EIGENVALUES AND EIGENVECTORS FOR THE QUATERNION MATRICES OF DEGREE TWO

Cristina Flaut

Abstract

In this paper we give a computation method, in a particular case, for eigenvalues and eigenvectors of the quaternion matrices of degree two with elements in the generalized quaternion division algebra $\mathbb{H}(\alpha, \beta)$. It is known (see[1]) that every quaternion matrix has at least one characteristic root, but there is not yet giving a computing method. By using [4] we give such a computing method for eigenvalues and eigenvectors of the quaternion matrices of degree two with elements in the generalized quaternion division algebra $\mathbb{H}(\alpha, \beta)$.

Let $\mathbb{H}(\alpha, \beta)$ be the generalized quaternion division algebra over the comutative field K with char $K \neq 2$.

Definition 1 Let $A \in \mathcal{M}_{n}(\mathbb{H}(\alpha, \beta))$ and $\lambda \in \mathbb{H}(\alpha, \beta)$. The quaternion λ is called an eigenvalue of the matrix A (or a characteristic root), if there exists a matrix $x \in \mathcal{M}_{n \times 1}(\mathbb{H}(\alpha, \beta)), x \neq 0$, such that $A x=x \lambda$. The matrix x is called the eigenvector of the matrix A.

Proposition 1 Two similar matrices have the same characteristic roots.
Proof. Let $A \sim B$, i.e. there exists an invertible matrix $T \in \mathcal{M}_{n}(\mathbb{H}(\alpha, \beta))$ such that $B=T A T^{-1}$. Let $\lambda \in \mathbb{H}(\alpha, \beta)$ be an eigenvalue for the matrix A, then we find the matrix $x \in \mathcal{M}_{n \times 1}(\mathbb{H}(\alpha, \beta))$ such that $A x=x \lambda, x \neq 0$. Let $y=T x$. Then $B y=T A T^{-1} y=T A x=T x \lambda=y \lambda$.

Proposition 2 Let $A \in \mathcal{M}_{n}(\mathbb{H}(\alpha, \beta))$ and let $\lambda \in \mathbb{H}(\alpha, \beta)$ be an eigenvalue of the matrix A. If $\rho \in \mathbb{H}(\alpha, \beta), \rho \neq 0$, then $\rho^{-1} \lambda \rho$ is also an eigenvalue of the matrix A.

[^0]Proof. From $A x=x \lambda$, we get $A(x \rho)=x \lambda \rho=(x \rho) \rho^{-1} \lambda \rho$.

Remark 1 From the Proposition 2, we see that, if the vector corresponding to the eigenvalue λ is x, then $x \rho$ is the eigenvector corresponding to the characteristic root $\rho^{-1} \lambda \rho$.

Proposition 3 ([1]) Let K be an arbitrary field, not necessarily commutative, with char $K \neq 2$. If $A=\left(a_{i j}\right)_{i, j=\overline{1, n}} \in \mathcal{M}_{n}(K)$, then we have a triangular invertible matrix T such that $C=T^{-1} A T, C=\left(c_{i j}\right)_{i, j=\overline{1, n}}$, where $c_{i j}=0$, for all $i>j+1, i, j \in\{1,2, \ldots, n\}$

Let \mathbb{H} be the real quaternion algebra and let f be the polynomial of degree n :

$$
f(X)=a_{0} X a_{1} X \ldots X a_{n}+g(X),
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{H}, a_{i} \neq 0$ for every $i=\overline{1, n}$ and $g(X)$ is a finite sum of monomials of the form $b_{0} X b_{1} X \ldots X b_{m}$, where $m \leqq n$.

In [2], it is shown that, if the polynomial f has a single term of degree n, then the equation $f(x)=0$ has exactly n solutions in \mathbb{H}.

Proposition $4([1])$ Let $A \in \mathcal{M}_{n}(\mathbb{H})$, then the matrix A has an eigenvalue.

In the next, let $\mathbb{H}(\alpha, \beta)$ be the generalized quaternion division algebra over the commutative field K with char $K \neq 2$. It is known that $\mathbb{H}(\alpha, \beta)$ is an algebra of degree two, then every element $x \in \mathbb{H}(\alpha, \beta)$ satisfies a relation of the form:

$$
x^{2}+t(x) x+n(x)=0,
$$

where $t(x), n(x) \in K$ are the trace and the norm of the element x.
If $\left\{1, e_{1}, e_{2}, e_{3}\right\}$ is a basis in $\mathbb{H}(\alpha, \beta)$ and $x \in \mathbb{H}(\alpha, \beta)$, then, for $x=a+b e_{1}+c e_{2}+d e_{3}$, the element $\bar{x}=a-b e_{1}-c e_{2}-d e_{3}$ is called the conjugate of the element x and we have the relations:

