THE PERRON-FROBENIUS OPERATOR
 ON BV(I)

Ion Colţescu

Abstract

In this paper, we determine the upper bound γ_{n} of $\operatorname{var} U^{n} f / \operatorname{varf}$, when f varies in the collection of non-constant monotone functions on $I=[0,1]$.

A very simple proof of a generalization of the Gauss-Kuzmin-Lévy theorem on continued fractions is given by considering the classical operator U defined by

$$
U f(x)=\sum_{n \geq 1} \frac{x+1}{(x+i)(x+i+1)} \cdot f\left(\frac{1}{x+i}\right), x \in I=[0,1] .
$$

This as an operator on $B V(I)$, the collection of complex-valued functions of bounded variation defined on I under the supremum norm $|f|=\sup \{|f(x)|, x \in I\}$.

For any $n \in N^{*}$, we have

$$
\begin{equation*}
U^{n} f(x)=\sum_{i_{1}, \ldots, i_{n} \in N^{*}} p_{i_{1} i_{2} \ldots i_{n}}(x) f\left(u_{i_{n} \ldots i_{1}}(x)\right), x \in I \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
u_{i_{n} \ldots i_{1}}=u_{i_{n}} \circ \ldots \circ u_{i_{1}}, \\
p_{i_{1} i_{2} \ldots i_{n}}(x)=p_{i_{1}}(x) p_{i_{2}}\left(u_{i_{1}}(x)\right) \ldots p_{i_{n}}\left(u_{n-1 \ldots i_{1}}^{i}(x)\right), n \geq 2, \tag{2}
\end{gather*}
$$

and the functions u_{i} and $p_{i}, i \in N^{*}$, are defined by

$$
\begin{gather*}
u_{i}(x)=\frac{1}{i+x}, \tag{3}\\
p_{i}(x)=\frac{x+1}{(x+i)(x+i+1)}, x \in I \tag{4}
\end{gather*}
$$

Key Words: functions of bounded variation; continued fractions.

Putting

$$
\frac{1}{x_{1}+\ddots_{+\frac{1}{x_{r}}}}=\frac{p_{r}\left(x_{1}, x_{2}, \ldots, x_{r}\right)}{q_{r}\left(x_{1}, x_{2}, \ldots, x_{r}\right)}, r \in N^{*}
$$

for arbitrary indeterminates $x_{1}, x_{2}, \ldots, x_{r}$, we have

$$
\begin{gathered}
p_{i_{1} i 2} \ldots i_{n}(x)= \\
=\frac{x+1}{\left(q_{n-1}\left(i_{2}, \ldots, i_{n}\right)\left(x+i_{1}\right)+p_{n-1}\left(i_{2}, \ldots, i_{n}\right)\right)\left(q_{n}\left(i_{2}, \ldots, i_{n, 1}\right)\left(x+i_{1}\right)+p_{n}\left(i_{2}, \ldots, i_{n, 1}\right)\right)}
\end{gathered}
$$

for all $n \geq 2, i_{1}, i_{2}, \ldots, i_{n} \in N^{*}$, and $x \in I$.
Note that, in particular, we can write

$$
p_{i_{1} i_{2} \ldots i_{n}}(0)=(-1)^{n}\left(\frac{1}{i_{1}+\frac{p_{n}\left(i_{2}, \ldots, i_{n}, 1\right)}{q_{n}\left(i_{2}, \ldots, i_{n, 1}\right)}}-\frac{1}{i_{1}+\frac{p_{n-1}\left(i_{2}, \ldots, i_{n}\right)}{q_{n-1}\left(i_{2}, \ldots, i_{n}\right)}}\right)
$$

for all $n \geq 2$ and $i_{1}, i_{2}, \ldots, i_{n} \in N^{*}$.
To simplify the writing, put

$$
p_{i_{1}, i_{2} \ldots i_{n}}(0)=\alpha_{i_{1} i_{2} \ldots i_{n}}, u_{i_{1} i_{2} \ldots i_{n}}(0)=\beta_{i_{1} i_{2} \ldots i_{n}} .
$$

