GENERALIZATION OF A THEOREM OF GAUSS-KUZMIN

Ion Colţescu

Abstract

A Gauss-Kuzmin theorem for the natural extension of the regular continued fraction expansion is given.

Let Ω denote the set of irrational numbers in $I=[0,1]$. Given $\omega \in \Omega$, let $a_{1}(\omega), a_{2}(\omega), \ldots$ be the sequence of partial quotients of the continued fraction expansion of ω constructed as follows.

Define $\tau: \Omega \rightarrow \Omega$ by

$$
\begin{equation*}
\tau(\omega)=\frac{1}{\omega}-\left[\frac{1}{\omega}\right], \omega \neq 0 ; \tau(0)=0 \tag{1}
\end{equation*}
$$

Then $a_{n+1}(\omega)=a_{1}\left(\tau^{n}(\omega)\right), n \in N^{*}=\{1,2, \ldots, n\}$, with $a_{1}(\omega)=$ the integer part of $1 / \omega$.

Let λ be an arbitrary non-atomic probability measure on the σ-algebra \mathcal{B} of Borel subsets of I and let γ be the Gauss probability measure on \mathcal{B}_{I} defined as

$$
\gamma(A)=\frac{1}{\log 2} \int_{A} \frac{d x}{1+x}, A \in \mathcal{B}_{I}
$$

Put $F_{n}(x)=\lambda\left(\tau^{-n}((0, x))\right), x \in I$ for all $n \in N^{*}=\{0,1, \ldots\}$, with $\tau^{0}=$ the identity map on I. Clearly $F_{0}(x)=\lambda((0, x)), x \in I$. For any fixed $n \in N$ and $x \in I$, the set $\tau^{-n}((0, x))$ consists of all $\omega \in \Omega$ for which $\tau^{n}(\omega)<x$, i.e. the continued fractions

$$
\frac{1}{a_{n+1}(\omega)+\frac{1}{a_{n+2}(\omega)}+\ddots} \text { is less than } x
$$

[^0]Then, noting that we have $\tau^{n+1}(\omega)<x$ if and only if $\frac{1}{x+i}<\tau^{n}(\omega)<\frac{1}{i}$ for some $i \in N^{*}$, we obtain Gauss'equation

$$
F_{n+1}(x)=\sum_{i \in N^{*}}\left(F_{n}\left(\frac{1}{i}\right)-F_{n}\left(\frac{1}{x+i}\right)\right), n \in N, x \in I .
$$

Assuming that for some $m \in N$ the derivative F_{m}^{\prime} exists everywhere in I and is bounded, it is easy to see by induction that F_{m+n}^{\prime} exists and it is bounded for all $n \in N^{*}$, and we have

$$
\begin{equation*}
F_{n+1}^{\prime}(x)=\sum_{i \in N^{*}} \frac{1}{(x+i)^{2}} \cdot F_{n}^{\prime}\left(\frac{1}{x+i}\right), n \geq m, x \in I \tag{2}
\end{equation*}
$$

Now, write $f_{n}(x)=(x+1) F_{n}^{\prime}(x), x \in I, n \geq m$ to get $f_{n+1}=U f_{n}, n \geq m$, with U is the linear operator defined as

$$
\begin{equation*}
U f(x)=\sum_{i \in N^{*}} \frac{x+1}{(x+i)(x+i+1)} f\left(\frac{1}{x+i}\right), f \in \mathcal{B}(I), x \in I \tag{3}
\end{equation*}
$$

$\mathcal{B}(I)$ being the Banach space of bounded measurable complex-valued functions f on I under the supremum norm $|f|=\sup \{|f(x)| \mid x \in I\}$.

Hence

$$
\begin{equation*}
F_{m+n}(x)=\int_{0}^{x} \frac{U^{n} f_{m}(u)}{u+1} d u, n \in N, x \in I \tag{4}
\end{equation*}
$$

The asymptotic behaviour of F_{n} as $n \rightarrow \infty$ including the rate of convergence for $\mu=\lambda=$ the Lebesgue measure is a problem stated by Gauss in a letter to Laplace exactly 180 years ago.

