ON SOME DIOPHANTINE EQUATIONS (II)

Diana Savin

Abstract

In [7] we have studied the equation $m^{4}-n^{4}=p y^{2}$, where p is a prime natural number $p \geq 3$. Using the above result, in this paper, we study the equations $c_{k}\left(x^{4}+6 p x^{2} y^{2}+p^{2} y^{4}\right)+4 p d_{k}\left(x^{3} y+p x y^{3}\right)=32 z^{2}$ with $p \in\{5,13,29,37\}$, where $\left(c_{k}, d_{k}\right)$ is a solution of the Pell equation $\left|c^{2}-p d^{2}\right|=1$.

1. Preliminaries.

In order to solve our problems, we need some auxiliary results.
Proposition 1.1. ([3], pag.74) The integer solutions of the Diophantine equation $x_{1}^{2}+x_{2}^{2}+\ldots+x_{k}^{2}=x_{k+1}^{2}$ are the following ones:

$$
\left\{\begin{array}{c}
x_{1}= \pm\left(m_{1}^{2}+m_{2}^{2}+\ldots+m_{k-1}^{2}-m_{k}^{2}\right) \\
x_{2}=2 m_{1} m_{k} \\
\cdots \ldots \ldots \ldots \ldots \ldots \ldots \\
\cdots \cdots \cdots \cdots \cdots \\
x_{k}=2 m_{k-1} m_{k} \\
x_{k+1}= \pm\left(m_{1}^{2}+m_{2}^{2}+\ldots+m_{k-1}^{2}+m_{k}^{2}\right)
\end{array}\right.
$$

with m_{1}, \ldots, m_{k} integer number. From the geometrical point of view, the elements $x_{1}, x_{2}, \ldots, x_{k}$ are the sizes of an orthogonal hyper-parallelipiped in the space \mathbf{R}^{k} and x_{k+1} is the length of its diagonal.

Proposition 1.2. ([1], pag.150) For the quadratic field $Q(\sqrt{d})$, where $d \in \mathbf{N}^{*}, d$ is square free, its ring of integers A is Euclidian with respect to the norm N, in the cases $d \in\{2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73\}$.

Proposition 1.3.([1], pag141) Let $K=\boldsymbol{Q}(\sqrt{d})$ be a quadratic field with A as its ring of integers. For $a \in \mathrm{~A}, a \in \mathrm{U}(\mathrm{A})$ if and only if $N(a)=1$.

Key Words: Diophantine equation; Pell equation.

Proposition 1.4. ([7],Theorem 3.2.). Let p be a natural prime number greater than 3.If the equation $m^{4}-n^{4}=p y^{2}$ has a solution $m, n, y \in \mathbf{Z}^{*}$, then it has an infinity of integer solutions.

2 Results.

Proposition 2.1. The equation $m^{4}-n^{4}=5 y^{2}$ has an infinity of integer solutions.

Proof. The equation $m^{4}-n^{4}=5 y^{2}$ has nontrivial integer solutions, for example $m=245, n=155, y=24600$. Following Proposition 1.4., the equation $m^{4}-n^{4}=5 y^{2}$ has an infinity of integer solutions.

Proposition 2.2. The equation $m^{4}-n^{4}=13 y^{2}$ has an infinity of integer solutions.

Proof. It is sufficient to show that the equation $m^{4}-n^{4}=13 y^{2}$ has nontrivial integer solutions. In deed $m=127729, n=80929, y=4144257960$ is such a solution.By Proposition 1.4., the equation $m^{4}-n^{4}=13 y^{2}$ has an infinity of integer solutions.

Now, we study our equations for $p \in\{5,13\}$.
Proposition 2.3. The equations

$$
c_{k}\left(x^{4}+6 p x^{2} y^{2}+p^{2} y^{4}\right)+4 p d_{k}\left(x^{3} y+p x y^{3}\right)=32 z^{2}
$$

with $p \in\{5,13\}$, where $\left(c_{k}, d_{k}\right)$ is a solution of the Pell equation $\left|c^{2}-p d^{2}\right|=$ $=1$, have an infinity of integer solutions.

