ON SOME DIOPHANTINE EQUATIONS (II)

Diana Savin

Abstract

In [7] we have studied the equation $m^4 - n^4 = py^2$, where p is a prime natural number $p \ge 3$. Using the above result, in this paper, we study the equations $c_k(x^4 + 6px^2 y^2 + p^2y^4) + 4pd_k(x^3y + pxy^3) = 32z^2$ with $p \in \{5, 13, 29, 37\}$, where (c_k, d_k) is a solution of the Pell equation $|c^2 - pd^2| = 1$.

1. Preliminaries.

In order to solve our problems, we need some auxiliary results.

Proposition 1.1. ([3], pag.74) The integer solutions of the Diophantine equation $x_1^2 + x_2^2 + ... + x_k^2 = x_{k+1}^2$ are the following ones:

 $\begin{cases} x_1 = \pm (m_1^2 + m_2^2 + \dots + m_{k-1}^2 - m_k^2) \\ x_2 = 2m_1 m_k \\ \dots \\ x_k = 2m_{k-1} m_k \\ x_{k+1} = \pm (m_1^2 + m_2^2 + \dots + m_{k-1}^2 + m_k^2), \end{cases}$ with m_1, \dots, m_k integer number. From the geometrical point of view, the elements m_1, \dots, m_k integer number. From the geometrical point of view, the elements m_1, \dots, m_k integer number.

with $m_1, ..., m_k$ integer number. From the geometrical point of view, the elements $x_1, x_2, ..., x_k$ are the sizes of an orthogonal hyper-parallelipiped in the space \mathbf{R}^k and x_{k+1} is the length of its diagonal.

Proposition 1.2. ([1], pag.150) For the quadratic field $Q(\sqrt{d})$, where $d \in \mathbf{N}^*$, d is square free, its ring of integers A is Euclidian with respect to the norm N, in the cases $d \in \{2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}$.

Proposition 1.3.([1], pag141) Let $K = Q(\sqrt{d})$ be a quadratic field with A as its ring of integers. For $a \in A$, $a \in U(A)$ if and only if N(a)=1.

Key Words: Diophantine equation; Pell equation.

Proposition 1.4. ([7], Theorem 3.2.). Let p be a natural prime number greater than 3. If the equation $m^4 - n^4 = py^2$ has a solution $m, n, y \in \mathbb{Z}^*$, then it has an infinity of integer solutions.

2 Results.

Proposition 2.1. The equation $m^4 - n^4 = 5y^2$ has an infinity of integer solutions.

Proof. The equation $m^4 - n^4 = 5y^2$ has nontrivial integer solutions, for example m = 245, n = 155, y = 24600. Following Proposition 1.4., the equation $m^4 - n^4 = 5y^2$ has an infinity of integer solutions.

Proposition 2.2. The equation $m^4 - n^4 = 13y^2$ has an infinity of integer solutions.

Proof. It is sufficient to show that the equation $m^4 - n^4 = 13y^2$ has nontrivial integer solutions. In deed m = 127729, n = 80929, y = 4144257960is such a solution.By Proposition 1.4., the equation $m^4 - n^4 = 13y^2$ has an infinity of integer solutions.

Now, we study our equations for $p \in \{5, 13\}$.

Proposition 2.3. The equations

$$c_k(x^4 + 6px^2 y^2 + p^2y^4) + 4pd_k(x^3y + pxy^3) = 32z^2,$$

with $p \in \{5, 13\}$, where (c_k, d_k) is a solution of the Pell equation $|c^2 - pd^2| = = 1$, have an infinity of integer solutions.