If n is odd, then, by Proposition 2 of [1] and equations (1), (2), (3) and (5), we have

$$
\begin{gather*}
\operatorname{var}^{n} f=U^{n} f(0)-U^{n} f(1)= \\
=\sum_{i_{1}, i_{2}, \ldots, i_{n} \in N^{*}}\left[p_{i_{1} i_{2} \ldots i_{n}}(0) f\left(u_{i_{n} \ldots i_{1}}(0)\right)-p_{i_{1} i_{2} . . i_{n}}(1) f\left(u_{i_{n} \ldots i_{1}}(1)\right)\right]= \tag{6}\\
=\sum_{i_{2}, \ldots, i_{n} \in N^{*}}\left[\alpha_{1 i_{2} \ldots i_{n}} f\left(\beta_{i_{n} \ldots i_{21}}\right)-\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right) i_{2} \ldots i_{n}} f\left(\beta_{i_{n} \ldots i_{2}\left(i_{1}+1\right)}\right)\right] .
\end{gather*}
$$

Similarly, if n is even, then we have

$$
\begin{gather*}
\operatorname{var} U^{n} f=U^{n} f(1)-U^{n} f(0)= \tag{7}\\
\sum_{i_{2}, \ldots, i_{n} \in N^{*}}\left[\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right) i_{2} \ldots i_{n}} f\left(\beta_{i_{n} \ldots i_{2}\left(i_{1}+1\right)}\right)-\alpha_{1 i_{2} \ldots i_{n}} f\left(\beta_{i_{n}} \ldots i_{21}\right)\right] .
\end{gather*}
$$

The case $n=1$. In this case, writing i for i_{1}, equation (6) yields

$$
\operatorname{var} U f=\alpha_{1} f\left(\beta_{1}\right)-\sum_{i \in N^{*}} \alpha_{i+1} f\left(\beta_{i+1}\right)
$$

Since

$$
\alpha_{1}=\sum_{i \in N^{*}} \alpha_{i+1}=\frac{1}{2} \text { and } 1=\beta_{1}>\beta_{2}>\ldots
$$

we deduce that

$$
\begin{equation*}
\operatorname{var} U f \leq \frac{1}{2}\left(f(1)-f(0)=\frac{1}{2} \operatorname{var} f .\right) \tag{8}
\end{equation*}
$$

The case $n=2$. Write i for i_{1} and j for i_{2}.
Then in this case $\alpha_{i j}=\frac{1}{\left(i_{j}+1\right)(i(j+1)+1)}, i, j \in N^{*}$, and equation (7) yields

$$
\operatorname{var} U^{2} f=\sum_{j \in N^{*}}\left(\sum_{i \in N^{*}} \alpha_{(i+1) j} f\left(\beta_{j(i+1)}\right)-\alpha_{i j} f\left(\beta_{j 1}\right)\right)
$$

Clearly, $\beta_{(j+1)(i+1)}<\beta_{j 1}$ for all $i, j \in N^{*}$. Hence

$$
\begin{equation*}
\operatorname{var} U^{2} f \leq f(1) \cdot \sum_{i \in N^{*}} \alpha_{(i+1) 1}+\sum_{j \in N^{*}} f\left(\beta_{j 1}\right)\left(\sum_{i \in N^{*}} \alpha_{(i+1)(j+1)}-\alpha_{1 j}\right) \tag{9}
\end{equation*}
$$