Proof. If $p \in\{5,13\}$, then $p \equiv 5(\bmod 8)$. By Proposition 1.2., the ring A of the integers of the quadratic field $\mathbf{Q}(\sqrt{p})$ is Euclidian with respect to the norm N. But $p \equiv 5(\bmod 8)$ implies $p \equiv 1(\bmod 4)$ and $A=\mathbf{Z}\left[\frac{1+\sqrt{p}}{2}\right]$.

We shall study the equation $m^{4}-n^{4}=p y^{2}$, where p is a prime number, $p \equiv 5(\bmod 8)$ and $(m, n)=1$, in the ring A. The equation $m^{4}-n^{4}=p y^{2}$ is equivalent with $\left(m^{2}-y \sqrt{p}\right)\left(m^{2}+y \sqrt{p}\right)=n^{4}$. Let $\alpha \in A$ be a common divisor of $m^{2}-\sqrt{p} y$ and $m^{2}+\sqrt{p} y$. As $\alpha \in A, \alpha=\frac{c}{2}+\frac{d}{2} \sqrt{p}, c, d \in \mathbf{Z}$, and c, d are simultaneously even or odd. As $\alpha /\left(m^{2}+y \sqrt{p}\right)$ and $\alpha /\left(m^{2}-y \sqrt{p}\right)$, we have $\alpha / 2 m^{2}$ and $\alpha / 2 y \sqrt{p}$, therefore $N(\alpha) / 4 m^{4}$ (in \mathbf{Z}) and $N(\alpha) / 4 p y^{2}($ in $\mathbf{Z})$, hence $N(\alpha) /\left(4 m^{4}, 4 p y^{2}\right) .(m, n)=1$ implies $(m, y)=1$ (if $(m, y)=d>1$ then m
and n would not be relatively prime). Analogously, $(m, p)=1$ implies in turn that $\left(4 m^{4}, 4 p y^{2}\right)=4$, hence $N(\alpha) \in \in\{1,2,4\}$.

If $N(\alpha)=2$, then $\left|\frac{c^{2}}{4}-p \frac{d^{2}}{4}\right|=2$. If $\frac{c^{2}}{4}-p \frac{d^{2}}{4}=2$, then $c^{2}-p d^{2}=8, c, d \in \mathbf{Z}$ and c, d are simultaneously even or odd. If c and d are odd numbers, then $c^{2}, d^{2} \equiv 1(\bmod 8)$. But $p \equiv 5(\bmod 8)$. Then $c^{2}-p d^{2} \equiv 4(\bmod 8)$, which implies that the equation $c^{2}-p d^{2}=8$ does not have integer solutions.

If c and d are even numbers, then let us take them $c=2 c^{\prime}, d=2 d^{\prime}$, with $c^{\prime}, d^{\prime} \in \mathbf{Z}$. We get $c^{2}-p d^{2}=8$, then $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=2$. But $p \equiv 5(\bmod 8)$ implies:
$\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2} \equiv 4(\bmod 8)$, if c^{\prime}, d^{\prime} are odd numbers,
$\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2} \equiv 0$ or $4(\bmod 8)$, if c^{\prime}, d^{\prime} are even numbers,
$\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=$ an odd number, if c^{\prime}, d^{\prime} are one even and the other odd.

