Vol. 10(2), 2002, 39-44

EIGENVALUES AND EIGENVECTORS FOR THE QUATERNION MATRICES OF DEGREE TWO

Cristina Flaut

Abstract

In this paper we give a computation method, in a particular case, for eigenvalues and eigenvectors of the quaternion matrices of degree two with elements in the generalized quaternion division algebra $\mathbb{H}(\alpha, \beta)$. It is known (see[1]) that every quaternion matrix has at least one characteristic root, but there is not yet giving a computing method. By using [4] we give such a computing method for eigenvalues and eigenvectors of the quaternion matrices of degree two with elements in the generalized quaternion division algebra $\mathbb{H}(\alpha, \beta)$.

Let $\mathbb{H}(\alpha, \beta)$ be the generalized quaternion division algebra over the comutative field K with char $K \neq 2$.

Definition 1 Let $A \in \mathcal{M}_n(\mathbb{H}(\alpha, \beta))$ and $\lambda \in \mathbb{H}(\alpha, \beta)$. The quaternion λ is called an **eigenvalue** of the matrix A (or a **characteristic root**), if there exists a matrix $x \in \mathcal{M}_{n \times 1}(\mathbb{H}(\alpha, \beta))$, $x \neq 0$, such that $Ax = x\lambda$. The matrix x is called the **eigenvector** of the matrix A.

Proposition 1 Two similar matrices have the same characteristic roots.

Proof. Let $A \sim B$, i.e. there exists an invertible matrix $T \in \mathcal{M}_n(\mathbb{H}(\alpha,\beta))$ such that $B = TAT^{-1}$. Let $\lambda \in \mathbb{H}(\alpha,\beta)$ be an eigenvalue for the matrix A, then we find the matrix $x \in \mathcal{M}_{n \times 1}(\mathbb{H}(\alpha,\beta))$ such that $Ax = x\lambda, x \neq 0$. Let y = Tx. Then $By = TAT^{-1}y = TAx = Tx\lambda = y\lambda$.

Proposition 2 Let $A \in \mathcal{M}_n(\mathbb{H}(\alpha,\beta))$ and let $\lambda \in \mathbb{H}(\alpha,\beta)$ be an eigenvalue of the matrix A. If $\rho \in \mathbb{H}(\alpha,\beta)$, $\rho \neq 0$, then $\rho^{-1}\lambda\rho$ is also an eigenvalue of the matrix A.

Key Words: quaternion matrices; generalized quaternion algebra.

Proof. From $Ax = x\lambda$, we get $A(x\rho) = x\lambda\rho = (x\rho)\rho^{-1}\lambda\rho.\Box$

Remark 1 From the Proposition 2, we see that, if the vector corresponding to the eigenvalue λ is x, then $x\rho$ is the eigenvector corresponding to the characteristic root $\rho^{-1}\lambda\rho$.

Proposition 3 ([1])Let K be an arbitrary field, not necessarily commutative, with char $K \neq 2$. If $A = (a_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(K)$, then we have a triangular invertible matrix T such that $C = T^{-1}AT$, $C = (c_{ij})_{i,j=\overline{1,n}}$, where $c_{ij} = 0$, for all i > j + 1, $i, j \in \{1, 2, ..., n\}$.

Let \mathbb{H} be the real quaternion algebra and let f be the polynomial of degree n:

 $f\left(X\right) = a_0 X a_1 X \dots X a_n + g\left(X\right),$

where $a_0, a_1, ..., a_n \in \mathbb{H}$, $a_i \neq 0$ for every $i = \overline{1, n}$ and g(X) is a finite sum of monomials of the form $b_0Xb_1X...Xb_m$, where $m \leq n$.

In [2], it is shown that, if the polynomial f has a single term of degree n, then the equation f(x) = 0 has exactly n solutions in \mathbb{H} .

Proposition 4 ([1])Let $A \in \mathcal{M}_n(\mathbb{H})$, then the matrix A has an eigenvalue.

In the next, let $\mathbb{H}(\alpha,\beta)$ be the generalized quaternion division algebra over

the commutative field K with char $K \neq 2$. It is known that $\mathbb{H}(\alpha, \beta)$ is an algebra of degree two, then every element $x \in \mathbb{H}(\alpha, \beta)$ satisfies a relation of the form:

$$x^{2} + t(x)x + n(x) = 0,$$

where $t(x), n(x) \in K$ are the **trace** and the **norm** of the element x.