Proof. If $p \in \{5,13\}$, then $p \equiv 5 \pmod{8}$. By Proposition 1.2., the ring A of the integers of the quadratic field $\mathbf{Q}(\sqrt{p})$ is Euclidian with respect to the norm N. But $p \equiv 5 \pmod{8}$ implies $p \equiv 1 \pmod{4}$ and $\mathbf{A} = \mathbf{Z} \begin{bmatrix} \frac{1+\sqrt{p}}{2} \end{bmatrix}$. We shall study the equation $m^4 - n^4 = py^2$, where p is a prime number,

We shall study the equation $m^4 - n^4 = py^2$, where p is a prime number, $p \equiv 5 \pmod{8}$ and (m, n) = 1, in the ring A. The equation $m^4 - n^4 = py^2$ is equivalent with $(m^2 - y\sqrt{p})(m^2 + y\sqrt{p}) = n^4$. Let $\alpha \in A$ be a common divisor of $m^2 - \sqrt{p}y$ and $m^2 + \sqrt{p}y$. As $\alpha \in A$, $\alpha = \frac{c}{2} + \frac{d}{2}\sqrt{p}$, $c, d \in \mathbb{Z}$, and c, d are simultaneously even or odd. As $\alpha/(m^2 + y\sqrt{p})$ and $\alpha/(m^2 - y\sqrt{p})$, we have $\alpha/2m^2$ and $\alpha/2y\sqrt{p}$, therefore $N(\alpha)/4m^4$ (in \mathbb{Z}) and $N(\alpha)/4py^2$ (in \mathbb{Z}), hence $N(\alpha)/(4m^4, 4py^2)$. (m, n) = 1 implies (m, y) = 1 (if (m, y) = d > 1 then m and n would not be relatively prime). Analogously, (m, p) = 1 implies in turn that $(4m^4, 4py^2) = 4$, hence $N(\alpha) \in \{1, 2, 4\}$.

If $N(\alpha) = 2$, then $\left|\frac{c^2}{4} - p\frac{d^2}{4}\right| = 2$. If $\frac{c^2}{4} - p\frac{d^2}{4} = 2$, then $c^2 - pd^2 = 8, c, d \in \mathbb{Z}$ and c, d are simultaneously even or odd. If c and d are odd numbers, then $c^2, d^2 \equiv 1 \pmod{8}$. But $p \equiv 5 \pmod{8}$. Then $c^2 - pd^2 \equiv 4 \pmod{8}$, which implies that the equation $c^2 - pd^2 = 8$ does not have integer solutions.

If c and d are even numbers, then let us take them c = 2c', d = 2d', with $c', d' \in \mathbb{Z}$. We get $c^2 - pd^2 = 8$, then $(c')^2 - p(d')^2 = 2$. But $p \equiv 5 \pmod{8}$ implies:

 $(c')^2 - p(d')^2 \equiv 4 \pmod{8}$, if c', d' are odd numbers,

 $(c')^2 - p(d')^2 \equiv 0$ or 4 (mod 8), if c', d' are even numbers,

 $(c')^2 - p(d')^2 =$ an odd number, if c', d' are one even and the other odd.

Therefore the equation $(c')^2 - p(d')^2 = 2$ does not have integer solutions. If $\frac{c^2}{4} - p\frac{d^2}{4} = -2$, that means $c^2 - pd^2 = -8$, with $c, d \in 2\mathbb{Z} + 1$ or $c, d \in 2\mathbb{Z}$. If c and d are odd numbers, then $c^2, d^2 \equiv 1 \pmod{8}$.

As $p \equiv 5 \pmod{8}$, this implies $c^2 - pd^2 \equiv 4 \pmod{8}$, which gives us that the equation $c^2 - pd^2 = -8$ does not have integer solutions. If c and d are even numbers, then c = 2c', d = 2d', c', $d' \in \mathbb{Z}$. We get $c^2 - pd^2 = -8$, which means that $(c')^2 - p(d')^2 = -2$. But, as above, $p \equiv 5 \pmod{8}$ implies that the equation $(c')^2 - p(d')^2 = -2$ does not have integer solutions. We get $N(\alpha) \neq 2$. If $N(\alpha) = 4$, then $\left|\frac{c^2}{4} - p\frac{d^2}{4}\right| = 4$. If $\frac{c^2}{4} - p\frac{d^2}{4} = 4$, then $c^2 - pd^2 = 16$, where $c, d \in \mathbb{Z}$ and c, d are simultaneously either even or odd.

If c and d are odd numbers, then c^2 , $d^2 \equiv 1 \pmod{8}$, and, since $p \equiv 5 \pmod{8}$, $c^2 - pd^2 \equiv 4 \pmod{8}$, which implies that the equation $c^2 - pd^2 = 16$ does not have integer solutions.

