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EIGENVALUES AND EIGENVECTORS
FOR THE QUATERNION MATRICES OF

DEGREE TWO

Cristina Flaut

Abstract

In this paper we give a computation method, in a particular case, for
eigenvalues and eigenvectors of the quaternion matrices of degree two
with elements in the generalized quaternion division algebra H (α, β). It
is known ( see[1]) that every quaternion matrix has at least one charac-
teristic root , but there is not yet giving a computing method. By using
[4] we give such a computing method for eigenvalues and eigenvectors of
the quaternion matrices of degree two with elements in the generalized
quaternion division algebra H(α, β).

Let H(α, β) be the generalized quaternion division algebra over the comu-
tative field K with char K 6= 2.

Definition 1 Let A ∈ Mn(H (α, β) ) and λ ∈ H (α, β) . The quaternion λ is
called an eigenvalue of the matrix A ( or a characteristic root), if there
exists a matrix x ∈ Mn×1(H (α, β) ), x 6= 0, such that Ax = xλ. The matrix
x is called the eigenvector of the matrix A.

Proposition 1 Two similar matrices have the same characteristic roots.

Proof. Let A ∼ B, i.e. there exists an invertible matrix T ∈Mn(H (α, β) )
such that B = TAT−1. Let λ ∈ H (α, β) be an eigenvalue for the matrix A,
then we find the matrix x ∈ Mn×1(H (α, β) ) such that Ax = xλ, x 6= 0. Let
y = Tx. Then By = TAT−1y = TAx = Txλ = yλ.�

Proposition 2 Let A ∈Mn(H (α, β) ) and let λ ∈ H (α, β) be an eigenvalue
of the matrix A. If ρ ∈ H (α, β) , ρ 6= 0, then ρ−1λρ is also an eigenvalue of
the matrix A.
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Proof. From Ax = xλ, we get A(xρ) = xλρ = (xρ)ρ−1λρ.�

Remark 1 From the Proposition 2, we see that, if the vector corresponding
to the eigenvalue λ is x, then xρ is the eigenvector corresponding to the cha-
racteristic root ρ−1λρ.

Proposition 3 ([1])Let K be an arbitrary field, not necessarily commutative,
with char K 6= 2 . If A = (aij)i,j=1,n ∈ Mn(K), then we have a triangular
invertible matrix T such that C = T−1AT, C = (cij)i,j=1,n, where cij = 0,
for all i > j + 1, i, j ∈ {1, 2, ..., n}.�

Let H be the real quaternion algebra and let f be the polynomial of degree n:

f (X) = a0Xa1X...Xan + g (X) ,

where a0, a1, ..., an ∈ H, ai 6= 0 for every i = 1, n and g (X) is a finite sum of
monomials of the form b0Xb1X...Xbm, where m � n.

In [2], it is shown that, if the polynomial f has a single term of degree n,
then the equation f (x) = 0 has exactly n solutions in H .

Proposition 4 ([1])Let A ∈Mn(H), then the matrix A has an eigenvalue.�

In the next, let H (α, β) be the generalized quaternion division algebra over

the commutative field K with char K 6= 2. It is known that H (α, β) is an
algebra of degree two, then every element x ∈ H (α, β) satisfies a relation of
the form:

x2 + t (x) x + n (x) = 0,

where t (x) , n (x) ∈ K are the trace and the norm of the element x.

If {1, e1, e2, e3} is a basis in H (α, β) and x ∈ H (α, β) , then, for
x = a + be1 + ce2 + de3, the element x̄ = a − be1 − ce2 − de3 is called the
conjugate of the element x and we have the relations:

x + x̄ = t (x) and xx̄ = n (x)
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Proposition 5 ([4]) Let a, b ∈ H (α, β) , a 6= 0, b 6= 0. Then the linear equation

ax = xb (5.1.)

has nonzero solutions, x ∈ H (α, β) , if and only if :

t (a) = t (b) and n (a− a0) = n (b− b0) , (5.2.)

where a = a0 + a1e1 + a2e2 + a3e3, b = b0 + b1e1 + b2e2 + b3e3.�

Proposition 6 ([4]) i) If a = a0 + a1e1 + a2e2 + a3e3,
b = b0 +b1e1 +b2e2 +b3e3 ∈ H (α, β) with b 6= ā, a, b /∈ K, then the solutions of
the equation (5.1.) ,with t (a) = t (b) and n (a− a0) = n (b− b0) , are found in
A (a, b) (the algebra generated by the elements a and b) and have the form :

x = λ1(a− a0 + b− b0) + λ2 (n (a− a0)− (a− a0) (b− b0)) , (6.1.)

where λ1, λ2 ∈ K are arbitrary.
ii) If b = ā, then the general solution of the equation (5.1.) is
x = x1e1 + x2e2 + x3e3, where x1, x2, x3 ∈ K and they satisfy the identity :

αa1x1 + βa2x2 + αβa3x3 = 0.� (6.2.)

Proposition 7 ([4]) Let a ∈ H (α, β) , a /∈ K. If there exists r ∈ K
such that n (a)=r2, then a = q̄rq−1,where q = r + ā , q−1 = q̄

n(q) .

Proof. By hypothesis we have a (r + ā) = ar + aā = ar + n (a) =
= ar + r2 = (a + r) r. From q̄ = r + a it results q̄r = aq.�

Proposition 8 ([4] ) Let a ∈ H (α, β)with a /∈ K, if there exist r, s ∈ K with
the properties n (a) = r4 , n

(
r2 + ā

)
= s2, then the quadratic equation x2 = a

has two solutions of the form: x = ± r(r2+a)
s .