If $\{1, e_1, e_2, e_3\}$ is a basis in $\mathbb{H}(\alpha, \beta)$ and $x \in \mathbb{H}(\alpha, \beta)$, then, for $x = a + be_1 + ce_2 + de_3$, the element $\bar{x} = a - be_1 - ce_2 - de_3$ is called the **conjugate** of the element x and we have the relations:

$$x + \bar{x} = t(x)$$
 and $x\bar{x} = n(x)$

Proposition 5 ([4]) Let $a, b \in \mathbb{H}(\alpha, \beta)$, $a \neq 0, b \neq 0$. Then the linear equation

$$ax = xb \tag{5.1.}$$

has nonzero solutions, $x \in \mathbb{H}(\alpha, \beta)$, if and only if :

$$t(a) = t(b) \text{ and } n(a - a_0) = n(b - b_0),$$
 (5.2.)

where $a = a_0 + a_1e_1 + a_2e_2 + a_3e_3, b = b_0 + b_1e_1 + b_2e_2 + b_3e_3.$

Proposition 6 ([4]) *i*) If $a = a_0 + a_1e_1 + a_2e_2 + a_3e_3$, $b = b_0 + b_1e_1 + b_2e_2 + b_3e_3 \in \mathbb{H}(\alpha, \beta)$ with $b \neq \bar{a}$, $a, b \notin K$, then the solutions of the equation (5.1.), with t(a) = t(b) and $n(a - a_0) = n(b - b_0)$, are found in $\mathcal{A}(a, b)$ (the algebra generated by the elements a and b) and have the form :

$$x = \lambda_1 (a - a_0 + b - b_0) + \lambda_2 \left(n \left(a - a_0 \right) - \left(a - a_0 \right) \left(b - b_0 \right) \right), \tag{6.1.}$$

where $\lambda_1, \lambda_2 \in K$ are arbitrary.

ii) If $b = \bar{a}$, then the general solution of the equation (5.1.) is $x = x_1e_1 + x_2e_2 + x_3e_3$, where $x_1, x_2, x_3 \in K$ and they satisfy the identity :

$$\alpha a_1 x_1 + \beta a_2 x_2 + \alpha \beta a_3 x_3 = 0. \Box \tag{6.2.}$$

Proposition 7 ([4]) Let $a \in \mathbb{H}(\alpha, \beta)$, $a \notin K$. If there exists $r \in K$ such that $n(a)=r^2$, then $a = \bar{q}rq^{-1}$, where $q = r + \bar{a}$, $q^{-1} = \frac{\bar{q}}{n(q)}$.

Proof. By hypothesis we have $a(r + \bar{a}) = ar + a\bar{a} = ar + n(a) = ar + r^2 = (a + r)r$. From $\bar{q} = r + a$ it results $\bar{q}r = aq.\Box$

Proposition 8 ([4]) Let $a \in \mathbb{H}(\alpha, \beta)$ with $a \notin K$, if there exist $r, s \in K$ with the properties $n(a) = r^4$, $n(r^2 + \bar{a}) = s^2$, then the quadratic equation $x^2 = a$ has two solutions of the form: $x = \pm \frac{r(r^2 + a)}{s}$.

Proof. By Proposition 7, it results that a has the form $a = \bar{q}r^2q^{-1}$, where $q = r^2 + \bar{a}$. Because $q^{-1} = \frac{\bar{q}}{n(q)}$, we obtain $a = r^2\bar{q}q^{-1} = r^2\bar{q}\frac{\bar{q}}{n(q)} = r^2\frac{\bar{q}^2}{s^2} = \left(\frac{r}{s}\bar{q}\right)^2$, therefore $x_1 = \frac{r}{s}\bar{q}, x_2 = -\frac{r}{s}\bar{q}$

are the claimed solutions. \Box

Proposition 9 ([4]) Let $a, b, c \in \mathbb{H}(\alpha, \beta)$ such that ab and $b^2 - c$ do not belong to K. If ab and $b^2 - c$ satisfy the conditions in Proposition 8, then the equations xax = b and $x^2 + bx + xb + c = 0$ have solutions.