On October 25, 1800, Gauss wrote in his diary that (in modern notation)

$$
\begin{equation*}
\pm \lim _{n \rightarrow \infty} \lambda\left(\left\{\omega \in[0,1) \backslash Q ; \tau_{\omega}^{n} \leq z\right\}=\frac{\log (1+z)}{\log 2}\right), 0 \leq z \leq 1 \tag{5}
\end{equation*}
$$

Later, in a letter dated January 30, 1812, Gauss asked Laplace to give an estimate of the error term $r_{n}(z)$, defined by $r_{n}(z)$, defined by

$$
r_{N}(z)=\lambda\left(\tau^{-n}[0, Z]\right)-\frac{\log (1+z)}{\log 2}, n \geq 1
$$

The first one who proves and in the same time answering Gauss'question was Kuzmin. In 1928 Kuzmin showed that $r_{n}(z)=\mathcal{O}\left(q^{\sqrt{n}}\right)$ with $q \in(0,1)$, uniformly for z.

Independently, Lévy showed one year later that $r_{n}(z)=\mathcal{O}\left(q^{n}\right)$ with $q=$ $0,7 \ldots$, uniformly for z.

Theorem 1.1. For every Borel set $E \subset[0,1)$, one has $\left|\lambda\left(\tau^{-n} E\right)-\mu(E)\right|<b \lambda(E) \sigma(n)$, where μ is the so-called Gauss measure on $([0,1], \mathcal{B}), \mathcal{B}$ being the collection of Borel sets of $[0,1)$, defined by

$$
\begin{equation*}
\mu(E)=\frac{1}{\log 2} \int_{E} \frac{d x}{1+x}, E \in \mathcal{B} \tag{6}
\end{equation*}
$$

b is a constant and $\sigma: N \rightarrow R_{+}$satisfies

$$
\sigma(n)<3 q^{n}, n \geq 1 \text { where } q=\frac{3-\sqrt{5}}{2}
$$

Proof. An essential ingredient in any proof of any proof of the GaussKuzmin theorem is the following observation.

Let $\omega \in[0,1) \backslash Q$ and put $\tau_{k}=\tau^{k} \omega, k \geq 0$, where $\tau:[0,1) \rightarrow[0,1)$ is the operator defined in (1). From (1) it follows at once that

$$
0 \leq \tau_{n+1} \leq x \Leftrightarrow \tau_{n} \in \bigcup_{k=1}^{\infty}\left[\frac{1}{r+x}, \frac{1}{k}\right]
$$

Thus if we put $m_{n}(x)=\lambda\left(\left\{\omega \in[0,1) ; \tau^{n} \omega \leq x\right\}\right), n \geq 0$, then

$$
\begin{equation*}
m_{n+1}(x)=\sum_{k=1}^{\infty}\left(m_{n}\left(\frac{1}{k}\right)-m_{n}\left(\frac{1}{k+x}\right)\right), n \geq 0 \tag{7}
\end{equation*}
$$

To be more precise, a Gauss-Kuzmin theorem is related to the natural extension

$$
(\bar{\Omega}, \overline{\mathcal{B}}, \bar{\mu}, \mathcal{T}), \bar{\Omega}=[0,1) \times[0,1]
$$

where $\bar{\mu}$ is a probability measure on $(\bar{\Omega}, \overline{\mathcal{B}})$ writh density $\frac{1}{\log 2} \cdot \frac{1}{(1+x y)^{2}}$, and $\mathcal{T}: \bar{\Omega} \rightarrow \bar{\Omega}$ is defined by

$$
\begin{equation*}
\mathcal{T}(\xi, \mu)=\left(\tau \xi, \frac{1}{\left[\frac{1}{\xi}\right]+\eta}\right),(\xi, \eta) \in \bar{\Omega} \tag{8}
\end{equation*}
$$

Let $\omega \in[0,1) \backslash Q$, the regular continued fraction expansion

$$
\begin{equation*}
\frac{1}{a_{1+\ddots}^{a_{1}+\frac{1}{a_{n}+\ddots}}}=\left[0 ; a_{1}, \ldots, a_{n}, \ldots\right] . \tag{9}
\end{equation*}
$$

Finite truncation (9) yields the sequence of regular convergents of ω

$$
\frac{p_{n}(\omega)}{q_{n}(\omega)}=\left[0 ; a_{1}, \ldots, a_{n}\right], n \geq 1
$$

