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EIGENVALUES AND EIGENVECTORS
FOR THE QUATERNION MATRICES OF
DEGREE TWO

Cristina Flaut

Abstract

In this paper we give a computation method, in a particular case, for
eigenvalues and eigenvectors of the quaternion matrices of degree two
with elements in the generalized quaternion division algebra H (a, 3). It
is known ( see[1]) that every quaternion matrix has at least one charac-
teristic root , but there is not yet giving a computing method. By using
[4] we give such a computing method for eigenvalues and eigenvectors of
the quaternion matrices of degree two with elements in the generalized
quaternion division algebra H(a, 3).

Let H(ca, ) be the generalized quaternion division algebra over the comu-
tative field K with char K # 2.

Definition 1 Let A € M,,(H(a,B) ) and A € H(«, 5) . The quaternion X is
called an eigenvalue of the matriz A ( or a characteristic root), if there
exists a matriz x € My x1(H (o, 8) ), © # 0, such that Ax = xA. The matriz
x is called the eigenvector of the matriz A.

Proposition 1 Two similar matrices have the same characteristic roots.

Proof. Let A ~ B, i.e. there exists an invertible matrix T € M,,(H (o, 3) )
such that B = TAT~!. Let A € H(«,8) be an eigenvalue for the matrix A,
then we find the matrix 2 € My,»1(H (, 3) ) such that Az =z, 2 # 0. Let
y=Tx. Then By = TAT 'y = TAx = Ta) = y\.0I

Proposition 2 Let A € M,,(H («, ) ) and let X € H(a, 8) be an eigenvalue
of the matriz A. If p € H (o, ) , p # 0, then p~\p is also an eigenvalue of
the matriz A.
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Proof. From Ax = x), we get A(zp) = xXp = (xp)p~A\p.00

Remark 1 From the Proposition 2, we see that, if the vector corresponding
to the eigenvalue ) is x, then xp is the eigenvector corresponding to the cha-
racteristic root p~!Ap.

Proposition 3 ([1])Let K be an arbitrary field, not necessarily commutative,
with char K # 2 . If A = (aij); j—17 € Mn(K), then we have a triangular
invertible matric T such that C = T~ 1AT, C = (Cij)i,jzﬁ7 where ¢;; = 0,
foralli>j+1,4,5€{1,2,..,n}.0

Let H be the real quaternion algebra and let f be the polynomial of degree n:

f(X)=aXa1 X.. Xa, + g (X),

where ag, ay, ...,a, € H, a; # 0 for every i = 1,n and g (X) is a finite sum of
monomials of the form by Xb; X...Xb,,, where m 5 n.

In [2],it is shown that, if the polynomial f has a single term of degree n,
then the equation f (z) = 0 has exactly n solutions in H .

Proposition 4 ([1])Let A € M,,(H), then the matriz A has an eigenvalue.r

In the next, let H(«, 3) be the generalized quaternion division algebra over

the commutative field K with char K # 2. It is known that H («, 8) is an
algebra of degree two, then every element x € H («, 3) satisfies a relation of
the form:

2 +t(x)z+n(z)=0,

where ¢ (2),n (z) € K are the trace and the norm of the element z.

If {1,e1,€e2,e3} is a basis in H (o, 8) and z € H(«, ), then, for
r = a+ bey 4+ ces + des, the element T = a — be; — ceq — deg is called the
conjugate of the element x and we have the relations:

x4+ Z=t(x) and 2T = n (z)
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Proposition 5 ([4]) Leta,b € H(w, 3),a # 0,b # 0. Then the linear equation

ar = xb (5.1.)

has nonzero solutions, x € H («, 8), if and only if :

t(a) =t(b) and n(a—ag) =n(b—1by), (5.2.)

where a = ag + a1e1 + ases + azes, b = by + byrey + baes + bzes.[]

Proposition 6 ([4]) i) If a = ag + a1e1 + azes + ases,

b =bp+bie; +baea+bses € H(a, B) withb # a, a,b ¢ K, then the solutions of
the equation (5.1.) ,with t (a) =t (b) and n(a —ag) =n(b—by), are found in
A (a,b) (the algebra generated by the elements a and b) and have the form :

x=MA(a—ag+b—"by) + A2 (n(a—ag)—(a—ag)(b—10)), (6.1.)

where A1, Ao € K are arbitrary.
it) If b = a, then the general solution of the equation (5.1.) is
T = x1€1 + Toe2 + T3es, where x1,xo,x3 € K and they satisfy the identity :

aai1x1 + Pasxs + afazzrs = 0.0 (6.2.)

Proposition 7 ([4]) Let a € H(w, 3), a ¢ K. If there exists r € K
such that n(a)=r? then a = qrq~ ', where q=r+a, ¢t = ﬁ.
Proof. By hypothesis we have a (r +a@) = ar +aa = ar + n(a) =
=ar+r?2=(a+r)r. From §=r+a it results gr = aq.0]

Proposition 8 ([4] ) Let a € H (o, B) with a ¢ K, if there exist r,s € K with
the properties n (a) = r* , n (r2 + d) = 52, then the quadratic equation z° = a
T 7'2+a)

has two solutions of the form: = +——-.