But

$$
\begin{align*}
& \sum_{i \in N^{*}} \alpha_{(i+1)((j+1)}=\sum_{i \in N^{*}} \frac{1}{((i+1)(j+1))((i+1)(j+2)+1)} \leq \tag{10}\\
& \leq \frac{1}{(j+1)(j+2)} \sum_{i \in N^{*}} \frac{1}{(i+1)^{2}}<\alpha_{1 j}
\end{align*}
$$

for all $j \in N^{*}$.
Since $f\left(\beta_{j 1}\right) \geq f(0), j \in N^{*}$, and

$$
\sum_{j \in N^{*}}\left(\sum_{i \in N^{*}} \alpha_{(i+1)(j+1)}-\alpha_{1 j}\right)=-\sum_{i \in N^{*}} \alpha_{(i+1) 1}
$$

(9) and (10) imply that

$$
\begin{equation*}
\operatorname{var} U f \leq \sum_{i \in N^{*}} \alpha_{(i+1)}\left(f_{(1)}-f_{(0)}\right)=\sum_{i j \in N^{*}} \alpha_{(i+1) 1} \operatorname{varf} \tag{11}
\end{equation*}
$$

Note that, for f defined by $f(x)=0,0 \leq x \leq \frac{1}{2}$ and $f(x)=1$, $1 / 2<x \leq 1$, we have

$$
\begin{equation*}
\operatorname{var} U^{2} f=\sum_{i \in N^{*}} \alpha_{(i+1) 1} \operatorname{varf} \tag{12}
\end{equation*}
$$

that is the constant

$$
\begin{gathered}
\sum_{i \in N^{*}} \alpha_{(i+1) 1}=\sum_{i \in N^{*}} \\
\frac{1}{(i+2)(2 i+3)}=2 \sum_{i \in N^{*}}\left(\frac{1}{2 i+3}-\frac{1}{2 i+4}\right)= \\
=\log 4-\frac{7}{6}=0,21962 \ldots
\end{gathered}
$$

occurring in (11) cannot be lowered.
Proposition 1.1. For any $n \geq 3$ and $i_{2}, \ldots, i_{n} \in N^{*}$, we have

$$
\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right)\left(i_{2}+1\right) i_{3} \ldots i_{n}} \leq \alpha_{1 i_{2} i_{3} \ldots i_{n}}
$$

Proof. As $\frac{p_{n-1}\left(i_{2}+1, i_{3}, \ldots, i_{n}\right)}{q_{n-1}\left(i_{2}+1, i_{3}, \ldots, i_{n}\right)}=$

$$
\frac{1}{1+\frac{q_{n-1}\left(i_{2}, \ldots, i_{n}\right)}{p_{n-1}\left(i_{2}, \ldots, i_{n}\right)}}=\frac{p_{n-1}\left(i_{2}, . ., i_{n}\right)}{p_{n-1}\left(i_{2}, \ldots, i_{n}\right)+q_{n-1}\left(i_{2}, \ldots, i_{n}\right)}
$$

we have $p_{n-1}\left(i_{2}+1, i_{3}, \ldots, i_{n}\right)=p_{n-1}\left(i_{2}, \ldots, i_{n}\right)$ and

$$
q_{n-1}\left(i_{2+1}, i_{3}, \ldots, i_{n}\right)=p_{n-1}\left(i_{2}, \ldots, i_{n}\right)+q_{n-1}\left(i_{2}, \ldots, i_{n}\right)
$$

Consequently, putting for brevity

$$
\begin{gathered}
p_{n-1}^{1}=p_{n-1}\left(i_{2}, \ldots, i_{n}\right), p_{n}^{11}=p_{n}\left(i_{2}, \ldots, i_{n}, 1\right) \\
q_{n-1}^{1}=q_{n-1}\left(i_{2}, \ldots, i_{n}\right), \text { and } q_{n}^{11}=q_{n}\left(i_{2}, \ldots, i_{n}, 1\right)
\end{gathered}
$$