Proof. By Proposition 7, it results that a has the form
a = q̄r2q−1,where q = r2 + ā. Because q−1 = q̄

n(q) , we obtain

a = r2q̄q−1 = r2q̄ q̄
n(q) = r2 q̄2

s2 =
(

r
s q̄

)2
, therefore

x1 =
r

s
q̄, x2 = −r

s
q̄

are the claimed solutions.�
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Proposition 9 ([4] ) Let a, b, c ∈ H (α, β) such that ab and b2 − c do not
belong to K. If ab and b2 − c satisfy the conditions in Proposition 8, then the
equations xax = b and x2 + bx + xb + c = 0 have solutions.

Proof. xax = b ⇐⇒ (ax)2 = ab and x2 + bx + xb + c = 0 ⇐⇒ (x + b)2 =
b2 − c.�

Proposition 10 ([4]) If b, c ∈ H(α,β)\{K} satisfy the conditions bc=cb,
b2

4 − c 6= 0 and there exists r ∈ K such that n
(

b2

4 − c
)

= r4 and

n
(
r2 + b̄2

4 − c̄
)

= s2, s 6= 0 , then the equation

x2 + bx + c = 0 (10.1)

has solutions in H (α, β) .

Proof. Let x0 ∈ H (α, β) be a solution of the equation (10.1.) .Because
x2

0=t (x0) x0-n (x0) şi x2
0+bx0+c=0, it results that t (x0) x0-n (x0)+bx0+c=0,

therefore (t (x0) +b) x0=c+n (x0) .
Because t (x0)+b 6= 0, t(x0), n (x0) ∈ K, 1 ∈ A (b, c) ,we have

t (x0) + b c şi c + n (x0) ∈ A (b, c) .

Therefore x0 ∈ A (b, c) . Because bc = cb, we obtain that A (b, c) is commuta-
tive, therefore x0 commutes with every element of A (b, c) . Then the equation
(10.1.) can be written: (

x +
b

2

)2

− b2

4
+ c = 0

and we use Proposition 8.�

We consider now the case n = 2, hence we take A = (aij)i,j=1,2 ∈ H (α, β) .

Case I. Let A =
(

a11 a12

a21 a22

)
∈ H (α, β) with a21 6= 0. Let x =

(
x1

x2

)
6=

0 be the eigenvector corresponding to the eigenvalue λ of the matrix A. We

suppose that x2 6= 0. Then the vector xx−1
2 =

(
x1x

−1
2

1

)
is the eigenvector

corresponding to the eigenvalue x2λx−1
2 for the matrix A. Therefore we have

got an eigenvector of the form x =
(

x1

1

)
. Then the relation Ax = xλ is

equivalent to the next system:
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{
a11x1 + a12 = x1λ
a21x1 + a22 = λ

(*)

We replace λ from the second equation in the first one and we get:
a11x1+a12=x1(a21x1+a22),hence x1a21x1+x1a22−a11x1−a12 = 0. We multi-
ply this last relation to the left side with a21. It results a21x1a21x1+a21x1a22−
a21a11x1 − a21a12 = 0. We denote a21x1 = tand we obtain

t2 + ta22 − a21a11a
−1
21 t− a21a12 = 0. (**)

If a22 = −a21a11a
−1
21 = b, we denote c = −a21a12, and if, b2− c /∈ K and there

exist r, s ∈ K with the properties n
(
b2 − c

)
= r4 and n

(
r2 + b2 − c

)
= s2,

then we may use the Proposition 8 getting (t + b)2 = b2 + a21a12, therefore:
t = ± r

s

(
r2 + b2 − c

)
− b.

It results that a21x1 == ± r
s

(
r2 + b2 − c

)
− b hence

a21x1 = ± r
s

(
r2 + a21a

2
11a

−1
21 + a21a12

)
+ a21a11a

−1
21 . Therefore

x1 = ±r

s

(
r2a−1

21 + a2
11a

−1
21 + a12

)
+ a11a

−1
21 ,

and, for the eigenvalue λ, we have the expression:

λ = ±r

s

(
r2 + a2

22 + a21a12

)
,

because a22 = −a21a11a
−1
21 and a21a

2
11a

−1
21 = a21a11a11a

−1
21 = −a22a21a11a

−1
21 =

= a2
22.

Case II. If a22 6= −a21a11a
−1
21 , a21 6= 0, then the equation (∗∗) is writ-

ten (t + a22)
2 − a2

22 − a22t − a21a11a
−1
21 t − a21a12 = 0. Equivalently, we get:

(t + a22)
2−

(
a22 + a21a11a

−1
21

)
(t + a22)+a21a11a

−1
21 a22−a21a12 = 0. Denoting

−
(
a22 + a21a11a

−1
21

)
= b, a21a11a

−1
21 a22−a21a12 = c and t+a22 = v, we obtain

the equation:
v2 + bv + c = 0. (***)

If b, c ∈ H(α,β)\{K}, bc=c b, b2

4 − c 6= 0 and there exists r ∈ K such that

n
(

b2

4 − c
)
=r4 and n

(
r2 + b̄2

4 − c̄
)

= s2, s 6= 0, we may use Proposition 10
and we obtain the solutions. If these conditions are not satisfied, we can say
only that the solutions of the equation (∗ ∗ ∗) are in the algebra generated by
b and c.

Case III. If a21 = 0, and a12 6= 0, then the vector
(

1
0

)
is the eigenvec-

tor for the eigenvalue λ = a11. If a21 = 0 and a12 = 0, we have a22 = λ and
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then the system (∗) is equivalent to the equation a11x1 = a22x1 and its
nonzero solutions are given by Proposition 6. If we have t (a11) = t (a22)
and n (a′11) = n (a′22) , where a′11 = a11 − t (a11) and a′22 = a22 − t (a22) ,
then the solutions have the form (6.1.) for a11 6= ā22 or have the form (6.2.)
for a11 = ā22.
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