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ON SOME DIOPHANTINE EQUATIONS
(II)

Diana Savin

Abstract

In [7] we have studied the equation m4 − n4 = py2, where p is a
prime natural number p ≥ 3. Using the above result, in this paper, we
study the equations ck(x4 + 6px2 y2 +p2y4) + 4pdk(x3y + pxy3) = 32z2

with p ∈ {5, 13, 29, 37}, where (ck, dk) is a solution of the Pell equation∣∣c2 − pd2
∣∣ = 1.

1. Preliminaries.

In order to solve our problems, we need some auxiliary results.

Proposition 1.1. ([3],pag.74) The integer solutions of the Diophantine
equation x2

1 +x2
2 +... + x2

k = x2
k+1 are the following ones:

x1 = ±(m2
1 + m2

2 + ... + m2
k−1 −m2

k)
x2 = 2m1mk

.....................

.....................
xk = 2mk−1mk

xk+1 = ±(m2
1 + m2

2 + ... + m2
k−1 + m2

k),

,

with m1, ...,mk integer number. From the geometrical point of view, the ele-
ments x1, x2, ..., xk are the sizes of an orthogonal hyper-parallelipiped in the
space Rk and xk+1 is the length of its diagonal.

Proposition 1.2. ([1],pag.150) For the quadratic field Q(
√

d), where
d ∈ N∗, d is square free, its ring of integers A is Euclidian with respect to the
norm N , in the cases d ∈ {2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Proposition 1.3.([1],pag141) Let K=Q(
√

d) be a quadratic field with A
as its ring of integers . For a∈A, a∈U(A) if and only if N(a)=1.
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Proposition 1.4. ([7] ,Theorem 3.2.). Let p be a natural prime number
greater than 3.If the equation m4 − n4 = py2 has a solution m,n, y ∈ Z∗,

then it has an infinity of integer solutions.

2 Results.

Proposition 2.1. The equation m4−n4 = 5y2 has an infinity of integer
solutions.

Proof. The equation m4 − n4 = 5y2 has nontrivial integer solutions,
for example m = 245, n = 155, y = 24600. Following Proposition 1.4., the
equation m4 − n4 = 5y2 has an infinity of integer solutions.

Proposition 2.2. The equation m4−n4 = 13y2 has an infinity of integer
solutions.

Proof. It is sufficient to show that the equation m4 − n4 = 13y2 has
nontrivial integer solutions. In deed m = 127729, n = 80929, y = 4144257960
is such a solution.By Proposition 1.4., the equation m4 − n4 = 13y2 has an
infinity of integer solutions.

Now, we study our equations for p ∈ {5, 13} .

Proposition 2.3. The equations

ck(x4 + 6px2 y2 +p2y4) + 4pdk(x3y + pxy3) = 32z2,

with p ∈ {5, 13}, where (ck, dk) is a solution of the Pell equation
∣∣c2 − pd2

∣∣ =
=1, have an infinity of integer solutions.

Proof. If p ∈ {5, 13} , then p ≡ 5 (mod 8). By Proposition 1.2., the ring
A of the integers of the quadratic field Q(

√
p) is Euclidian with respect to the

norm N. But p ≡ 5 (mod 8) implies p ≡ 1 (mod 4)and A=Z
[

1+
√

p

2

]
.

We shall study the equation m4 − n4 = py2, where p is a prime number,
p ≡ 5 (mod 8) and ( m,n ) = 1, in the ring A. The equation m4−n4 = py2 is
equivalent with (m2− y

√
p)(m2 + y

√
p) = n4. Let α ∈ A be a common divisor

of m2 −√
py and m2 +

√
py. As α ∈ A, α = c

2 +d
2

√
p, c, d ∈ Z, and c, d are

simultaneously even or odd. As α/(m2 + y
√

p) and α/(m2 − y
√

p), we have
α/2m2 and α/2y

√
p, therefore N(α)/4m4 (in Z) and N(α)/4py2(in Z), hence

N(α)/(4m4, 4py2). (m,n) = 1 implies (m, y) = 1 (if (m, y) = d > 1 then m
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and n would not be relatively prime). Analogously, (m, p) = 1 implies in turn

that (4m4, 4py2) = 4, hence N(α) ∈ ∈ {1, 2, 4} .