by (5), we obtain

$$
\begin{gathered}
\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right)\left(i_{2}+1\right) i_{3} \ldots i_{n}}= \\
=\sum_{i_{1} \in N^{*}} \frac{1}{\left(\left(i_{1}+1\right)\left(p_{n-1}^{1}+q_{n-1}^{1}\right)+p_{n-1}^{1}\right)\left(\left(i_{1}+1\right)\left(p_{n}^{11}+q_{n}^{11}\right)+p_{n}^{11}\right)} \leq \\
\quad \leq \frac{1}{\left(p_{n-1}^{1}+q_{n-1}^{1}\right)\left(p_{n}^{11}+q_{n}^{11}\right)} \cdot \sum_{i_{1} \in N^{*}} \frac{1}{\left(i_{1}+1\right)^{2}}<\alpha_{1} i_{2} i_{3} \ldots i_{n}
\end{gathered}
$$

Next, to make a choice, assume n is odd. It is easy to see that

$$
\beta_{i_{n} \ldots\left(i_{2}+1\right)\left(i_{1}+1\right)}>\beta_{i_{n} \ldots i_{3} i_{2} 1}, \quad \beta_{i_{n} \ldots i_{3} 1\left(i_{1}+1\right)}>\beta_{i_{n} \ldots i_{3} 1}, \quad \beta_{i_{n} \ldots i_{3} i_{2} 1}<\beta_{i_{n} \ldots i_{3}}
$$

for all $i_{1}, i_{2}, \ldots i_{n} \in N^{*}$. Then by (6) we have

$$
\begin{align*}
& \quad \operatorname{var} V^{n} f \leq \sum_{i_{3}, \ldots, i_{n} \in N^{*}}\left[-\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right) i_{2} \ldots i_{n}} f\left(\beta_{i_{n} \ldots i_{3} 1\left(i_{1}+1\right)}\right)+\right. \\
& \left.+\sum_{i_{2} \in N^{*}}\left(\alpha_{1 i_{2} i_{3} \ldots i_{n}}-\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right)\left(i_{2}+1\right) i_{3} \ldots i_{n}}\right) f\left(\beta_{i_{n} \ldots i_{3} i_{2} 1}\right)\right] \leq \tag{13}\\
& \leq \sum_{i_{3}, \ldots, i_{n} \in N^{*}}\left[\sum_{i_{2} \in N^{*}}\left(\alpha_{1 i_{2} i_{3} \ldots i_{n}}-\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right) i_{2}, \ldots, i_{n}}\right) f\left(\beta_{i_{n} \ldots i_{3}}\right)+\right. \\
& \left.\quad+\left(\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right) i_{3} \ldots i_{n}}\right)\left(f\left(\beta_{i_{n} \ldots i_{3}}\right)-f\left(\beta_{i_{n} \ldots i_{3} 1}\right)\right)\right] .
\end{align*}
$$

Put $\delta_{i_{3} \ldots i_{n}}=(-1)^{n-1} \sum_{i_{2} \in N^{*}}\left(\alpha_{1} i_{2} \ldots i_{n}-\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right)} i_{2} \ldots i_{n}\right)$
for all $i_{3}, \ldots, i_{n} \in N^{*}$. Note that

$$
\begin{equation*}
\sum_{i_{3}, \ldots, i_{n} \in N^{*}} \delta_{i_{3} \ldots i_{n}}=(-1)^{n-1}\left(\alpha_{1}-\sum_{i_{1} \in N^{*}} \alpha_{i_{1}+1}\right)=0 \tag{14}
\end{equation*}
$$

Now, the problem is to find the best upper bound for

$$
\delta^{(n)} f=\sum_{i_{3}, \ldots, i_{n} \in N} \delta_{i_{3} \ldots i_{n}} f\left(\beta_{i_{n} \ldots i_{3}}\right) .
$$

First, note that, by (14), we have

$$
\begin{equation*}
\delta^{n} f \leq \frac{1}{2} \sum_{i_{3}, \ldots, i_{n} \in N^{*}}\left|\delta_{i_{3} \ldots i_{n}}\right|\left(f_{(1)}-f_{(0)}\right) \tag{15}
\end{equation*}
$$