Therefore the equation $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=2$ does not have integer solutions.
If $\frac{c^{2}}{4}-p \frac{d^{2}}{4}=-2$, that means $c^{2}-p d^{2}=-8$, with $c, d \in 2 \mathbf{Z}+\mathbf{1}$ or $c, d \in 2 \mathbf{Z}$.
If c and d are odd numbers, then $c^{2}, d^{2} \equiv 1(\bmod 8)$.
As $p \equiv 5(\bmod 8)$, this implies $c^{2}-p d^{2} \equiv 4(\bmod 8)$, which gives us that the equation $c^{2}-p d^{2}=-8$ does not have integer solutions. If c and d are even numbers, then $c=2 c^{\prime}, d=2 d^{\prime}, c^{\prime}, d^{\prime} \in \mathbf{Z}$. We get $c^{2}-p d^{2}=-8$, which means that $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=-2$. But, as above, $p \equiv 5(\bmod 8)$ implies that the equation $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=-2$ does not have integer solutions. We get $N(\alpha) \neq 2$. If $N(\alpha)=4$, then $\left|\frac{c^{2}}{4}-p \frac{d^{2}}{4}\right|=4$. If $\frac{c^{2}}{4}-p \frac{d^{2}}{4}=4$, then $c^{2}-p d^{2}=16$, where $c, d \in \mathbf{Z}$ and c, d are simultaneously either even or odd.

If c and d are odd numbers, then $c^{2}, d^{2} \equiv 1(\bmod 8)$, and, since $p \equiv 5$ $(\bmod 8), c^{2}-p d^{2} \equiv 4(\bmod 8)$, which implies that the equation $c^{2}-p d^{2}=16$ does not have integer solutions.

If c and d are even numbers, then $c=2 c^{\prime}, d=2 d^{\prime}$, with $c^{\prime}, d^{\prime} \in \mathbf{Z}$, therefore $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=4$. This equation may have integer solutions only if c^{\prime}, d^{\prime} are simultaneously either even or odd. The equation $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=4$ is equivalent with $\left(\frac{c^{\prime}}{2}\right)^{2}-\left(\frac{d^{\prime}}{2}\right)^{2}=1$. If we denote $\alpha^{\prime}=\left(\frac{c^{\prime}}{2}+\frac{d^{\prime}}{2} \sqrt{p}\right) \in \mathrm{A}$, with $c^{\prime}, d^{\prime} \in 2 \mathbf{Z}+\mathbf{1}$ or $c^{\prime}, d^{\prime} \in 2 \mathbf{Z}$, we get $\alpha^{\prime} \in \mathbf{U}(A)$. From $\alpha=\frac{c}{2}+\frac{d}{2} \sqrt{p}$, we obtain that $\alpha=2 \alpha^{\prime}, \alpha^{\prime} \in \mathbf{U}(A)$. Supposing that 2 is reducible in A, hence there exist $\frac{a_{1}}{2}+\frac{b_{1}}{2} \sqrt{p}, \frac{a_{2}}{2}+\frac{b_{2}}{2} \sqrt{p} \in \mathbf{A}\left(a_{1}, a_{2}, b_{1}, b_{2} \in \mathbf{Z}, a_{1}, b_{1}\right.$, as well as, a_{2}, b_{2} being simultaneounsly odd or even) such that $2=\left(\frac{a_{1}}{2}+. \frac{b_{1}}{2} \sqrt{p}\right)\left(\frac{a_{2}}{2}+\right.$ $\left.\frac{b_{2}}{2} \sqrt{p}\right)$, hence $N(2)=N\left(\frac{a_{1}}{2}+\frac{b_{1}}{2} \sqrt{p}\right) N\left(\frac{a_{2}}{2}+\frac{b_{2}}{2} \sqrt{p}\right)$. This is equivalent with $4=N\left(\frac{a_{1}}{2}+\frac{b_{1}}{2} \sqrt{p}\right) N\left(\frac{a_{2}}{2}+\frac{b_{2}}{2} \sqrt{p}\right)$. But we have previously proved that there aren't elements in A having the norm equal with 2 . We get $N\left(\frac{a_{1}}{2}+\frac{b_{1}}{2} \sqrt{p}\right)=1$
or $N\left(\frac{a_{2}}{2}+\frac{b_{2}}{2} \sqrt{p}\right)=1$, therefore $\frac{a_{1}}{2}+\frac{b_{1}}{2} \sqrt{p} \in \mathbf{U}(A)$ or $\frac{a_{2}}{2}+\frac{b_{2}}{2} \sqrt{p} \in \mathbf{U}(A)$, hence 2 is irreducible in A. We come back to the fact that $\alpha /\left(m^{2}+y \sqrt{p}\right.$ and $\alpha /\left(m^{2}-y \sqrt{p}\right.$. This implis $2 \alpha^{\prime} /\left(m^{2}+y \sqrt{p}\right)$ and $2 \alpha^{\prime} /\left(m^{2}-y \sqrt{p}\right)$, then $2 /\left(m^{2}+y \sqrt{p}\right)$ and $2 /\left(m^{2}-y \sqrt{p}\right)$, therefore $4 /\left(m^{4}-p y^{2}\right)$. This means $4 / n^{4}$. As 2 is irreducible in A, we get $2 / n($ in $A)$, hence $2^{4} / n^{4}$. This is equivalent with $2^{4} /\left(m^{2}+y \sqrt{p}\right) \cdot\left(m^{2}-y \sqrt{p}\right)($ in $A)$, which implies $2^{k} /\left(m^{2}+y \sqrt{p}\right)$ or $2^{k} /\left(m^{2}-y \sqrt{p}\right), k \in \mathbf{N}, k \geq 2$. As $2^{k} /\left(m^{2}+y \sqrt{p}\right), k \in \mathbf{N}, k \geq 2$, implies $2^{2} /\left(m^{2}+y \sqrt{p}\right)$, hence there exists $\left(\frac{a}{2}+\frac{b}{2} \sqrt{p}\right) \in A$ (either $a, b \in 2 \mathbf{Z}+\mathbf{1}$ or $a, b \in 2 \mathbf{Z})$ such that $m^{2}+y \sqrt{p}=2^{2}\left(\frac{a}{2}+\frac{b}{2} \sqrt{p}\right)$, hence $m^{2}=2 a$ and $y=2 b($ in $\mathbf{Z})$, then $2 / m$ and $2 / y$ (in $\mathbf{Z})$. As $m^{4}-n^{4}=p y^{2}$, this implies $2 / n$ (in $\mathbf{Z})$, in contradiction with the fact that $(m, n)=1$. Analogously we get to contradiction in the case of the equation $\frac{c^{2}}{4}-p \frac{d^{2}}{4}=-4$. Therefore $N(\alpha) \neq 4$.