One easily shows that

$$
q_{-1}(\omega)=0, q_{0}(\omega)=1, q_{n}(\omega)=a_{n} q_{n-1}(\omega)+q_{n-2}(\omega), n \geq 1
$$

and

$$
\begin{equation*}
\frac{1}{2 q_{n}(\omega) q_{n+1}(\omega)}<\left|\omega-\frac{p_{n}(\omega)}{q_{n}(\omega)}\right|<\frac{1}{q_{n}(\omega) \cdot q_{n+1}(\omega)} ; n \geq 1 \tag{10}
\end{equation*}
$$

Put

$$
\left(T_{m}, V_{m}\right)=\mathcal{T}^{m}(\xi, \eta), \text { for }(\xi, \eta) \in \bar{\Omega}, m \geq 1
$$

and $\left(T_{0}, V_{0}\right)=(\xi, \eta)$. Then

$$
T_{m}=\left[0 ; a_{m+1}, \ldots, a_{m+n}, \ldots\right], V_{m}=\left[0 ; a_{m}, \ldots, a_{2}, a_{1}+\eta\right], m \geq 1
$$

Finally, we define for $m \geq 1$ the function $m_{n}(x, y)$ by

$$
m_{n}(x, y)=\bar{\lambda}\left(\left\{(\xi, \eta) \in \bar{\Omega} ; \quad\left(T_{n}, V_{n}\right) \in \mathcal{T}_{x, y}\right\}\right),
$$

where $\bar{\lambda}$ is the Lebesgue measure on $\bar{\Omega}$ and

$$
\mathcal{T}_{x, y}=[0, x] \times[0, y]
$$

Theorem 1.2. For all $N \geq 2$ and all $(x, y) \in \bar{\Omega}$, one has

$$
m_{N}(x, y)=\frac{1}{\log 2} \cdot \log (1+x y)+\mathcal{O}\left(g^{N}\right)
$$

and the constant of the \mathcal{O} symbol is universal.
Proof. The definition of \mathcal{T} yields

$$
0 \leq V_{n+1} \leq y \Leftrightarrow 0 \leq \frac{1}{a_{n+1}+V_{n}} \leq y \Leftrightarrow \frac{1}{y}-a_{n+1} \leq V_{n} \leq 1
$$

Thus, putting $l_{1}=\left[\frac{1}{y}\right]$, one has

$$
\left(T_{n+1}, V_{n+1}\right) \in \mathcal{T}_{x, y} \Leftrightarrow\left(T_{n}, V_{n}\right) \in\left(\bigcup_{k=l_{1}+1}^{\infty}\left[\frac{1}{k+x}, \frac{1}{k}\right] \times[0,1]\right) \cup
$$

$$
\cup\left(\left[\frac{1}{l_{1}+x}, \frac{1}{l_{1}}\right] \times\left[\frac{1}{y}-l_{1}, 1\right]\right)
$$

Since $\bar{\lambda}\left(\left\{(\xi, \eta) \in \bar{\Omega} ;\left(T_{n}, V_{n}\right) \in\left[\frac{1}{l_{1}+x}, \frac{1}{l_{1}}\right] \times\left[\frac{1}{y}-l_{1}, 1\right]\right\}\right)=$ $=m_{n}\left(\frac{1}{l_{1}}, 1\right)-m_{n}\left(\frac{1}{l_{1}+x}, 1\right)+m_{n}\left(\frac{1}{l_{1}+x}, \frac{1}{y}-l_{1}\right)-m_{n}\left(\frac{1}{l_{1}}, \frac{1}{y}-l_{1}\right)$,
one finds $m_{n+1}(x, y)=\sum_{k=l_{1}}^{\infty}\left(m_{n}\left(\frac{1}{k}, 1\right)-m_{n}\left(\frac{1}{k+x}, 1\right)\right)-$

$$
\begin{equation*}
-\left(m_{n}\left(\frac{1}{l_{1}}, \frac{1}{y}, l_{1}\right)-m_{n}\left(\frac{1}{l_{1}+x}, \frac{1}{y}-l_{1}\right)\right) \tag{*}
\end{equation*}
$$

Let $f_{0}(x, y)$ be a continuous function on $\bar{\Omega}$, and define the sequence of functions $f_{n}(x, y)$ on $\bar{\Omega}$ recursively by

$$
\begin{gathered}
f_{n+1}(x, y)=\sum_{k=l_{1}}^{\infty}\left(f_{n}\left(\frac{1}{k}, 1\right)-f_{n}\left(\frac{1}{k+x}, 1\right)\right)- \\
-\left(f_{n}\left(\frac{1}{l_{1}}, \frac{1}{y}-l_{1}\right)-f_{n}\left(\frac{1}{l_{1}+x}, \frac{1}{y}-l_{1}\right)\right)
\end{gathered}
$$

where $l_{1}=\left[\frac{1}{y}\right]$. Then one easily shows that $\bar{\mu}$ is an eingenfunction of the above equation.

