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GENERALIZATION OF A THEOREM OF
GAUSS-KUZMIN

Ion Colţescu

Abstract

A Gauss-Kuzmin theorem for the natural extension of the regular
continued fraction expansion is given.

Let Ω denote the set of irrational numbers in I = [0, 1]. Given ω ∈ Ω, let
a1(ω), a2(ω), ... be the sequence of partial quotients of the continued fraction
expansion of ω constructed as follows.

Define τ : Ω → Ω by

τ(ω) =
1
ω
−
[

1
ω

]
, ω 6= 0; τ(0) = 0. (1)

Then an+1(ω) = a1(τn(ω)), n ∈ N∗ = {1, 2, ..., n},with a1(ω) = the inte-
ger part of 1/ω.

Let λ be an arbitrary non-atomic probability measure on the σ-algebra B
of Borel subsets of I and let γ be the Gauss probability measure on BI defined
as

γ(A) =
1

log 2

∫
A

dx

1 + x
, A ∈ BI .

Put Fn(x) = λ (τ−n ((0, x))) , x ∈ I for all n ∈ N∗ = {0, 1, ...}, with
τ0 = the identity map on I. Clearly F0(x) = λ((0, x)), x ∈ I. For any fixed
n ∈ N and x ∈ I, the set τ−n((0, x)) consists of all ω ∈ Ω for which τn(ω) < x,
i.e. the continued fractions

1

an+1(ω) +
1

an+2(ω)
+

. . .
is less than x.
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Then, noting that we have τn+1(ω) < x if and only if
1

x + i
< τn(ω) <

1
i

for some i ∈ N∗, we obtain Gauss’equation

Fn+1(x) =
∑

i∈N∗

(
Fn(

1
i
)− Fn

(
1

x + i

))
, n ∈ N,x ∈ I.

Assuming that for some m ∈ N the derivative F ′m exists everywhere in
I and is bounded, it is easy to see by induction that F ′m+n exists and it is
bounded for all n ∈ N∗, and we have

F ′n+1(x) =
∑

i∈N∗

1
(x + i)2

· F ′n
(

1
x + i

)
, n ≥ m, x ∈ I. (2)

Now, write fn(x) = (x + 1)F ′n(x), x ∈ I, n ≥ m to get fn+1 = Ufn, n ≥ m,
with U is the linear operator defined as

Uf(x) =
∑

i∈N∗

x + 1
(x + i)(x + i + 1)

f

(
1

x + i

)
, f ∈ B(I), x ∈ I (3)

B(I) being the Banach space of bounded measurable complex-valued functions
f on I under the supremum norm |f | = sup {|f(x)| |x ∈ I} .

Hence

Fm+n(x) =
∫ x

0

Unfm(u)
u + 1

du, n ∈ N, x ∈ I (4)

The asymptotic behaviour of Fn as n →∞ including the rate of convergence
for µ = λ = the Lebesgue measure is a problem stated by Gauss in a letter
to Laplace exactly 180 years ago.

On October 25, 1800, Gauss wrote in his diary that (in modern notation)

± lim
n→∞

λ

(
{ω ∈ [0, 1)\Q; τn

ω ≤ z} =
log(1 + z)

log 2

)
, 0 ≤ z ≤ 1. (5)

Later, in a letter dated January 30, 1812, Gauss asked Laplace to give an
estimate of the error term rn(z), defined by rn(z), defined by

rN (z) = λ (τ−n[0, Z])− log(1 + z)
log 2

, n ≥ 1.

The first one who proves and in the same time answering Gauss’question
was Kuzmin. In 1928 Kuzmin showed that rn(z) = O(q

√
n) with q ∈ (0, 1),

uniformly for z.
Independently, Lévy showed one year later that rn(z) = O(qn) with q =

0, 7..., uniformly for z.
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Theorem 1.1. For every Borel set E ⊂ [0, 1), one has
|λ(τ−nE)− µ(E)| < bλ(E)σ(n),where µ is the so-called Gauss measure on
([0, 1],B) , B being the collection of Borel sets of [0, 1), defined by

µ(E) =
1

log 2

∫
E

dx

1 + x
, E ∈ B (6)

b is a constant and σ : N → R+ satisfies

σ(n) < 3qn, n ≥ 1 where q =
3−

√
5

2
.

Proof. An essential ingredient in any proof of any proof of the Gauss-
Kuzmin theorem is the following observation.

Let ω ∈ [0, 1)\Q and put τk = τkω, k ≥ 0, where τ : [0, 1) → [0, 1) is the
operator defined in (1). From (1) it follows at once that

0 ≤ τn+1 ≤ x ⇔ τn ∈
∞⋃

k=1

[
1

r + x
,
1
k

]
.