If c and d are even numbers, then c = 2c', d = 2d', with c', $d' \in \mathbf{Z}$, therefore $(c')^2 - p(d')^2 = 4$. This equation may have integer solutions only if c', d' are simultaneously either even or odd. The equation $(c')^2 - p(d')^2 = 4$ is equivalent with $\left(\frac{c'}{2}\right)^2 - \left(\frac{d'}{2}\right)^2 = 1$. If we denote $\alpha' = \left(\frac{c'}{2} + \frac{d'}{2}\sqrt{p}\right) \in \mathbf{A}$, with $c', d' \in 2\mathbf{Z} + \mathbf{1}$ or $c', d' \in 2\mathbf{Z}$, we get $\alpha' \in \mathbf{U}(A)$. From $\alpha = \frac{c}{2} + \frac{d}{2}\sqrt{p}$, we obtain that $\alpha = 2\alpha', \alpha' \in \mathbf{U}(A)$. Supposing that 2 is reducible in A,hence there exist $\frac{a_1}{2} + \frac{b_1}{2}\sqrt{p}$, $\frac{a_2}{2} + \frac{b_2}{2}\sqrt{p} \in \mathbf{A}$ ($a_1, a_2, b_1, b_2 \in \mathbf{Z}, a_1, b_1$, as well as, a_2, b_2 being simultaneounsly odd or even) such that $2 = \left(\frac{a_1}{2} + \frac{b_1}{2}\sqrt{p}\right)\left(\frac{a_2}{2} + \frac{b_2}{2}\sqrt{p}\right)$. This is equivalent with $4 = N(\frac{a_1}{2} + \frac{b_1}{2}\sqrt{p})N(\frac{a_2}{2} + \frac{b_2}{2}\sqrt{p})$. But we have previously proved that there aren't elements in A having the norm equal with 2. We get $N(\frac{a_1}{2} + \frac{b_1}{2}\sqrt{p}) = 1$

or $N(\frac{a_2}{2} + \frac{b_2}{2}\sqrt{p}) = 1$, therefore $\frac{a_1}{2} + \frac{b_1}{2}\sqrt{p} \in \mathbf{U}(A)$ or $\frac{a_2}{2} + \frac{b_2}{2}\sqrt{p} \in \mathbf{U}(A)$, hence 2 is irreducible in A. We come back to the fact that $\alpha/(m^2 + y\sqrt{p})$ and $\alpha/(m^2 - y\sqrt{p})$. This implies $2\alpha'/(m^2 + y\sqrt{p})$ and $2\alpha'/(m^2 - y\sqrt{p})$, then $2/(m^2 + y\sqrt{p})$ and $2/(m^2 - y\sqrt{p})$, therefore $4/(m^4 - py^2)$. This means $4/n^4$. As 2 is irreducible in A, we get 2/n (in A), hence $2^4/n^4$. This is equivalent with $2^4/(m^2 + y\sqrt{p}) \cdot (m^2 - y\sqrt{p})$ (in A), which implies $2^k/(m^2 + y\sqrt{p})$ or $2^k/(m^2 - y\sqrt{p})$, $k \in \mathbf{N}, k \ge 2$. As $2^k/(m^2 + y\sqrt{p})$, $k \in \mathbf{N}, k \ge 2$, implies $2^2/(m^2 + y\sqrt{p})$, hence there exists $(\frac{a}{2} + \frac{b}{2}\sqrt{p}) \in A$ (either $a, b \in 2\mathbf{Z} + \mathbf{1}$ or $a, b \in 2\mathbf{Z}$) such that $m^2 + y\sqrt{p} = 2^2(\frac{a}{2} + \frac{b}{2}\sqrt{p})$, hence $m^2 = 2a$ and y = 2b (in \mathbf{Z}), then 2/m and 2/y (in \mathbf{Z}). As $m^4 - n^4 = py^2$, this implies 2/n (in \mathbf{Z}), in contradiction with the fact that (m, n) = 1. Analogously we get to contradiction in the case of the equation $\frac{c^2}{4} - p\frac{d^2}{4} = -4$. Therefore $N(\alpha) \neq 4$.