Lemma 1.3. Let $N \in \mathbb{N}, N \geq 2$, and let $y \in(0,1) \cap Q$, with regular continued fraction expansion

$$
y=\left[0 ; l_{1}, \ldots, l_{d}\right], l_{1}, \ldots, l_{d} \in \mathbb{N}, 2 \leq d \leq[N / 2]
$$

Then one has for each $\mathrm{x}, \mathrm{x}^{*} \in[0,1]$ with $x^{*}<x$,

$$
\begin{aligned}
\mid\left(m_{N}(x, y)\right. & \left.-m_{N}\left(x^{*}, y\right)\right) \left.-\frac{1}{\log 2} \cdot \log \left(\frac{1+x y}{1+x^{*} y}\right) \right\rvert\,< \\
& <4 \bar{\lambda}\left(\mathcal{T}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right) b \sigma(N-d)
\end{aligned}
$$

where $q=g^{2}$ and $b, \sigma(N-d)$ as given in Theorem 1.1.
Proof. (A). Put $y_{i}=\tau_{y}^{i}=\left[0 ; l_{i+1}, \ldots, l_{d}\right] i=0, \ldots, d$. Note that $y_{0}=y$ and $y_{d}=0$).

From $(*)$ we at once have that $m_{N}(x, y)-m_{N}\left(x^{*}, y\right)=$

$$
\begin{aligned}
& \quad=\sum_{k=l_{1}}^{\infty}\left(m_{N-1}\left(\frac{1}{k}, 1\right)-m_{N-1}\left(\frac{1}{k+x}, 1\right)\right) \\
& -m_{N-1}\left(\frac{1}{l_{1}}, y_{1}\right)+m_{N-1}\left(\frac{1}{l_{1}+x}, y_{1}\right)+ \\
& \\
& +\sum_{k=l_{1}}^{\infty}\left(m_{N-1}\left(\frac{1}{k}, 1\right)-m_{N-1}\left(\frac{1}{k+x^{*}}, 1\right)\right) \\
& -m_{N-1}\left(\frac{1}{l_{1}}, y_{1}\right)+m_{N-1}\left(\frac{1}{l_{1}+x^{*}}, y_{1}\right) .
\end{aligned}
$$

Now for each $D \in \mathcal{B}$ one has

$$
\begin{equation*}
\frac{1}{2 \log 2} \bar{\lambda}(D) \leq \bar{\mu}(D) \leq \frac{1}{\log 2} \bar{\lambda}(D) \tag{11}
\end{equation*}
$$

For each $n \in N$ and $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in N^{n}$, we consider the fundamental intervals

$$
\Delta_{n}(\bar{a})=\left\{\omega \in[0,1) ; p_{n}(\omega) / q_{n}(\omega)=\left[0 ; a_{1}, \ldots, a_{n}\right]\right\}
$$

From (11) and the fact that \mathcal{T} is measure-preserving with respect to $\bar{\mu}$, it follows that

$$
\begin{aligned}
& \sum_{k=l_{1}}^{\infty}\left(\frac{1}{k+x^{*}}-\frac{1}{k+x}\right)=\sum_{k=l_{1}}^{\infty} \bar{\lambda}\left(\left([0, k+x],\left[0, k+x^{*}\right]\right) \times[0,1]\right) \leq \\
\leq & 2 \log 2 \sum_{k=l_{1}}^{\infty} \bar{\mu}\left(\left(x^{*}, x\right) \times \Delta_{1}(k)\right) \leq 2\left(x-x^{*}\right) \lambda\left(0, \frac{1}{l_{1}}\right) \leq 4\left(x-x^{*}\right) y
\end{aligned}
$$