From the previously proved, $N(\alpha) \neq 2$ and $N(\alpha) \neq 4$, hence $N(\alpha)=1$ and $\alpha \in \mathbf{U}(A)$. We obtained that $\left(m^{2}+y \sqrt{p}\right)$ and $\left(m^{2}-y \sqrt{p}\right)$ are relatively prime elements in A, but $\left(m^{2}-y \sqrt{p}\right)\left(m^{2}+y \sqrt{p}\right)=n^{4}$, therefore there exists $\left(\frac{f}{2}+\frac{g}{2} \sqrt{p}\right) \in A$ with the property: $m^{2}+y \sqrt{p}=\left(\frac{c_{k}}{2}+\frac{d_{k}}{2} \sqrt{p}\right)\left(\frac{f}{2}+\frac{g}{2} \sqrt{p}\right)^{4},\left(\frac{c_{k}}{2}+\right.$ $\left.\frac{d_{k}}{2} \sqrt{p}\right) \in \mathbf{U}(A)$ (here $c_{k}, d_{k} \in \mathbf{Z}, c_{k}, d_{k}$ are simultaneously odd or even, $\left.N\left(\frac{c_{k}}{2}+\frac{d_{k}}{2} \sqrt{p}\right)=1\right)$. This is equivalent to $m^{2}+\sqrt{p} y=$