$$
x+\bar{x}=t(x) \text { and } x \bar{x}=n(x)
$$

Proposition 5 ([4]) Let $a, b \in \mathbb{H}(\alpha, \beta), a \neq 0, b \neq 0$. Then the linear equation

$$
\begin{equation*}
a x=x b \tag{5.1.}
\end{equation*}
$$

has nonzero solutions, $x \in \mathbb{H}(\alpha, \beta)$, if and only if :

$$
\begin{equation*}
t(a)=t(b) \text { and } n\left(a-a_{0}\right)=n\left(b-b_{0}\right) \tag{5.2.}
\end{equation*}
$$

where $a=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, b=b_{0}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}$

Proposition 6 ([4]) i) If $a=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$,
$b=b_{0}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3} \in \mathbb{H}(\alpha, \beta)$ with $b \neq \bar{a}, a, b \notin K$, then the solutions of the equation (5.1.), with $t(a)=t(b)$ and $n\left(a-a_{0}\right)=n\left(b-b_{0}\right)$, are found in $\mathcal{A}(a, b)$ (the algebra generated by the elements a and b) and have the form:

$$
\begin{equation*}
x=\lambda_{1}\left(a-a_{0}+b-b_{0}\right)+\lambda_{2}\left(n\left(a-a_{0}\right)-\left(a-a_{0}\right)\left(b-b_{0}\right)\right), \tag{6.1.}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2} \in K$ are arbitrary.
ii) If $b=\bar{a}$, then the general solution of the equation (5.1.) is
$x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$, where $x_{1}, x_{2}, x_{3} \in K$ and they satisfy the identity :

$$
\begin{equation*}
\alpha a_{1} x_{1}+\beta a_{2} x_{2}+\alpha \beta a_{3} x_{3}=0 . \tag{6.2.}
\end{equation*}
$$

Proposition 7 ([4]) Let $a \in \mathbb{H}(\alpha, \beta), a \notin K$. If there exists $r \in K$ such that $n(a)=r^{2}$, then $a=\bar{q} r q^{-1}$, where $q=r+\bar{a}, q^{-1}=\frac{\bar{q}}{n(q)}$.

Proof. By hypothesis we have $a(r+\bar{a})=a r+a \bar{a}=a r+n(a)=$ $=a r+r^{2}=(a+r) r$. From $\bar{q}=r+a$ it results $\bar{q} r=a q$. \square

Proposition 8 ([4]) Let $a \in \mathbb{H}(\alpha, \beta)$ with $a \notin K$, if there exist $r, s \in K$ with the properties $n(a)=r^{4}, n\left(r^{2}+\bar{a}\right)=s^{2}$, then the quadratic equation $x^{2}=a$ has two solutions of the form: $\quad x= \pm \frac{r\left(r^{2}+a\right)}{s}$.

Proof. By Proposition 7, it results that a has the form
$a=\bar{q} r^{2} q^{-1}$, where $q=r^{2}+\bar{a}$. Because $q^{-1}=\frac{\bar{q}}{n(q)}$, we obtain
$a=r^{2} \bar{q} q^{-1}=r^{2} \bar{q} \frac{\bar{q}}{n(q)}=r^{2} \frac{\bar{q}^{2}}{s^{2}}=\left(\frac{r}{s} \bar{q}\right)^{2}$, therefore

$$
x_{1}=\frac{r}{s} \bar{q}, x_{2}=-\frac{r}{s} \bar{q}
$$

are the claimed solutions.

Proposition 9 ([4]) Let $a, b, c \in \mathbb{H}(\alpha, \beta)$ such that $a b$ and $b^{2}-c$ do not belong to K. If $a b$ and $b^{2}-c$ satisfy the conditions in Proposition 8, then the equations $x a x=b$ and $x^{2}+b x+x b+c=0$ have solutions.

Proof. $\quad x a x=b \Longleftrightarrow(a x)^{2}=a b$ and $x^{2}+b x+x b+c=0 \Longleftrightarrow(x+b)^{2}=$ $b^{2}-c$.

Proposition 10 ([4]) If $b, c \in \mathbb{H}(\alpha, \beta) \backslash\{K\}$ satisfy the conditions $b c=c b$, $\frac{b^{2}}{4}-c \neq 0$ and there exists $r \in K$ such that $n\left(\frac{b^{2}}{4}-c\right)=r^{4}$ and $n\left(r^{2}+\frac{\bar{b}^{2}}{4}-\bar{c}\right)=s^{2}, s \neq 0$, then the equation

$$
\begin{equation*}
x^{2}+b x+c=0 \tag{10.1}
\end{equation*}
$$

has solutions in $\mathbb{H}(\alpha, \beta)$.