From this and Theorem 1.1, it follows

$$
\begin{gathered}
\sum_{k=l_{1}}^{\infty}\left(m_{N-1}\left(\frac{1}{k+x^{*}}, 1\right)-m_{N-1}\left(\frac{1}{k+x}, 1\right)\right)= \\
=\sum_{k=l_{1}}^{\infty}\left(\mu\left(\left[\frac{1}{k+x}, \frac{1}{k+x^{*}}\right]\right)+\left(\frac{1}{k+x^{*}}-\frac{1}{k+x}\right) \mathcal{O}\left(q^{N-1}\right)\right)= \\
=\frac{1}{\log 2} \log \left(\frac{l_{1}+x}{l_{1}+x^{*}}\right)+\bar{\lambda}\left(\mathcal{T}_{x, y} \backslash \mathcal{T}_{x^{*}, y}\right) \mathcal{O}\left(q^{N-1}\right)
\end{gathered}
$$

For each $2 \leq i \leq d$,

$$
\begin{gathered}
\sum_{k=l_{1}}^{\infty}\left|\left[0 ; k, l_{i-1}, \ldots, l_{1}+x^{*}\right]-\left[0 ; k, l_{i-1}, \ldots, l_{1+x}\right]\right| \leq \\
\leq 2 \log 2 \sum_{k=l_{1}}^{\infty} \bar{\mu}\left(\tau^{i}\left(\left[0 ; k, l_{i-1}, \ldots, l_{1}+x^{*}\right],\left[0 ; k, l_{i-1}, \ldots, l_{1}+x\right]\right)\right) \leq \\
\leq \sum_{k=l_{1}}^{\infty} \bar{\lambda}\left(\left(x^{*}, x\right) \times \Delta_{i}\left(l_{1}, \ldots, l_{i-1}, k\right)\right) \leq 2\left(x-x^{*}\right) \lambda\left(\Delta_{i-1}\left(l_{1}, \ldots, l_{i-1}\right)\right) \leq 4\left(x-x^{*}\right) \cdot y .
\end{gathered}
$$

Now applying (*) to

$$
m_{N-1}\left(\frac{1}{l_{1}+x}, y_{1}\right)-m_{N-1}\left(\frac{1}{l_{1}+x^{*}}, y_{1}\right)
$$

yields

$$
\begin{aligned}
m_{N}(x, y)- & m_{N}\left(x^{*}, y\right)=\frac{1}{\log 2} \cdot \log \left(\frac{l_{1}+x}{l_{1}+x^{*}}\right)+\frac{1}{\log 2} \log \left(\frac{l_{2}+\frac{1}{l_{1}+x}}{l_{2}+\frac{1}{l_{1}+x^{*}}}\right)+ \\
& +\bar{\lambda}\left(\mathcal{T}_{x, y} \backslash \mathcal{T}_{x^{*}, y}\right) \mathcal{O}\left(q^{N-1}\right)+\bar{\lambda}\left(\mathcal{T}_{x, y} \backslash \mathcal{T}_{x^{*}, y}\right) \mathcal{O}\left(q^{N-2}\right)+ \\
& +m_{N-2}\left(\frac{1}{l_{2}+\frac{1}{l_{1}+x}}, y_{2}\right)-m_{N-2}\left(\frac{1}{l_{2}+\frac{1}{l_{1}+x^{*}}}, y_{2}\right)
\end{aligned}
$$

After the step d, we get

$$
\begin{align*}
& m_{N}(x, y)-m_{N}\left(x^{*}, y\right)=\frac{1}{\log 2} \cdot \log \left(\frac{l_{1}+x}{l_{1}+x^{*}} \ldots \frac{\left[l_{d} ; l_{d-1}, \ldots, l_{2}, l_{1}+x\right]}{\left[l_{d} ; l_{d-1}, \ldots, l_{2}, l_{1}+x^{*}\right]}\right)+ \\
& \quad+\bar{\lambda}\left(\mathcal{T}_{x, y} \backslash \mathcal{T}_{x^{*}, y}\right) \mathcal{O}\left(q^{N-1}\right)+\ldots+\bar{\lambda}\left(\mathcal{T}_{x, y} \backslash \mathcal{T}_{x^{*}, y}\right) \mathcal{O}\left(q^{N-d}\right)+ \tag{12}\\
& +m_{N-d}\left(\left[0 ; l_{d}, \ldots, l_{2}, l_{1}+x\right], y_{d}\right)-m_{N-d}\left(\left[0 ; l_{d}, \ldots, l_{2}, l_{1}+x^{*}\right], y_{d}\right)
\end{align*}
$$

(B). Now define

$$
\begin{aligned}
& P_{-1}=1, \quad P_{0}=0 ; \quad P_{i}=\alpha_{i} P_{i-1}+P_{i-2}, \quad i=1, \ldots, d \\
& Q_{-1}=0, Q_{0}=1 ; \quad Q_{i}=\alpha_{i} Q_{i-1}+Q_{i-2}, \quad i=1, \ldots, d
\end{aligned}
$$

where $\alpha_{1}=l_{1}+x, \alpha_{2}=l_{2}, \ldots, \alpha_{d}=l_{d}$.