$$
\begin{aligned}
= & \left(\frac{c_{k}}{2}+\frac{d_{k}}{2}\right)\left(\frac{f^{4}}{16}+\frac{f^{3} g \sqrt{p}}{4}+\frac{3 f^{2} g^{2} p}{8}+\frac{f g^{3} p \sqrt{p}}{4}+\frac{g^{4} p^{2}}{16}\right), \text { which is equivalent to } \\
& 32\left(m^{2}+y \sqrt{p}\right)=\left(c_{k}+d_{k} \sqrt{p}\right)\left(f^{4}+4 f^{3} g \sqrt{p}+6 f^{2} g^{2} p+4 f g^{3} p \sqrt{p}+g^{4} p^{2}\right)
\end{aligned}
$$

implying the system:

$$
\left\{\begin{aligned}
32 m^{2} & =c_{k} f^{4}+6 p c_{k} f^{2} g^{2}+p^{2} c_{k} g^{4}+4 p f^{3} g d_{k}+4 p^{2} f g^{3} d_{k} \\
32 y & =4 c_{k} f^{3} g+4 p c_{k} f g^{3}+d_{k} f^{4}+6 p d_{k} f^{2} g^{2}+p^{2} d_{k} g^{4}
\end{aligned}\right.
$$

equivalently

$$
\left\{\begin{array}{c}
32 m^{2}=c_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 p d_{k}\left(f^{3} g+p f g^{3}\right) \\
32 y=d_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 c_{k}\left(f^{3} g+p f g^{3}\right)
\end{array}\right.
$$

We have already proved that the equation $m^{4}-n^{4}=p y^{2}$, where $p \in\{5,13\}$ has an infinity of integer solutions. Therefore, if the system:

$$
\left\{\begin{array}{c}
32 m^{2}=c_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 p d_{k}\left(f^{3} g+p f g^{3}\right) \\
32 y=d_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 c_{k}\left(f^{3} g+p f g^{3}\right)
\end{array}\right.
$$

has an infinity of integer solutions and hence the equation

$$
32 m^{2}=c_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 p d_{k}\left(f^{3} g+p f g^{3}\right)
$$

has an infinity of integer solutions.

We do not know if the Diophantine equation $m^{4}-n^{4}=p y^{2}$ has nontrivial solutions for $p \in\{29,37\}$, but we may prove the following result.

Proposition 2.4. If the equations $c_{k}\left(x^{4}+6 p x^{2} y^{2}+p^{2} y^{4}\right)+4 p d_{k}\left(x^{3} y+\right.$ $\left.+p x y^{3}\right)=32 z^{2}$, with $p \in\{29,37\}$, where $\left(c_{k}, d_{k}\right)$ is a solution of the Pell equation $\left|c^{2}-p d^{2}\right|=1$, have a solution $x, y, z \in Z^{*}$, then they have an infinity of integer solutions.

Proof. In our case again $p \equiv 5(\bmod 8)$ and the ring A of the integers of the quadratic field $\mathbf{Q}(\sqrt{p})$ is Euclidian with respect to the norm N, A being $\mathbf{Z}\left[\frac{1+\sqrt{p}}{2}\right]$. We study the equation $m^{4}-n^{4}=p y^{2}$, where p is prime number, $p \equiv 5(\bmod 8)$ in the ring A.The given equation is equivalent to $\left(m^{2}-y \sqrt{p}\right)\left(m^{2}+y \sqrt{p}\right)=n^{4}$. Let $\alpha \in A$ be a common divisor of $m^{2}-y \sqrt{p}$ and $m^{2}+y \sqrt{p}$. Then $\alpha=\frac{c}{2}+\frac{d}{2} \sqrt{p}$, with $c, d \in 2 \mathbf{Z}+\mathbf{1}$ or $c, d \in 2 \mathbf{Z}$.

As $\alpha /\left(m^{2}+y \sqrt{p}\right)$ and $\alpha /\left(m^{2}-y \sqrt{p}\right)$, we have $\alpha / 2 m^{2}$ and $\alpha / 2 y \sqrt{p}$, so $N(\alpha) / 4 m^{4}$ and $N(\alpha) / 4 p y^{2}($ in $\mathbf{Z})$, hence $N(\alpha) /\left(4 m^{4}, 4 p y^{2}\right) \cdot(m, n)=1 \mathrm{im-}$ plies $(m, y)=1$ (if $(m, y)=d>1$, then m and n are not relatively prime).