Thus if we put mn(x) = λ ({ω ∈ [0, 1); τnω ≤ x}) , n ≥ 0 , then

mn+1(x) =
∞∑

k=1

(
mn

(
1
k

)
−mn

(
1

k + x

))
, n ≥ 0 (7)

To be more precise, a Gauss-Kuzmin theorem is related to the natural
extension (

Ω,B, µ̄, T
)
, Ω = [0, 1)× [0, 1],

where µ̄ is a probability measure on
(
Ω,B

)
writh density

1
log 2

· 1
(1 + xy)2

, and

T : Ω → Ω is defined by

T (ξ, µ) =

τξ,
1[

1
ξ

]
+ η

 , (ξ, η) ∈ Ω. (8)

Let ω ∈ [0, 1)\Q, the regular continued fraction expansion

1

a1 +
.. .

+
1

an +
.. .

= [0; a1, ..., an, ...] . (9)
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Finite truncation (9) yields the sequence of regular convergents of ω

pn(ω)
qn(ω)

= [0; a1, ..., an] , n ≥ 1.

One easily shows that

q−1(ω) = 0, q0(ω) = 1, qn(ω) = anqn−1(ω) + qn−2(ω), n ≥ 1

and
1

2qn(ω)qn+1(ω)
<

∣∣∣∣ω − pn(ω)
qn(ω)

∣∣∣∣ < 1
qn(ω) · qn+1(ω)

; n ≥ 1. (10)

Put
(Tm, Vm) = T m(ξ, η), for (ξ, η) ∈ Ω, m ≥ 1

and (T0, V0) = (ξ, η). Then

Tm = [0; am+1, ..., am+n, ...] , Vm = [0; am, ..., a2, a1 + η] , m ≥ 1.

Finally, we define for m ≥ 1 the function mn(x, y) by

mn(x, y) = λ̄
({

(ξ, η) ∈ Ω; (Tn, Vn) ∈ Tx,y

})
,

where λ̄ is the Lebesgue measure on Ω and

Tx,y = [0, x]× [0, y].

Theorem 1.2. For all N ≥ 2 and all (x, y) ∈ Ω, one has

mN (x, y) =
1

log 2
· log(1 + xy) +O(gN )

and the constant of the O symbol is universal.

Proof. The definition of T yields

0 ≤ Vn+1 ≤ y ⇔ 0 ≤ 1
an+1 + Vn

≤ y ⇔ 1
y
− an+1 ≤ Vn ≤ 1.

Thus, putting l1 =
[
1
y

]
, one has

(Tn+1, Vn+1) ∈ Tx,y ⇔ (Tn, Vn) ∈

( ∞⋃
k=l1+1

[
1

k + x
,
1
k

]
× [0, 1]

)
∪
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∪
([

1
l1 + x

,
1
l1

]
×
[
1
y
− l1, 1

])
.

Since λ̄

({
(ξ, η) ∈ Ω; (Tn, Vn) ∈

[
1

l1 + x
,

1
l1

]
×
[
1
y
− l1, 1

]})
=

= mn

(
1
l1

, 1
)
−mn

(
1

l1 + x
, 1
)

+ mn

(
1

l1 + x
,
1
y
− l1

)
−mn

(
1
l1

,
1
y
− l1

)
,

one finds mn+1(x, y) =
∞∑

k=l1

(
mn

(
1
k , 1
)
−mn

(
1

k+x , 1
))
−

−
(

mn

(
1
l1

,
1
y
, l1

)
−mn

(
1

l1 + x
,
1
y
− l1

))
. (∗)

Let f0(x, y) be a continuous function on Ω, and define the sequence of
functions fn(x, y) on Ω recursively by

fn+1(x, y) =
∞∑

k=l1

(
fn

(
1
k

, 1
)
− fn

(
1

k + x
, 1
))

−

−
(

fn

(
1
l1

,
1
y
− l1

)
− fn

(
1

l1 + x
,
1
y
− l1

))
,

where l1 =
[
1
y

]
. Then one easily shows that µ̄ is an eingenfunction of the

above equation.

Lemma 1.3. Let N ∈ N, N ≥ 2, and let y ∈ (0, 1) ∩ Q, with regular
continued fraction expansion

y = [0; l1, ..., ld], l1, ..., ld ∈ N, 2 ≤ d ≤ [N/2].

Then one has for each x,x∗ ∈ [0, 1] with x∗ < x,∣∣∣∣(mN (x, y)−mN (x∗, y))− 1
log 2

· log
(

1 + xy

1 + x∗y

)∣∣∣∣ <
< 4λ̄ (Tx,y\Tx∗,y) bσ(N − d),

where q = g2 and b, σ(N − d) as given in Theorem 1.1.

Proof. (A). Put yi = τ i
y = [0; li+1, ..., ld] i = 0, ..., d. Note that y0 = y

and yd = 0).
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From (∗) we at once have that mN (x, y)−mN (x∗, y) =

=
∞∑

k=l1

(
mN−1

(
1
k

, 1
)

-mN−1

(
1

k+x
, 1
))

-mN−1

(
1
l1

, y1

)
+mN−1

(
1

l1+x
, y1

)
+

+
∞∑

k=l1

(
mN−1

(
1
k

, 1
)

-mN−1

(
1

k + x∗
, 1
))

-mN−1

(
1
l1

, y1

)
+mN−1

(
1

l1 + x∗
, y1

)
.