Proof. By Proposition 7, it results that a has the form

a = qr2q~ "', where ¢ = r? + a. Because ¢~! = ﬁ_q), we obtain

_ ~2
a=r24g"" = gL = 2% = (29)° ., therefore

r r

T1=—q, 2= ——4
s K

are the claimed solutions.[]
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Proposition 9 ([4] ) Let a,b,c € H(«,3) such that ab and b*> —c¢ do not
belong to K. If ab and b> — ¢ satisfy the conditions in Proposition 8, then the
equations xax = band 22 + bx + b + ¢ = 0 have solutions.

Proof. zax = b <= (az)’ = aband 22 + bx + zb+c = 0 < (z+b)° =
b2 —cO

Proposition 10 ([4]) If b,c € H(o, B)\{K} satisfy the conditions bc=cb,

% —c#0 and there exists r € K such that n (% — c) =r*and

n (7"2 + % — 5) =52, 5 # 0, then the equation

2 +br+c=0 (10.1)
has solutions in H («, ) .

Proof. Let zp € H(a, 8) be a solution of the equation (10.1.) . Because
3=t (20) xo-n (7o) §i 23+bxo+c=0,it results that t (xq)xo-n (xo)+bro+c=0,
therefore (t (x¢) +b) xo=c+n (zg) .

Because ¢ (xg)+b # 0, t(xg), n(zg) € K,1 € A(b,c), we have

t(xg)+besi c+n(x) € A(b,c).

Therefore g € A (b, c). Because be = cb, we obtain that A (b, ¢) is commuta-
tive, therefore oy commutes with every element of A (b, ¢) . Then the equation
(10.1.) can be written:

+b2 b2+ 0
T+ - ——F— TC=
2 4

and we use Proposition 8.0

We consider now the case n = 2, hence we take A = (a;;), ;_15 € H(a, 8).

Casel. Let A = ( a a2 ) € H (o, 8) withag; # 0. Let z = ( o ) #
azy Qg2 T2

0 be the eigenvector corresponding to the eigenvalue A of the matrix A. We

T1Toy

1

corresponding to the eigenvalue zgAzy ! for the matrix A. Therefore we have

;fl ) . Then the relation Az = z\ is

suppose that o # 0. Then the vector zzy 1= < > is the eigenvector

got an eigenvector of the form x = (

equivalent to the next system:
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a1 + a2z = 1A (*)
a21%1 + az = A

We replace A from the second equation in the first one and we get:
a11x1+a12:x1(a21x1+a22), hence 1021T1+2X1022—G11L1 — Q12 = 0. We multi-
ply this last relation to the left side with ao;. It results asi1zia01x14a01z1a20—
az1a11r1 — as1a12 = 0. We denote as1x1 = tand we obtain

2 —1 _ kk
t* +tage — as1G11091 t — a1a12 = 0. ( )

If age = —aglallagll = b, we denote ¢ = —ao1a12, and if, b2 — ¢ ¢ K and there
exist r,s € K with the properties n (b2 = c) =% and n (7“2 +m> = 52,
then we may use the Proposition 8 getting (¢ + b)2 = b% 4 as1a12, therefore:
t==+= (7‘2—|—b2—c) —b.

It results that ag 1 == :I:E (7‘2 +b% - c) — b hence
azry =+ (r2 + agla%a;ll + a21a12) + aglallagl. Therefore

r
2 —1 2 -1 -1
T = i; (r Ay +ajjaq; + alg) + airaq7,
and, for the eigenvalue A\, we have the expression:
A=+- (1 + a3
= ; (T‘ + as5o + aglau) s

—1 2 -1 —1 —1
because A22 = —021011097 and 21471097 = 21011011097 = —A22021A11091 =
— 42
= Qo9.

Case II. If asy # —aglallag_ll,agl # 0, then the equation (xx) is writ-

2 — .
ten (t + agz)” — a3y — aget — aglallaﬂlt — ag1a12 = 0. Equivalently, we get:
2 —1 —1 .
(t + (122) — (a22 + 21411097 ) (t + a22) +a21a11a21 29 —A21A12 — 0. Denotlng
-1 —1 .

— (a22 + 210411 A9q ) = b, 21411097 22 — 021412 = C and t+a22 = v, wWe obtain
the equation:

v+ bv4c=0. (**%)

If b,c € H(a, B)\{K}, be=cb, % — ¢ # 0 and there exists r € K such that

n (% - c) =r*and n (’1"2 + % — 6) = 52,5 # 0, we may use Proposition 10

and we obtain the solutions. If these conditions are not satisfied, we can say

only that the solutions of the equation (* * x) are in the algebra generated by
b and c.

Case IIlL. If ap; = 0,and a2 # 0, then the vector is the eigenvec-

1
0
tor for the eigenvalue A = a11. If as; = 0 and a2 = 0, we have azs = A and
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then the system (x) is equivalent to the equation a1121 = agex; and its
nonzero solutions are given by Proposition 6. If we have t(aj1) = t(aa)
and n(a}y) = n(ahy), where a}; = a11 — t(a11) and aby = a2 — t(az2),
then the solutions have the form (6.1.) for ai; # a2z or have the form (6.2.)
for a1 = a9s3.
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