Analogously, $(m, p)=1$ implies in turn that $\left(m^{4}, p y^{2}\right)=1,\left(4 m^{4}, 4 p y^{2}\right)=$ 4 , hence $N(\alpha) \in\{1,2,4\}$. If $N(\alpha)=2$, we have $\left|\frac{c^{2}}{4}-p \frac{d^{2}}{4}\right|=2$. If $\frac{c^{2}}{4}-p \frac{d^{2}}{4}=2$, that means $c^{2}-p d^{2}=8, c, d \in \mathbf{Z}$ and c, d are simultaneously even or odd.

If c and d are odd numbers, then $c^{2}, d^{2} \equiv 1(\bmod 8)$. As $p \equiv 5(\bmod 8)$,then $c^{2}-p d^{2} \equiv 4(\bmod 8)$, which implies that the equation $c^{2}-p d^{2}=8$ does not have integer solutions. If c and d are even numbers then $c=2 c^{\prime}, d=2 d^{\prime}$, $c^{\prime}, d^{\prime} \in \mathbf{Z}$. We get $c^{2}-p d^{2}=8$, therefore $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=2$. But $p \equiv 5(\bmod 8)$ implies: $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2} \equiv 4(\bmod 8)$, if c^{\prime}, d^{\prime} are odd numbers, $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2} \equiv 0$ or $4(\bmod 8)$, if c^{\prime}, d^{\prime} are even numbers, $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=$ an odd number, if c^{\prime}, d^{\prime} are one even and another odd, and the equation $(c)^{2}-p\left(d^{\prime}\right)^{2}=2$ does not have integer solutions. If $\frac{c^{2}}{4}-p \frac{d^{2}}{4}=-2$, then $c^{2}-p d^{2}=-8, c, d \in 2 \mathbf{Z}$ or $c, d \in 2 \mathbf{Z}+\mathbf{1}$. If c and d are odd numbers, then $c^{2}, d^{2} \equiv 1(\bmod 8)$. But $p \equiv 5(\bmod 8) \operatorname{implies} c^{2}-p d^{2} \equiv 4(\bmod 8)$, which gives us that the equation $c^{2}-p d^{2}=-8$ does not haveinteger solutions. If c and d are even numbers, then $c=2 c^{\prime}, d=2 d^{\prime}, c^{\prime}, d^{\prime} \in \mathbf{Z}$. We get the equation $\left(c^{\prime}\right)^{2}-p\left(d^{\prime}\right)^{2}=-2$, which does not have integer solutions. We get $N(\alpha) \neq 2$. In the same way as
above, we prove that $N(\alpha) \neq 4$. It remains only $\alpha \in \mathbf{U}(A)$ and $m^{2}+y \sqrt{p}$, $m^{2}-y \sqrt{p}$ are relatively prime elements in A.