If N(α) = 2, then
∣∣∣ c2

4 − pd2

4

∣∣∣ = 2. If c2

4 −pd2

4 = 2, then c2−pd2 = 8, c, d ∈ Z
and c, d are simultaneously even or odd. If c and d are odd numbers, then
c2, d2 ≡ 1 ( mod 8). But p ≡ 5 ( mod 8). Then c2 − pd2 ≡ 4 ( mod 8), which
implies that the equation c2 − pd2 = 8 does not have integer solutions.

If c and d are even numbers, then let us take them c = 2c
′
, d = 2d′,with

c
′
, d

′ ∈ Z. We get c2 − pd2 = 8, then (c
′
)2 − p(d

′
)2 = 2. But p ≡ 5 ( mod 8)

implies:
(c′)2 − p(d′)2 ≡ 4 ( mod 8), if c′, d′ are odd numbers,
(c′)2 − p(d′)2 ≡ 0 or 4 ( mod 8), if c′, d′ are even numbers,
(c′)2 − p(d′)2 = an odd number, if c′, d′ are one even and the other

odd.
Therefore the equation (c

′
)2 − p(d

′
)2 = 2 does not have integer solutions.

If c2

4 −pd2

4 = −2, that means c2−pd2 = −8, with c, d ∈ 2Z + 1 or c, d ∈ 2Z.
If c and d are odd numbers, then c2, d2 ≡ 1 ( mod 8).
As p ≡ 5 ( mod 8), this implies c2 − pd2 ≡ 4 ( mod 8), which gives us that

the equation c2 − pd2 = −8 does not have integer solutions. If c and d are
even numbers, then c = 2c

′
, d = 2d

′
, c

′
, d

′ ∈ Z. We get c2 − pd2 = −8,which
means that (c

′
)2−p(d

′
)2 = −2. But, as above, p ≡ 5 ( mod 8) implies that the

equation (c
′
)2−p(d

′
)2 = −2 does not have integer solutions.We get N(α) 6= 2.

If N(α) = 4, then
∣∣∣ c2

4 − pd2

4

∣∣∣ = 4. If c2

4 − pd2

4 = 4, then c2 − pd2 = 16, where
c, d ∈ Z and c, d are simultaneously either even or odd.

If c and d are odd numbers, then c2, d2 ≡ 1 ( mod 8), and, since p ≡ 5
( mod 8), c2 − pd2≡ 4( mod 8),which implies that the equation c2 − pd2 = 16
does not have integer solutions.

If c and d are even numbers, then c = 2c
′

, d = 2d
′
, with c

′
, d

′ ∈ Z,
therefore (c

′
)2 − p(d

′
)2 = 4. This equation may have integer solutions only if

c
′
, d

′
are simultaneously either even or odd. The equation (c

′
)2 − p(d

′
)2 = 4

is equivalent with
(

c′

2

)2

−
(

d′

2

)2

= 1. If we denote α′ =
(

c′

2 + d′

2

√
p
)
∈ A,

with c
′
, d

′ ∈ 2Z + 1 or c
′
, d

′ ∈ 2Z , we get α′ ∈ U (A) .From α = c
2 + d

2

√
p,

we obtain that α = 2α′, α′ ∈ U (A) . Supposing that 2 is reducible in A,hence

there exist a1
2 + b1

2

√
p, a2

2 + b2
2

√
p ∈ A ( a1,a2, b1, b2 ∈ Z, a1, b1, as well as,

a2, b2 being simultaneounsly odd or even) such that 2 = (a1
2 + . b1

2

√
p)( a2

2 +
b2
2

√
p),hence N(2) = N(a1

2 + b1
2

√
p)N(a2

2 + b2
2

√
p). This is equivalent with

4 = N(a1
2 + b1

2

√
p)N(a2

2 + b2
2

√
p). But we have previously proved that there

aren’t elements in A having the norm equal with 2. We get N(a1
2 + b1

2

√
p) = 1
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or N(a2
2 + b2

2

√
p) = 1, therefore a1

2 + b1
2

√
p ∈ U (A)or a2

2 + b2
2

√
p ∈ U (A) ,

hence 2 is irreducible in A. We come back to the fact that α/(m2 + y
√

p
and α/(m2 − y

√
p. This implis 2α′/(m2 + y

√
p) and 2α′/(m2 − y

√
p), then

2/(m2 + y
√

p) and 2/(m2 − y
√

p),therefore 4/(m4 − py2). This means 4/n4.
As 2 is irreducible in A, we get 2/n ( in A), hence 24/n4. This is equivalent
with 24/(m2 + y

