1, ..., Xn

]}

≤ E

{
E

[
φ

(
n∑

k=1

Xkθu
k

)
|X1, ..., Xn

]}
= E [φ (Su)] .

In order to derive the above inequality we used the order relation known for

Xk deterministic. It follows that the same order holds when Xk are r.v.’s.

We will now apply Theorem 2.1 to the bounds (11), (12) and (13). We see

that the values E [Z (k)] and σ2
Z(k) are given by

E (Z1 + ... + Zk) = µ1 + ... + µk, (14)

V ar (Z1 + ... + Zk) =
∑

1≤i,j≤k

σij . (15)

From the fact that θk, θu
k and θc

k have the same marginal distributions (see [8])

and from (9), we have that

E [(θk)α] = E [(θu
k )α] = E [(θc

k)α] = exp

−α (µ1 + ... + µk) +
α2

2

∑
1≤i,j≤k

σij

 ,

so that in this case Theorem 2.1 gives the same result: the asymptotic tail

probabilities are the same for Sn (θ) , Su and Sc, given by

Pr (Sn (θ) > x) ∼ F (x)
n∑

k=1

e
−α(µ1+...+µk)+ α2

2

∑
1≤i,j≤k

σij

.
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This is not the case for Sl. Here we have

E
[(

θl
k

)α]
= exp

{
α

[
−E [Z (k)] +

1
2
(
1− r2

k

)
σ2

Z(k)

]}
E
[
e−αrkσZ(k)W

]
= exp

{
−αE [Z (k)] +

α

2
(
1− r2

k

)
σ2

Z(k)

}
exp

{
α2r2

kσ2
Z(k)

2

}
= exp

{
−αE [Z (k)] +

α

2
[
1 + (α− 1) r2

k

]
σ2

Z(k)

}
.

Since r2
k ≤ 1, we see that α

2

[
1 + (α− 1) r2

k

]
≤ α2

2 , so that E
[(

θl
k

)α] ≤ E [(θk)α]

which is reasonable.

Theorem 2.1 gives

Pr
(
Sl > x

)
∼ F (x)

n∑
k=1

e
−α(µ1+...+µk)+ α

2 [1+(α−1)r2
k]

∑
1≤i,j≤k

σij

.
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[6] Embrechts, P., Klüppelberg, C. and Mikosch, T., Modelling extremal events for insur-
ance and finance, Springer-Verlag, Berlin, 1997.

[7] Goovaerts, M., Kaas, R., Tang, Q. and Vernic, R., The tail probability of discounted
sums of Pareto-like losses in insurance, IME (Insurance Math. Econom.) Congress,
Rome 2004 (www.ime2004rome.com).



134 Raluca Vernic

[8] Kaas, R., Dhaene, J. and Goovaerts, M. J., Upper and lower bounds for sums of
random variables, Insurance Math. Econom. 27 (2000), no. 2, 151–168.

[9] Laeven R. and Goovaerts, M.J., Some asymptotic results for sums of dependent ran-
dom variables with actuarial applications, IME (Insurance Math. Econom.) Congress,
Rome 2004 (www.ime2004rome.com).

[10] Tang, Q. and Tsitsiashvili, G., Precise estimates for the ruin probability in finite hori-
zon in a discrete-time model with heavy-tailed insurance and financial risks, Stochastic
Process. Appl. 108 (2003), no. 2, 299–325.

Faculty of Mathematics and Computer Science
“Ovidius” University of Constanta
124 Mamaia Blvd, Constanta, Romania
e-mail: rvernic@univ-ovidius.ro



On some actuarial models 135