contradiction in the case of the equation $\frac{c^2}{4} - p\frac{d^2}{4} = -4$. Therefore $N(\alpha) \neq 4$. From the previously proved, $N(\alpha) \neq 2$ and $N(\alpha) \neq 4$, hence $N(\alpha) = 1$ and $\alpha \in \mathbf{U}(A)$. We obtained that $(m^2 + y\sqrt{p})$ and $(m^2 - y\sqrt{p})$ are relatively prime elements in A, but $(m^2 - y\sqrt{p})(m^2 + y\sqrt{p}) = n^4$, therefore there exists $\left(\frac{f}{2} + \frac{g}{2}\sqrt{p}\right) \in A$ with the property: $m^2 + y\sqrt{p} = \left(\frac{c_k}{2} + \frac{d_k}{2}\sqrt{p}\right) \left(\frac{f}{2} + \frac{g}{2}\sqrt{p}\right)^4$, $\left(\frac{c_k}{2} + \frac{d_k}{2}\sqrt{p}\right) \in \mathbf{U}(A)$ (here $c_k, d_k \in \mathbf{Z}$, c_k, d_k are simultaneously odd or even, $N\left(\frac{c_k}{2} + \frac{d_k}{2}\sqrt{p}\right) = 1$). This is equivalent to $m^2 + \sqrt{p}y =$ $= \left(\frac{c_k}{2} + \frac{d_k}{2}\right) \left(\frac{f^4}{16} + \frac{f^3g\sqrt{p}}{4} + \frac{3f^2g^2p}{8} + \frac{fg^3p\sqrt{p}}{4} + \frac{g^4p^2}{16}\right)$, which is equivalent to

$$32(m^2 + y\sqrt{p}) = (c_k + d_k\sqrt{p})(f^4 + 4f^3g\sqrt{p} + 6f^2g^2p + 4fg^3p\sqrt{p} + g^4p^2),$$

implying the system:

$$\begin{cases} 32m^2 = c_k f^4 + 6pc_k f^2 g^2 + p^2 c_k g^4 + 4pf^3 g d_k + 4p^2 f g^3 d_k \\ 32y = 4c_k f^3 g + 4pc_k f g^3 + d_k f^4 + 6pd_k f^2 g^2 + p^2 d_k g^4, \end{cases}$$

equivalently

$$\left\{ \begin{array}{l} 32 \ m^2 = c_k (f^4 + 6pf^2g^2 + p^2g^4) + 4pd_k (f^3g + pfg^3) \\ 32y = d_k (f^4 + 6pf^2g^2 + p^2g^4) + 4c_k (f^3g + pfg^3). \end{array} \right.$$

We have already proved that the equation $m^4 - n^4 = py^2$, where $p \in \{5, 13\}$ has an infinity of integer solutions. Therefore, if the system:

$$\left\{ \begin{array}{l} 32 \ m^2 = c_k (f^4 + 6pf^2g^2 + p^2g^4) + 4pd_k (f^3g + pfg^3) \\ 32y = d_k (f^4 + 6pf^2g^2 + p^2g^4) + 4c_k (f^3g + pfg^3) \end{array} \right. \label{eq:starses}$$

has an infinity of integer solutions and hence the equation $32 m^2 = c_k (f^4 + 6pf^2g^2 + p^2g^4) + 4pd_k (f^3g + pfg^3)$

has an infinity of integer solutions.

We do not know if the Diophantine equation $m^4 - n^4 = py^2$ has nontrivial solutions for $p \in \{29, 37\}$, but we may prove the following result.

Proposition 2.4. If the equations $c_k(x^4 + 6px^2 y^2 + p^2y^4) + 4pd_k(x^3y + pxy^3) = 32z^2$, with $p \in \{29, 37\}$, where (c_k, d_k) is a solution of the Pell equation $|c^2 - pd^2| = 1$, have a solution $x, y, z \in Z^*$, then they have an infinity of integer solutions.