Proof. $xax = b \iff (ax)^2 = ab$ and $x^2 + bx + xb + c = 0 \iff (x+b)^2 = b^2 - c.\Box$

Proposition 10 ([4]) If $b, c \in \mathbb{H}(\alpha, \beta) \setminus \{K\}$ satisfy the conditions bc=cb, $\frac{b^2}{4} - c \neq 0$ and there exists $r \in K$ such that $n\left(\frac{b^2}{4} - c\right) = r^4$ and $n\left(r^2 + \frac{\bar{b}^2}{4} - \bar{c}\right) = s^2, s \neq 0$, then the equation

$$x^2 + bx + c = 0 \tag{10.1}$$

has solutions in $\mathbb{H}(\alpha,\beta)$.

Proof. Let $x_0 \in \mathbb{H}(\alpha, \beta)$ be a solution of the equation (10.1.). Because $x_0^2 = t(x_0) x_0 - n(x_0)$ si $x_0^2 + bx_0 + c = 0$, it results that $t(x_0) x_0 - n(x_0) + bx_0 + c = 0$, therefore $(t(x_0) + b) x_0 = c + n(x_0)$.

Because $t(x_0)+b \neq 0$, $t(x_0)$, $n(x_0) \in K$, $1 \in \mathcal{A}(b, c)$, we have

 $t(x_0) + bc$ şi $c + n(x_0) \in \mathcal{A}(b, c)$.

Therefore $x_0 \in \mathcal{A}(b,c)$. Because bc = cb, we obtain that $\mathcal{A}(b,c)$ is commutative, therefore x_0 commutes with every element of $\mathcal{A}(b,c)$. Then the equation (10.1.) can be written:

$$\left(x+\frac{b}{2}\right)^2 - \frac{b^2}{4} + c = 0$$

and we use Proposition 8. \Box

We consider now the case n = 2, hence we take $A = (a_{ij})_{i,j=\overline{1,2}} \in \mathbb{H}(\alpha,\beta)$. **Case I.** Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{H}(\alpha,\beta)$ with $a_{21} \neq 0$. Let $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \neq 0$ be the eigenvector corresponding to the eigenvalue λ of the matrix A. We suppose that $x_2 \neq 0$. Then the vector $xx_2^{-1} = \begin{pmatrix} x_1x_2^{-1} \\ 1 \end{pmatrix}$ is the eigenvector corresponding to the eigenvalue $x_2\lambda x_2^{-1}$ for the matrix A. Therefore we have got an eigenvector of the form $x = \begin{pmatrix} x_1 \\ 1 \end{pmatrix}$. Then the relation $Ax = x\lambda$ is equivalent to the next system:

$$\begin{cases} a_{11}x_1 + a_{12} = x_1\lambda \\ a_{21}x_1 + a_{22} = \lambda \end{cases}$$
(*)

We replace λ from the second equation in the first one and we get: $a_{11}x_1+a_{12}=x_1(a_{21}x_1+a_{22})$, hence $x_1a_{21}x_1+x_1a_{22}-a_{11}x_1-a_{12}=0$. We multiply this last relation to the left side with a_{21} . It results $a_{21}x_1a_{21}x_1+a_{21}x_1a_{22}-a_{21}a_{11}x_1-a_{21}a_{12}=0$. We denote $a_{21}x_1=t$ and we obtain

$$t^{2} + ta_{22} - a_{21}a_{11}a_{21}^{-1}t - a_{21}a_{12} = 0.$$
(**)

If $a_{22} = -a_{21}a_{11}a_{21}^{-1} = b$, we denote $c = -a_{21}a_{12}$, and if, $b^2 - c \notin K$ and there exist $r, s \in K$ with the properties $n(b^2 - c) = r^4$ and $n(r^2 + \overline{b^2 - c}) = s^2$, then we may use the *Proposition 8* getting $(t+b)^2 = b^2 + a_{21}a_{12}$, therefore: $t = \pm \frac{r}{s}(r^2 + b^2 - c) - b$.

It results that $a_{21}x_1 = \pm \frac{r}{s}(r^2 + b^2 - c) - b$ hence $a_{21}x_1 = \pm \frac{r}{s}(r^2 + a_{21}a_{11}^2a_{21}^{-1} + a_{21}a_{12}) + a_{21}a_{11}a_{21}^{-1}$. Therefore

$$x_1 = \pm \frac{r}{s} \left(r^2 a_{21}^{-1} + a_{11}^2 a_{21}^{-1} + a_{12} \right) + a_{11} a_{21}^{-1},$$

and, for the eigenvalue λ , we have the expression:

$$\lambda = \pm \frac{r}{s} \left(r^2 + a_{22}^2 + a_{21} a_{12} \right),$$

because $a_{22} = -a_{21}a_{11}a_{21}^{-1}$ and $a_{21}a_{21}^2a_{21}^{-1} = a_{21}a_{11}a_{11}a_{21}^{-1} = -a_{22}a_{21}a_{11}a_{21}^{-1} = a_{22}^2$.