√
p) · (m2 − y

√
p) ( in A), which implies 2k/(m2 + y

√
p)or

2k/(m2 − y
√

p), k ∈ N,k ≥ 2. As 2k/(m2 + y
√

p), k ∈ N,k ≥ 2, implies

22/(m2 + y
√

p), hence there exists
(

a
2 + b

2

√
p
)
∈ A ( either a, b ∈ 2Z + 1

or a, b ∈ 2Z ) such that m2 + y
√

p = 22
(

a
2 + b

2

√
p
)
, hence m2 = 2a and

y = 2b (in Z) , then 2/m and 2/y (in Z) . As m4 − n4 = py2, this implies 2/n
(in Z) , in contradiction with the fact that (m,n) = 1. Analogously we get to
contradiction in the case of the equation c2

4 − pd2

4 = −4. Therefore N(α) 6= 4.
From the previously proved, N(α) 6= 2 and N(α) 6= 4, hence N(α) = 1

and α ∈ U (A) . We obtained that (m2 + y
√

p) and (m2 − y
√

p) are relatively
prime elements in A, but (m2 − y

√
p)(m2 + y

√
p) = n4, therefore there exists(

f
2 + g

2

√
p
)
∈ A with the property: m2+y

√
p = ( ck

2 +dk

2

√
p)

(
f
2 + g

2

√
p
)4

, ( ck

2 +

dk

2

√
p) ∈ U (A) ( here ck, dk ∈ Z, ck, dk are simultaneously odd or even,

N( ck

2 + dk

2

√
p) = 1).This is equivalent to m2 +

√
py =

=
(

ck

2 + dk

2

) (
f4

16 + f3g
√

p

4 + 3f2g2p
8 + fg3p

√
p

4 + g4p2

16

)
, which is equivalent to

32(m2 + y
√

p) = (ck + dk
√

p)(f4 + 4f3g
√

p + 6f2g2p + 4fg3p
√

p + g4p2),

implying the system:{
32m2 = ckf4 + 6pckf2g2 + p2ckg4 + 4pf3gdk + 4p2fg3dk

32y = 4ckf3g + 4pckfg3 + dkf4 + 6pdkf2g2 + p2dkg4,

equivalently{
32 m2 = ck(f4 + 6pf2g2 + p2g4) + 4pdk(f3g + pfg3)

32y = dk(f4 + 6pf2g2 + p2g4) + 4ck(f3g + pfg3).

We have already proved that the equation m4 − n4 = py2, where p ∈ {5, 13}
has an infinity of integer solutions. Therefore, if the system:{

32 m2 = ck(f4 + 6pf2g2 + p2g4) + 4pdk(f3g + pfg3)
32y = dk(f4 + 6pf2g2 + p2g4) + 4ck(f3g + pfg3)

has an infinity of integer solutions and hence the equation
32 m2 = ck(f4 + 6pf2g2 + p2g4) + 4pdk(f3g + pfg3)

has an infinity of integer solutions.
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We do not know if the Diophantine equation m4− n4 = py2 has nontrivial
solutions for p ∈ {29, 37} , but we may prove the following result.

Proposition 2.4. If the equations ck(x4 + 6px2 y2 +p2y4) + 4pdk(x3y+
+pxy3) = 32z2,with p ∈ {29, 37}, where (ck, dk) is a solution of the Pell

equation
∣∣c2 − pd2

∣∣ = 1,have a solution x, y, z ∈ Z∗, then they have an infinity

of integer solutions.

Proof. In our case again p ≡ 5 (mod 8) and the ring A of the integers
of the quadratic field Q(

√
p) is Euclidian with respect to the norm N, A

being Z
[

1+
√

p

2

]
. We study the equation m4 − n4 = py2, where p is prime

number, p ≡ 5 (mod 8) in the ring A.The given equation is equivalent to

(m2 − y
√

p)(m2 + y
√

p) = n4. Let α ∈ A be a common divisor of m2 − y
√

p

and m2 + y
√

p. Then α = c
2 +d

2

√
p, with c, d ∈ 2Z + 1 or c, d ∈ 2Z.