Proof. Let $x_{0} \in \mathbb{H}(\alpha, \beta)$ be a solution of the equation (10.1.). Because $x_{0}^{2}=t\left(x_{0}\right) x_{0}-n\left(x_{0}\right)$ şi $x_{0}^{2}+b x_{0}+c=0$, it results that $t\left(x_{0}\right) x_{0}-n\left(x_{0}\right)+b x_{0}+c=0$, therefore $\left(t\left(x_{0}\right)+b\right) x_{0}=c+n\left(x_{0}\right)$.

Because $t\left(x_{0}\right)+b \neq 0, t\left(x_{0}\right), n\left(x_{0}\right) \in K, 1 \in \mathcal{A}(b, c)$, we have

$$
t\left(x_{0}\right)+b c \text { şi } c+n\left(x_{0}\right) \in \mathcal{A}(b, c) .
$$

Therefore $x_{0} \in \mathcal{A}(b, c)$. Because $b c=c b$, we obtain that $\mathcal{A}(b, c)$ is commutative, therefore x_{0} commutes with every element of $\mathcal{A}(b, c)$. Then the equation (10.1.) can be written:

$$
\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c=0
$$

and we use Proposition 8.
We consider now the case $n=2$, hence we take $A=\left(a_{i j}\right)_{i, j=\overline{1,2}} \in \mathbb{H}(\alpha, \beta)$.
Case I. Let $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in \mathbb{H}(\alpha, \beta)$ with $a_{21} \neq 0$. Let $x=\binom{x_{1}}{x_{2}} \neq$ 0 be the eigenvector corresponding to the eigenvalue λ of the matrix A. We suppose that $x_{2} \neq 0$. Then the vector $x x_{2}^{-1}=\binom{x_{1} x_{2}^{-1}}{1}$ is the eigenvector corresponding to the eigenvalue $x_{2} \lambda x_{2}^{-1}$ for the matrix A. Therefore we have got an eigenvector of the form $x=\binom{x_{1}}{1}$. Then the relation $A x=x \lambda$ is equivalent to the next system:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12}=x_{1} \lambda \tag{*}\\
a_{21} x_{1}+a_{22}=\lambda
\end{array}\right.
$$

We replace λ from the second equation in the first one and we get:
$a_{11} x_{1}+a_{12}=x_{1}\left(a_{21} x_{1}+a_{22}\right)$, hence $x_{1} a_{21} x_{1}+x_{1} a_{22}-a_{11} x_{1}-a_{12}=0$. We multiply this last relation to the left side with a_{21}. It results $a_{21} x_{1} a_{21} x_{1}+a_{21} x_{1} a_{22}-$ $a_{21} a_{11} x_{1}-a_{21} a_{12}=0$. We denote $a_{21} x_{1}=t$ and we obtain

$$
\begin{equation*}
t^{2}+t a_{22}-a_{21} a_{11} a_{21}^{-1} t-a_{21} a_{12}=0 \tag{**}
\end{equation*}
$$

If $a_{22}=-a_{21} a_{11} a_{21}^{-1}=b$, we denote $c=-a_{21} a_{12}$, and if, $b^{2}-c \notin K$ and there exist $r, s \in K$ with the properties $n\left(b^{2}-c\right)=r^{4}$ and $n\left(r^{2}+\overline{b^{2}-c}\right)=s^{2}$, then we may use the Proposition 8 getting $(t+b)^{2}=b^{2}+a_{21} a_{12}$, therefore: $t= \pm \frac{r}{s}\left(r^{2}+b^{2}-c\right)-b$.

It results that $a_{21} x_{1}== \pm \frac{r}{s}\left(r^{2}+b^{2}-c\right)-b$ hence $a_{21} x_{1}= \pm \frac{r}{s}\left(r^{2}+a_{21} a_{11}^{2} a_{21}^{-1}+a_{21} a_{12}\right)+a_{21} a_{11} a_{21}^{-1}$. Therefore

$$
x_{1}= \pm \frac{r}{s}\left(r^{2} a_{21}^{-1}+a_{11}^{2} a_{21}^{-1}+a_{12}\right)+a_{11} a_{21}^{-1}
$$

and, for the eigenvalue λ, we have the expression:

$$
\lambda= \pm \frac{r}{s}\left(r^{2}+a_{22}^{2}+a_{21} a_{12}\right)
$$

because $a_{22}=-a_{21} a_{11} a_{21}^{-1}$ and $a_{21} a_{11}^{2} a_{21}^{-1}=a_{21} a_{11} a_{11} a_{21}^{-1}=-a_{22} a_{21} a_{11} a_{21}^{-1}=$ $=a_{22}^{2}$.