Then one has $\frac{1}{l_{1}+\ddots}=\left[0 ; l_{i}, \ldots, l_{1}+x\right]=\frac{Q_{i-1}}{Q_{i}}, i=1, \ldots, d$ and $l_{1}+{ }^{\cdot}$.
$+\frac{1}{l_{1}+x}$
therefore

$$
\left(l_{1}+x\right)\left(\left[l_{2} ; l_{1}+x\right]\right)\left(\left[l_{3} ; l_{2}, l_{1}+x\right]\right) \ldots=\frac{Q_{1}}{Q_{0}} \cdot \frac{Q_{2}}{Q_{1}} \cdots \frac{Q_{d}}{Q_{d-1}}=Q_{d}
$$

Furthermore $\frac{P_{d}}{Q_{d}}=\left[0 ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right]=\left[0 ; l_{1}+x, l_{2}, \ldots, l_{d}\right]$.
Similarly, one has

$$
\frac{P_{d}^{*}}{Q_{d}^{*}}=\left[0 ; l_{1}+x^{*}, l_{2}, \ldots, l_{d}\right]
$$

Note that $P_{d}=P_{d}^{*}$, so that

$$
\begin{gathered}
\frac{\left(l_{1}+x\right)\left(\left[l_{2}, l_{1}+x\right]\right) \ldots\left(\left[l_{d} ; l_{d-1}, \ldots, l_{2}, l_{1}+x\right]\right)}{\left(l_{1}+x^{*}\right)\left(\left[l_{2}, l_{1}+x^{*}\right]\right) \ldots\left(\left[l_{d} ; l_{d-1}, \ldots, l_{2}, l_{1}+x^{*}\right]\right)}=\frac{Q_{d}}{Q_{d}^{*}}= \\
=\frac{P_{d}^{*}}{Q_{d}^{*}} \cdot \frac{Q_{d}}{P_{d}}=\frac{1}{x^{*}+\left[l_{1} ; l_{2}, \ldots, l_{d}\right]} \cdot\left(x+\left[l_{1} ; l_{2}, \ldots, l_{d}\right]\right)=\frac{x+\frac{1}{y}}{x^{*}+\frac{1}{y}}=\frac{1+x y}{1+x^{*} y} .
\end{gathered}
$$

(C). Since $q^{N-d}+q^{N-d+1}+\ldots+q^{N-1}=q^{N-d}\left(1+q+\ldots+q^{d-1}\right) \leq$

$$
\leq q^{N-d} \cdot\left(\sum_{i=0}^{\infty} q^{i}\right)=q^{N-d} \cdot \frac{1}{1-q}=g \cdot q^{N-d}
$$

and $y_{d}=0$.

$$
\left|\left(m_{N}(x, y)-m_{N}\left(x^{*}, y\right)\right)-\frac{1}{\log 2} \log \left(\frac{1+x y}{1+x^{*} y}\right)\right| \leq 12 g b \bar{\lambda}\left(\mathcal{T}_{x, y} \backslash \mathcal{T}_{x^{*}, y}\right) q^{N-d}
$$

References

[1] Babenko, K., On a problem of Gauss, Soviet Math. Dokl., 19(1978), 136-140.
[2] Iosifescu, M., A very simple proof of a generalization of the Gauss-Kuzmin-Lévy theorem on continued fractions, Rev. Roumaine math.pures et appl. 37(1992), 901-914.
[3] Wirsing, E., On the theorem of Gauss-Kuzmin and a Frobenius-type theorem for function space, Acta Auth. 24(1974),507-528.
"Mircea cel Batrân" Naval Academy
Department of Mathematics-Informatics
Fulgerului 1,Constanta, ROMANIA, 900218

[^0]: Key Words: regular continued fraction expansion