As α/(m2 + y
√

p) and α/(m2 − y
√

p), we have α/2m2 and α/2y
√

p, so
N(α)/4m4 and N(α)/4py2 ( in Z ), hence N(α)/(4m4, 4py2).(m,n) = 1 im-

plies (m, y) = 1 (if (m, y) = d > 1, then m and n are not relatively prime).
Analogously, (m, p) = 1 implies in turn that (m4, py2) = 1, (4m4, 4py2) =

4, hence N(α) ∈ {1, 2, 4} . If N(α) = 2, we have
∣∣∣ c2

4 − pd2

4

∣∣∣ = 2. If c2

4 −pd2

4 = 2,

that means c2 − pd2 = 8, c, d ∈ Z and c, d are simultaneously even or odd.

If c and d are odd numbers, then c2, d2 ≡ 1 ( mod 8). As p≡ 5 ( mod 8),then

c2− pd2 ≡ 4 ( mod 8 ), which implies that the equation c2− pd2 = 8 does not
have integer solutions. If c and d are even numbers then c = 2c

′
, d = 2d

′
,

c
′
, d

′ ∈ Z. We get c2−pd2 = 8, therefore (c
′
)2−p(d

′
)2 = 2. But p ≡ 5 ( mod 8)

implies:(c′)2 − p(d′)2 ≡ 4 ( mod 8), if c′, d′ are odd numbers,(c′)2 − p(d′)2 ≡ 0

or 4 ( mod 8), if c′, d′ are even numbers, (c′)2 − p(d′)2 = an odd number, if
c′, d′ are one even and another odd, and the equation (c

′
)2 − p(d

′
)2 = 2 does

not have integer solutions. If c2

4 − pd2

4 = −2, then c2 − pd2 = −8, c, d ∈ 2Z

or c, d ∈ 2Z + 1. If c and d are odd numbers, then c2, d2 ≡ 1 ( mod 8). But

p ≡ 5 ( mod 8) impliesc2−pd2 ≡ 4 ( mod 8), which gives us that the equation

c2 − pd2 = −8 does not haveinteger solutions. If c and d are even numbers,

then c = 2c
′

, d = 2d
′
, c

′
, d

′ ∈ Z. We get the equation (c
′
)2 − p(d

′
)2 = −2,

which does not have integer solutions. We get N(α) 6= 2. In the same way as
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above, we prove that N(α) 6= 4. It remains only α ∈ U (A) and m2 + y
√

p,
m2 − y

√
p are relatively prime elements in A.

As (m2 − y
√

p)(m2 + y
√

p) = n4, there exists
(

f
2 + g

2

√
p
)
∈ A such that:

m2+y
√

p = ( ck

2 + dk

2

√
p)

(
f
2 + g

2

√
p
)4

, ( ck

2 + dk

2

√
p) ∈U (A) (ck, dk ∈ Z, ck, dk

are simultaneously even or odd, N( ck

2 + dk

2

√
p) = 1), which is equivalent tom2+

y
√

p = ( ck

2 + dk

2 )
(

f4

16 + f3g
√

p

4 + 3f2g2p
8 + fg3p

√
p

4 + g4p2

16

)
,which is equivalent

to 32(m2 + y
√

p) = (ck + dk
√

p)(f4 + 4f3g
√

p + 6f2g2p + 4fg3p
√

p + g4p2).
This implies the system:{

32m2 = ckf4 + 6pckf2g2 + p2ckg4 + 4pf3gdk + 4p2fg3dk

32y = 4ckf3g + 4pckfg3 + dkf4 + 6pdkf2g2 + p2dkg4,

which implies the system:{
32 m2 = ck(f4 + 6pf2g2 + p2g4) + 4pdk(f3g + pfg3)

32y = dk(f4 + 6pf2g2 + p2g4) + 4ck(f3g + pfg3).

We have already proved that, if the equation m4 − n4 = py2 has a nontrivial
solution inZ, it has an infinity of integer solutions. Therefore, if the system{

32 m2 = ck(f4 + 6pf2g2 + p2g4) + 4pdk(f3g + pfg3)
32y = dk(f4 + 6pf2g2 + p2g4) + 4ck(f3g + pfg3),

has a nontrivial solution in Z, it has an infinity of integer solutions. Therefore,
if the equation 32 m2 = ck(f4 + 6pf2g2 + p2g4) + 4pdk(f3g + pfg3) has a

nontrivial solution in Z, it has an infinity of integer solutions.
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