Case II. If $a_{22} \neq-a_{21} a_{11} a_{21}^{-1}, a_{21} \neq 0$, then the equation $(* *)$ is written $\left(t+a_{22}\right)^{2}-a_{22}^{2}-a_{22} t-a_{21} a_{11} a_{21}^{-1} t-a_{21} a_{12}=0$. Equivalently, we get: $\left(t+a_{22}\right)^{2}-\left(a_{22}+a_{21} a_{11} a_{21}^{-1}\right)\left(t+a_{22}\right)+a_{21} a_{11} a_{21}^{-1} a_{22}-a_{21} a_{12}=0$. Denoting $-\left(a_{22}+a_{21} a_{11} a_{21}^{-1}\right)=b, a_{21} a_{11} a_{21}^{-1} a_{22}-a_{21} a_{12}=c$ and $t+a_{22}=v$, we obtain the equation:

$$
\begin{equation*}
v^{2}+b v+c=0 \tag{***}
\end{equation*}
$$

If $b, c \in \mathbb{H}(\alpha, \beta) \backslash\{K\}, b c=c b, \frac{b^{2}}{4}-c \neq 0$ and there exists $r \in K$ such that $n\left(\frac{b^{2}}{4}-c\right)=r^{4}$ and $n\left(r^{2}+\frac{\bar{b}^{2}}{4}-\bar{c}\right)=s^{2}, s \neq 0$, we may use Proposition 10 and we obtain the solutions. If these conditions are not satisfied, we can say only that the solutions of the equation $(* * *)$ are in the algebra generated by b and c.

Case III. If $a_{21}=0$, and $a_{12} \neq 0$, then the vector $\binom{1}{0}$ is the eigenvector for the eigenvalue $\lambda=a_{11}$. If $a_{21}=0$ and $a_{12}=0$, we have $a_{22}=\lambda$ and
then the system $(*)$ is equivalent to the equation $a_{11} x_{1}=a_{22} x_{1}$ and its nonzero solutions are given by Proposition 6. If we have $t\left(a_{11}\right)=t\left(a_{22}\right)$ and $n\left(a_{11}^{\prime}\right)=n\left(a_{22}^{\prime}\right)$, where $a_{11}^{\prime}=a_{11}-t\left(a_{11}\right)$ and $a_{22}^{\prime}=a_{22}-t\left(a_{22}\right)$, then the solutions have the form (6.1.) for $a_{11} \neq \bar{a}_{22}$ or have the form (6.2.) for $a_{11}=\bar{a}_{22}$.

References

[1] Brenner, J. L., Matrices of quaternions, Pacific J. Math. 1, 329-335, 1951.
[2] Eilenberg, S., Niven, I., The "fundamental theorem of algebra" for quaternions, Bull. Amer. Math. Soc. 50, 244-248, 1944.
[3] Elduque, A., Pérez-Izquierdo, J. M. ,Composition algebras of degree two, Proc. Edinburgh Math. Soc. 42, 641-653, 1999.
[4] Flaut, C., Some equations in algebras obtained by the Cayley-Dickson process, An. Univ." Ovidius "Constantza, 9, f. 2,pag. 45-69, 2001.
[5] Jhonson, R. E., On the equation $\chi \alpha=\gamma \chi+\beta$ over algebraic division ring, J. of Algebra 67, 479-490, 1980.
[6] Kostrikin, A. I., Shafarevich, I.R. (Eds), Algebra VI, Springer-Verlag, 1995.
[7] Schafer, R. D., An Introduction to Nonassociative Algebras, Academic Press, NewYork, 1966.
[8] Tian, Y., Matrix representations of octonions and their applications, Advances in App. Clifford Algebras 10, No.1, 61-90, 2000.
[9] Tian, Y., Similarity and consimilarity of elements in the real Cayley-Dickson algebras, Advances in App.Clifford Algebras 9, No.1, 61-76,1999.
[10] Wiegmann, N.A., Some theorems on matrices with real quaternion elements, Canad. J. Math. 7, 191-201, 1955.
"Ovidius" University of Constanta
Department of Mathematics and Informatics, 900527 Constanta, Bd. Mamaia 124
Romania
e-mail: cflaut@univ-ovidius.ro

[^0]: Key Words: quaternion matrices; generalized quaternion algebra.