Case II. If $a_{22} \neq -a_{21}a_{11}a_{21}^{-1}, a_{21} \neq 0$, then the equation (**) is written $(t + a_{22})^2 - a_{22}^2 - a_{22}t - a_{21}a_{11}a_{21}^{-1}t - a_{21}a_{12} = 0$. Equivalently, we get: $(t + a_{22})^2 - (a_{22} + a_{21}a_{11}a_{21}^{-1})(t + a_{22}) + a_{21}a_{11}a_{21}^{-1}a_{22} - a_{21}a_{12} = 0$. Denoting $-(a_{22} + a_{21}a_{11}a_{21}^{-1}) = b, a_{21}a_{11}a_{21}^{-1}a_{22} - a_{21}a_{12} = c$ and $t + a_{22} = v$, we obtain the equation:

$$v^2 + bv + c = 0. \tag{***}$$

If $b, c \in \mathbb{H}(\alpha, \beta) \setminus \{K\}$, bc=cb, $\frac{b^2}{4} - c \neq 0$ and there exists $r \in K$ such that $n\left(\frac{b^2}{4} - c\right) = r^4$ and $n\left(r^2 + \frac{\bar{b}^2}{4} - \bar{c}\right) = s^2$, $s \neq 0$, we may use *Proposition 10* and we obtain the solutions. If these conditions are not satisfied, we can say only that the solutions of the equation (* * *) are in the algebra generated by b and c.

Case III. If $a_{21} = 0$, and $a_{12} \neq 0$, then the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is the eigenvector for the eigenvalue $\lambda = a_{11}$. If $a_{21} = 0$ and $a_{12} = 0$, we have $a_{22} = \lambda$ and

then the system (*) is equivalent to the equation $a_{11}x_1 = a_{22}x_1$ and its nonzero solutions are given by *Proposition 6*. If we have $t(a_{11}) = t(a_{22})$ and $n(a'_{11}) = n(a'_{22})$, where $a'_{11} = a_{11} - t(a_{11})$ and $a'_{22} = a_{22} - t(a_{22})$, then the solutions have the form (6.1.) for $a_{11} \neq \bar{a}_{22}$ or have the form (6.2.) for $a_{11} = \bar{a}_{22}$.

References

- [1] Brenner, J. L., Matrices of quaternions, Pacific J. Math. 1, 329-335, 1951.
- [2] Eilenberg, S., Niven, I., The "fundamental theorem of algebra" for quaternions, Bull. Amer. Math. Soc. 50, 244-248, 1944.
- [3] Elduque, A., Pérez-Izquierdo, J. M., Composition algebras of degree two, Proc. Edinburgh Math. Soc. 42, 641-653, 1999.
- [4] Flaut, C., Some equations in algebras obtained by the Cayley-Dickson process, An. Univ." Ovidius "Constantza, 9, f. 2, pag. 45-69, 2001.
- [5] Jhonson, R. E., On the equation $\chi \alpha = \gamma \chi + \beta$ over algebraic division ring, J. of Algebra **67**, 479-490, 1980.
- [6] Kostrikin, A. I., Shafarevich, I.R. (Eds), Algebra VI, Springer-Verlag, 1995.
- [7] Schafer, R. D., An Introduction to Nonassociative Algebras, Academic Press, New-York, 1966.
- [8] Tian, Y., Matrix representations of octonions and their applications, Advances in App. Clifford Algebras 10, No.1, 61-90, 2000.
- [9] Tian, Y., Similarity and consimilarity of elements in the real Cayley-Dickson algebras, Advances in App.Clifford Algebras 9, No.1, 61-76,1999.
- Wiegmann, N.A., Some theorems on matrices with real quaternion elements, Canad. J. Math. 7, 191-201, 1955.

"Ovidius" University of Constanta Department of Mathematics and Informatics, 900527 Constanta, Bd. Mamaia 124 Romania e-mail: cflaut@univ-ovidius.ro