Now for each D ∈ B one has

1
2 log 2

λ̄(D) ≤ µ̄(D) ≤ 1
log 2

λ̄(D). (11)

For each n ∈ N and ā = (a1, ..., an) ∈ Nn, we consider the fundamental
intervals

∆n(ā) = {ω ∈ [0, 1); pn(ω)/qn(ω) = [0; a1, ..., an]} .

From (11) and the fact that T is measure-preserving with respect to µ̄, it
follows that

∞∑
k=l1

(
1

k + x∗
− 1

k + x

)
=

∞∑
k=l1

λ̄ (([0, k + x], [0, k + x∗])× [0, 1]) ≤

≤ 2 log 2
∞∑

k=l1

µ̄ ((x∗, x)×∆1(k)) ≤ 2(x− x∗)λ
(

0,
1
l1

)
≤ 4 (x− x∗) y.

From this and Theorem 1.1, it follows

∞∑
k=l1

(
mN−1

(
1

k + x∗
, 1
)
−mN−1

(
1

k + x
, 1
))

=

=
∞∑

k=l1

(
µ

([
1

k + x
,

1
k + x∗

])
+
(

1
k + x∗

− 1
k + x

)
O
(
qN−1

))
=

=
1

log 2
log
(

l1 + x

l1 + x∗

)
+ λ̄ (Tx,y\Tx∗,y)O

(
qN−1

)
.
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For each 2 ≤ i ≤ d,

∞∑
k=l1

|[0; k, li−1, ..., l1 + x∗]− [0; k, li−1, ..., l1+x]| ≤

≤ 2 log 2
∞∑

k=l1

µ̄
(
τ i ([0; k, li−1, ..., l1 + x∗] , [0; k, li−1, ..., l1 + x])

)
≤

≤
∞∑

k=l1

λ̄ ((x∗, x)×∆i (l1, ..., li−1, k)) ≤ 2(x-x∗)λ (∆i−1 (l1, ..., li−1)) ≤ 4 (x-x∗)·y.

Now applying (∗) to

mN−1

(
1

l1 + x
, y1

)
−mN−1

(
1

l1 + x∗
, y1

)
yields

mN (x, y)−mN (x∗, y) =
1

log 2
· log

(
l1 + x

l1 + x∗

)
+

1
log 2

log

 l2 +
1

l1 + x

l2 +
1

l1 + x∗

+

+λ̄ (Tx,y\Tx∗,y)O
(
qN−1

)
+ λ̄ (Tx,y\Tx∗,y)O

(
qN−2

)
+

+mN−2

 1

l2 +
1

l1 + x

, y2

−mN−2

 1

l2 +
1

l1 + x∗

, y2

 .

After the step d, we get

mN (x, y)−mN (x∗, y) =
1

log 2
· log

(
l1 + x

l1 + x∗
...

[ld; ld−1, ..., l2, l1 + x]
[ld; ld−1, ..., l2, l1 + x∗]

)
+

+λ̄ (Tx,y\Tx∗,y)O
(
qN−1

)
+ ... + λ̄ (Tx,y\Tx∗,y)O

(
qN−d

)
+ (12)

+mN−d ([0; ld, ..., l2, l1 + x] , yd)−mN−d ([0; ld, ..., l2, l1 + x∗] , yd) .

(B). Now define

P−1 = 1, P0 = 0; Pi = αiPi−1 + Pi−2, i = 1, ..., d

Q−1 = 0, Q0 = 1; Qi = αiQi−1 + Qi−2, i = 1, ..., d

where α1 = l1 + x, α2 = l2, ..., αd = ld.
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Then one has
1

l1 +
.. .

+
1

l1 + x

= [0; li, ..., l1 + x] =
Qi−1

Qi
, i = 1, ..., d and

therefore

(l1 + x) ([l2; l1 + x]) ([l3; l2, l1 + x]) ... =
Q1

Q0
· Q2

Q1
...

Qd

Qd−1
= Qd.

Furthermore
Pd

Qd
= [0; α1, α2, ..., αd] = [0; l1 + x, l2, ..., ld] .

Similarly, one has

P ∗d
Q∗d

= [0; l1 + x∗, l2, ..., ld] .

Note that Pd = P ∗d , so that

(l1 + x) ([l2, l1 + x]) ... ([ld; ld−1, ..., l2, l1 + x])
(l1 + x∗) ([l2, l1 + x∗]) ... ([ld; ld−1, ..., l2, l1 + x∗])

=
Qd

Q∗d
=

=
P ∗d
Q∗d

· Qd

Pd
=

1
x∗ + [l1; l2, ..., ld]

· (x + [l1; l2, ..., ld]) =
x +

1
y

x∗ +
1
y

=
1 + xy

1 + x∗y
.

(C). Since qN−d + qN−d+1 + ... + qN−1 = qN−d
(
1 + q + ... + qd−1

)
≤

≤ qN−d ·

( ∞∑
i=0

qi

)
= qN−d · 1

1− q
= g · qN−d

and yd = 0.∣∣∣∣(mN (x, y)−mN (x∗, y))− 1
log 2

log
(

1 + xy

1 + x∗y

)∣∣∣∣ ≤ 12gbλ̄ (Tx,y\Tx∗,y) qN−d.
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