Having in view that $\frac{1}{2} \sum_{i_{3}, \ldots, i_{n} \in N^{*}}\left|\delta_{i_{3} \ldots i_{n}}\right|=\sup \sum_{i_{3}, \ldots, i_{n} \in A} \delta_{i_{3} \ldots i_{n}}$, where the supremum is taken over all $A \subset\left(N^{*}\right)^{n-2}$, it follows that
$\frac{1}{2} \sum_{i_{3}, \ldots, i_{n} \in N^{*}}\left|\delta_{i_{3} \ldots i_{n}}\right| \geq \frac{1}{2} \sum_{i \in N^{*}}\left|\delta_{i}\right|$.
Hence the right-hand side (15) does not have the limit 0 as $n \rightarrow \infty$. Thus (15) is useless for $n>3$.

As a matter of fact, it is a general result which does not take into account that f is non-descreassing

$$
\begin{equation*}
\delta^{(n)} f \leq \delta^{n}\left(f_{n}\right)\left(f_{(1)}-f_{(0)} n \geq 3\right. \tag{16}
\end{equation*}
$$

where

$$
f_{2 m+1}(x)= \begin{cases}1, & \text { if } c_{2 m} / c_{2 m+1} \leq x \leq 1 \\ 0, & \text { if } 0 \leq x<c_{2 m} / c_{2 m+1}\end{cases}
$$

and

$$
f_{2 m+2}(x)=\left\{\begin{array}{l}
1, \text { if } c_{2 m+1} / c_{2 m+2}<x \leq 1 \\
0, \text { if } 0 \leq x<c_{2 m+1} / c_{2 m+2}
\end{array}\right.
$$

for all $m \in N^{*}$. Here $c_{n}, n \in N$ are the Fibonacci numbers defined by

$$
c_{0}=c_{1}=1, \quad c_{n}=c_{n-1}+c_{n-2}, n \geq 2
$$

We now can state:
Theorem 1.1. If (16) holds, then, for any monotone function f, we have

$$
\begin{equation*}
\operatorname{var} U^{n} f \leq \gamma_{n} \operatorname{var} f \text { for any } n \geq 3 \tag{17}
\end{equation*}
$$

where $\gamma_{n}=\delta^{(n)}\left(f_{n}\right)+\sum_{i_{1} \in N^{*}} \alpha_{\left(i_{1}+1\right) 1 \ldots 1}$.
The constant γ_{n} cannot be lowered.
The proof is immediate using (13) on account of the fact that $\alpha_{\left(i_{1}+1\right) 1 i_{3} \ldots i_{n}}<$ $\alpha_{\left(i_{1}+1\right) 1 \ldots 1}$ for all $\left(i_{3}, \ldots, i_{n}\right) \neq(1,1, \ldots, 1)$, which follows from (5). Finally, using (6) and (7), it is easy to check that

$$
\operatorname{var} U^{n} f_{n}=\gamma_{n} \operatorname{var} f_{n}
$$

References

[1] A. Durner, On a theorem of Gauss-Kuzmin-Levy, Arch. Math. 58(1992), 251-256.
[2] M. Iosifescu, On mixing coefficients for the continued fraction expansion, Stud. Cerc. Mat. 41(1989), 491-500.
[3] M. Iosifescu, Doeblin and the metric theory of continued fractions: a functional theoretic solution to Gauss'1812 problem, (Blaubeuren, Germany, 1991.
[4] I. Coltescu, The spectral radius of $U-U^{\infty}$ in $B V(I)$, The PAMM's Periodical Bulletins for Applied\&Computer Mathematics (2002), 37-42.
"Mircea cel Batrân" Naval Academy
Department of Mathematics-Informatics
Fulgerului 1, Constanta-ROMANIA, 900218