As $\left(m^{2}-y \sqrt{p}\right)\left(m^{2}+y \sqrt{p}\right)=n^{4}$, there exists $\left(\frac{f}{2}+\frac{g}{2} \sqrt{p}\right) \in A$ such that: $m^{2}+y \sqrt{p}=\left(\frac{c_{k}}{2}+\frac{d_{k}}{2} \sqrt{p}\right)\left(\frac{f}{2}+\frac{g}{2} \sqrt{p}\right)^{4},\left(\frac{c_{k}}{2}+\frac{d_{k}}{2} \sqrt{p}\right) \in \mathbf{U}(A)\left(c_{k}, d_{k} \in \mathbf{Z}, c_{k}, d_{k}\right.$ are simultaneously even or odd, $\left.N\left(\frac{c_{k}}{2}+\frac{d_{k}}{2} \sqrt{p}\right)=1\right)$, which is equivalent to $m^{2}+$ $y \sqrt{p}=\left(\frac{c_{k}}{2}+\frac{d_{k}}{2}\right)\left(\frac{f^{4}}{16}+\frac{f^{3} g \sqrt{p}}{4}+\frac{3 f^{2} g^{2} p}{8}+\frac{f g^{3} p \sqrt{p}}{4}+\frac{g^{4} p^{2}}{16}\right)$, which is equivalent to $32\left(m^{2}+y \sqrt{p}\right)=\left(c_{k}+d_{k} \sqrt{p}\right)\left(f^{4}+4 f^{3} g \sqrt{p}+6 f^{2} g^{2} p+4 f g^{3} p \sqrt{p}+g^{4} p^{2}\right)$. This implies the system:

$$
\left\{\begin{aligned}
32 m^{2} & =c_{k} f^{4}+6 p c_{k} f^{2} g^{2}+p^{2} c_{k} g^{4}+4 p f^{3} g d_{k}+4 p^{2} f g^{3} d_{k} \\
32 y & =4 c_{k} f^{3} g+4 p c_{k} f g^{3}+d_{k} f^{4}+6 p d_{k} f^{2} g^{2}+p^{2} d_{k} g^{4}
\end{aligned}\right.
$$

which implies the system:

$$
\left\{\begin{array}{c}
32 m^{2}=c_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 p d_{k}\left(f^{3} g+p f g^{3}\right) \\
32 y=d_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 c_{k}\left(f^{3} g+p f g^{3}\right)
\end{array}\right.
$$

We have already proved that, if the equation $m^{4}-n^{4}=p y^{2}$ has a nontrivial solution in \mathbf{Z}, it has an infinity of integer solutions. Therefore, if the system

$$
\left\{\begin{array}{c}
32 m^{2}=c_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 p d_{k}\left(f^{3} g+p f g^{3}\right) \\
32 y=d_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 c_{k}\left(f^{3} g+p f g^{3}\right)
\end{array}\right.
$$

has a nontrivial solution in \mathbf{Z}, it has an infinity of integer solutions. Therefore, if the equation $32 m^{2}=c_{k}\left(f^{4}+6 p f^{2} g^{2}+p^{2} g^{4}\right)+4 p d_{k}\left(f^{3} g+p f g^{3}\right)$ has a nontrivial solution in \mathbf{Z}, it has an infinity of integer solutions.

References

[1] T. Albu, I.D.Ion, Chapters of the algebraic theory of numbers (in Romanian), Ed. Academiei, Bucureşti, 1984.
[2] V. Alexandru, N.M. Goşoniu, The elements of the theory of numbers (in Romanian), Ed.Universităţii Bucureşti, 1999.
[3] T. Andreescu, D. Andrica, An Introduction in the Study of Diophantine Equations (in Romanian), Ed. Gil, Zalău, 2002.
[4] L.J. Mordell, Diophantine Equations, Academic Press, New York,1969.
[5] L. Panaitopol, A. Gica, An introduction in arithmetic and the theory of numbers (in Romanian),Ed. Universităţii Bucureşti, 2001.
[6] Ireland, M. Rosen, A Classical Introduction to Modern Number Theory,SpringerVerlag, 1992.
[7] D. Savin, On Some Diophantine Equations (I)Analele Universităţii Övidius", Constanţa, ser. Matematica, 11 (2002), fasc.1, pag. 121-134.
[8] W.Sierpinski, What we know and what we do not know about prime numbers(in Romanian), (transl. from the Polish edition, 1964), Bucureşti.
[9] C. Vraciu, M. Vraciu, The elements of Arithmetic, Ed. All, Bucureşti, 1998.
"Ovidius" University of Constanta
Department of Mathematics and Informatics,
900527 Constanta, Bd. Mamaia, 124
Romania
e-mail: Savin.Diana@univ-ovidius.ro