Proof. In our case again $p \equiv 5 \pmod{8}$ and the ring A of the integers of the quadratic field $\mathbf{Q}(\sqrt{p})$ is Euclidian with respect to the norm N, A being $\mathbf{Z}\left[\frac{1+\sqrt{p}}{2}\right]$. We study the equation $m^4 - n^4 = py^2$, where p is prime number, $p \equiv 5 \pmod{8}$ in the ring A.The given equation is equivalent to $(m^2 - y\sqrt{p})(m^2 + y\sqrt{p}) = n^4$. Let $\alpha \in A$ be a common divisor of $m^2 - y\sqrt{p}$ and $m^2 + y\sqrt{p}$. Then $\alpha = \frac{c}{2} + \frac{d}{2}\sqrt{p}$, with $c, d \in 2\mathbf{Z} + \mathbf{1}$ or $c, d \in 2\mathbf{Z}$.

and $m^2 + y\sqrt{p}$. Then $\alpha = \frac{c}{2} + \frac{d}{2}\sqrt{p}$, with $c, d \in 2\mathbb{Z} + 1$ or $c, d \in 2\mathbb{Z}$. As $\alpha/(m^2 + y\sqrt{p})$ and $\alpha/(m^2 - y\sqrt{p})$, we have $\alpha/2m^2$ and $\alpha/2y\sqrt{p}$, so $N(\alpha)/4m^4$ and $N(\alpha)/4py^2$ (in \mathbb{Z}), hence $N(\alpha)/(4m^4, 4py^2).(m, n) = 1$ im-

plies (m, y) = 1 (if (m, y) = d > 1, then m and n are not relatively prime).

Analogously, (m, p) = 1 implies in turn that $(m^4, py^2) = 1$, $(4m^4, 4py^2) = 4$, hence $N(\alpha) \in \{1, 2, 4\}$. If $N(\alpha) = 2$, we have $\left|\frac{c^2}{4} - p\frac{d^2}{4}\right| = 2$. If $\frac{c^2}{4} - p\frac{d^2}{4} = 2$, that means $c^2 - pd^2 = 8$, $c, d \in \mathbb{Z}$ and c, d are simultaneously even or odd.

If c and d are odd numbers, then c^2 , $d^2 \equiv 1 \pmod{8}$. As $p \equiv 5 \pmod{8}$, then $c^2 - pd^2 \equiv 4 \pmod{8}$, which implies that the equation $c^2 - pd^2 = 8$ does not have integer solutions. If c and d are even numbers then c = 2c', d = 2d', $c', d' \in \mathbb{Z}$. We get $c^2 - pd^2 = 8$, therefore $(c')^2 - p(d')^2 = 2$. But $p \equiv 5 \pmod{8}$ implies: $(c')^2 - p(d')^2 \equiv 4 \pmod{8}$, if c', d' are odd numbers, $(c')^2 - p(d')^2 \equiv 0$ or 4 (mod 8), if c', d' are even numbers, $(c')^2 - p(d')^2 = 2$ does not have integer solutions. If $\frac{c^2}{4} - p\frac{d^2}{4} = -2$, then $c^2 - pd^2 = -8$, $c, d \in 2\mathbb{Z}$

or $c, d \in 2\mathbf{Z} + \mathbf{1}$. If c and d are odd numbers, then $c^2, d^2 \equiv 1 \pmod{8}$. But

 $p \equiv 5 \pmod{8}$ implies $c^2 - pd^2 \equiv 4 \pmod{8}$, which gives us that the equation $c^2 - pd^2 = -8$ does not have integer solutions. If c and d are even numbers, then c = 2c', d = 2d', $c', d' \in \mathbb{Z}$. We get the equation $(c')^2 - p(d')^2 = -2$, which does not have integer solutions. We get $N(\alpha) \neq 2$. In the same way as

above, we prove that $N(\alpha) \neq 4$. It remains only $\alpha \in \mathbf{U}(A)$ and $m^2 + y\sqrt{p}$, $m^2 - y\sqrt{p}$ are relatively prime elements in A.

As $(m^2 - y\sqrt{p})(m^2 + y\sqrt{p}) = n^4$, there exists $\left(\frac{f}{2} + \frac{g}{2}\sqrt{p}\right) \in A$ such that: $m^2 + y\sqrt{p} = \left(\frac{c_k}{2} + \frac{d_k}{2}\sqrt{p}\right) \left(\frac{f}{2} + \frac{g}{2}\sqrt{p}\right)^4$, $\left(\frac{c_k}{2} + \frac{d_k}{2}\sqrt{p}\right) \in \mathbf{U}(A)$ $(c_k, d_k \in \mathbf{Z}, c_k, d_k$ are simultaneously even or odd, $N\left(\frac{c_k}{2} + \frac{d_k}{2}\sqrt{p}\right) = 1$), which is equivalent to $m^2 + y\sqrt{p} = \left(\frac{c_k}{2} + \frac{d_k}{2}\right) \left(\frac{f^4}{16} + \frac{f^3g\sqrt{p}}{4} + \frac{3f^2g^2p}{8} + \frac{fg^3p\sqrt{p}}{4} + \frac{g^4p^2}{16}\right)$, which is equivalent to $32(m^2 + y\sqrt{p}) = (c_k + d_k\sqrt{p})(f^4 + 4f^3g\sqrt{p} + 6f^2g^2p + 4fg^3p\sqrt{p} + g^4p^2)$. This implies the system:

$$\begin{cases} 32m^2 = c_k f^4 + 6pc_k f^2 g^2 + p^2 c_k g^4 + 4p f^3 g d_k + 4p^2 f g^3 d_k \\ 32y = 4c_k f^3 g + 4pc_k f g^3 + d_k f^4 + 6pd_k f^2 g^2 + p^2 d_k g^4, \end{cases}$$

which implies the system:

$$\begin{cases} 32 \ m^2 = c_k (f^4 + 6pf^2g^2 + p^2g^4) + 4pd_k (f^3g + pfg^3) \\ 32y = d_k (f^4 + 6pf^2g^2 + p^2g^4) + 4c_k (f^3g + pfg^3). \end{cases}$$

We have already proved that, if the equation $m^4 - n^4 = py^2$ has a nontrivial solution in **Z**, it has an infinity of integer solutions. Therefore, if the system

$$\begin{cases} 32 \ m^2 = c_k (f^4 + 6pf^2g^2 + p^2g^4) + 4pd_k (f^3g + pfg^3) \\ 32y = d_k (f^4 + 6pf^2g^2 + p^2g^4) + 4c_k (f^3g + pfg^3), \end{cases}$$

has a nontrivial solution in \mathbf{Z} , it has an infinity of integer solutions. Therefore, if the equation $32 \ m^2 = c_k(f^4 + 6pf^2g^2 + p^2g^4) + 4pd_k(f^3g + pfg^3)$ has a nontrivial solution in \mathbf{Z} , it has an infinity of integer solutions.

References

- T. Albu, I.D.Ion, Chapters of the algebraic theory of numbers (in Romanian), Ed. Academiei, Bucureşti, 1984.
- [2] V. Alexandru, N.M. Goşoniu, The elements of the theory of numbers (in Romanian), Ed.Universității Bucureşti, 1999.
- [3] T. Andreescu, D. Andrica, An Introduction in the Study of Diophantine Equations (in Romanian), Ed. Gil, Zalău, 2002.
- [4] L.J. Mordell, Diophantine Equations, Academic Press, New York, 1969.

- [5] L. Panaitopol, A. Gica, An introduction in arithmetic and the theory of numbers(in Romanian),Ed. Universității București, 2001.
- [6] Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1992.
- [7] D. Savin, On Some Diophantine Equations (I) Analele Universității Övidius", Constanța, ser. Matematica, 11 (2002), fasc.1, pag. 121-134.
- [8] W.Sierpinski, What we know and what we do not know about prime numbers(in Romanian), (transl. from the Polish edition, 1964), Bucureşti.
- [9] C. Vraciu, M. Vraciu, The elements of Arithmetic, Ed. All, Bucureşti, 1998.

"Ovidius" University of Constanta Department of Mathematics and Informatics, 900527 Constanta, Bd. Mamaia, 124 Romania e-mail: Savin.Diana@univ-ovidius.ro