Vol. 10(2), 2002, 9-18

GENERALIZATION OF A THEOREM OF GAUSS-KUZMIN

Ion Colţescu

Abstract

A Gauss-Kuzmin theorem for the natural extension of the regular continued fraction expansion is given.

Let Ω denote the set of irrational numbers in I = [0, 1]. Given $\omega \in \Omega$, let $a_1(\omega), a_2(\omega), \ldots$ be the sequence of partial quotients of the continued fraction expansion of ω constructed as follows.

Define $\tau: \Omega \to \Omega$ by

$$\tau(\omega) = \frac{1}{\omega} - \left[\frac{1}{\omega}\right], \ \omega \neq 0; \ \tau(0) = 0.$$
(1)

Then $a_{n+1}(\omega) = a_1(\tau^n(\omega)), n \in N^* = \{1, 2, ..., n\}$, with $a_1(\omega)$ = the integer part of $1/\omega$.

Let λ be an arbitrary non-atomic probability measure on the σ -algebra \mathcal{B} of Borel subsets of I and let γ be the Gauss probability measure on \mathcal{B}_I defined as

$$\gamma(A) = \frac{1}{\log 2} \int_{A} \frac{dx}{1+x}, \ A \in \mathcal{B}_{I}.$$

Put $F_n(x) = \lambda (\tau^{-n} ((0, x)))$, $x \in I$ for all $n \in N^* = \{0, 1, ...\}$, with τ^0 = the identity map on I. Clearly $F_0(x) = \lambda((0, x))$, $x \in I$. For any fixed $n \in N$ and $x \in I$, the set $\tau^{-n}((0, x))$ consists of all $\omega \in \Omega$ for which $\tau^n(\omega) < x$, i.e. the continued fractions

$$\frac{1}{a_{n+1}(\omega) + \frac{1}{a_{n+2}(\omega)} + \cdots}$$
 is less than x .

Key Words: regular continued fraction expansion

Then, noting that we have $\tau^{n+1}(\omega) < x$ if and only if $\frac{1}{x+i} < \tau^n(\omega) < \frac{1}{i}$ for some $i \in N^*$, we obtain Gauss'equation

$$F_{n+1}(x) = \sum_{i \in N^*} \left(F_n(\frac{1}{i}) - F_n\left(\frac{1}{x+i}\right) \right), \ n \in N, x \in I.$$

Assuming that for some $m \in N$ the derivative F'_m exists everywhere in I and is bounded, it is easy to see by induction that F'_{m+n} exists and it is bounded for all $n \in N^*$, and we have

$$F'_{n+1}(x) = \sum_{i \in N^*} \frac{1}{(x+i)^2} \cdot F'_n\left(\frac{1}{x+i}\right), \ n \ge m, \ x \in I.$$
(2)

Now, write $f_n(x) = (x+1)F'_n(x)$, $x \in I$, $n \ge m$ to get $f_{n+1} = Uf_n$, $n \ge m$, with U is the linear operator defined as

$$Uf(x) = \sum_{i \in N^*} \frac{x+1}{(x+i)(x+i+1)} f\left(\frac{1}{x+i}\right), \ f \in \mathcal{B}(I), x \in I$$
(3)

 $\mathcal{B}(I)$ being the Banach space of bounded measurable complex-valued functions f on I under the supremum norm $|f| = \sup \{|f(x)| | x \in I\}$.

Hence

$$F_{m+n}(x) = \int_0^x \frac{U^n f_m(u)}{u+1} du, \ n \in N, \ x \in I$$
(4)

The asymptotic behaviour of F_n as $n \to \infty$ including the rate of convergence for $\mu = \lambda =$ the Lebesgue measure is a problem stated by Gauss in a letter to Laplace exactly 180 years ago.

On October 25, 1800, Gauss wrote in his diary that (in modern notation)

$$\pm \lim_{n \to \infty} \lambda \left(\{ \omega \in [0,1) \backslash Q; \ \tau_{\omega}^n \le z \} = \frac{\log(1+z)}{\log 2} \right), \ 0 \le z \le 1.$$
 (5)

Later, in a letter dated January 30, 1812, Gauss asked Laplace to give an estimate of the error term $r_n(z)$, defined by $r_n(z)$, defined by

$$r_N(z) = \lambda \left(\tau^{-n}[0, Z] \right) - \frac{\log(1+z)}{\log 2}, \ n \ge 1$$

The first one who proves and in the same time answering Gauss'question was Kuzmin. In 1928 Kuzmin showed that $r_n(z) = \mathcal{O}(q^{\sqrt{n}})$ with $q \in (0, 1)$, uniformly for z.

Independently, Lévy showed one year later that $r_n(z) = \mathcal{O}(q^n)$ with q = 0, 7..., uniformly for z.

Theorem 1.1. For every Borel set $E \subset [0,1)$, one has $|\lambda(\tau^{-n}E) - \mu(E)| < b\lambda(E)\sigma(n)$, where μ is the so-called Gauss measure on $([0,1], \mathcal{B})$, \mathcal{B} being the collection of Borel sets of [0,1), defined by

$$\mu(E) = \frac{1}{\log 2} \int_{E} \frac{dx}{1+x}, \ E \in \mathcal{B}$$
(6)

b is a constant and $\sigma: N \to R_+$ satisfies

$$\sigma(n) < 3q^n, \ n \ge 1 \ where \ \ q = \frac{3 - \sqrt{5}}{2}.$$

Proof. An essential ingredient in any proof of any proof of the Gauss-Kuzmin theorem is the following observation.

Let $\omega \in [0,1) \setminus Q$ and put $\tau_k = \tau^k \omega, \ k \ge 0$, where $\tau : [0,1) \to [0,1)$ is the operator defined in (1). From (1) it follows at once that

$$0 \le \tau_{n+1} \le x \Leftrightarrow \tau_n \in \bigcup_{k=1}^{\infty} \left[\frac{1}{r+x}, \frac{1}{k} \right].$$

Thus if we put $m_n(x) = \lambda \left(\{ \omega \in [0,1); \tau^n \omega \le x \} \right), \ n \ge 0$, then

$$m_{n+1}(x) = \sum_{k=1}^{\infty} \left(m_n \left(\frac{1}{k} \right) - m_n \left(\frac{1}{k+x} \right) \right), \ n \ge 0$$
(7)

To be more precise, a Gauss-Kuzmin theorem is related to the natural extension

$$\left(\overline{\Omega},\overline{\mathcal{B}},ar{\mu},\mathcal{T}
ight),\;\overline{\Omega}=\left[0,1
ight) imes\left[0,1
ight],$$

where $\overline{\mu}$ is a probability measure on $(\overline{\Omega}, \overline{\mathcal{B}})$ writh density $\frac{1}{\log 2} \cdot \frac{1}{(1+xy)^2}$, and $\mathcal{T}: \overline{\Omega} \to \overline{\Omega}$ is defined by

$$\mathcal{T}(\xi,\mu) = \left(\tau\xi, \frac{1}{\left[\frac{1}{\xi}\right] + \eta}\right), (\xi,\eta) \in \overline{\Omega}.$$
(8)

Let $\omega \in [0,1) \setminus Q$, the regular continued fraction expansion

$$\frac{1}{a_1 + \cdots + \frac{1}{a_n + \cdots + \cdots}} = [0; a_1, \dots, a_n, \dots].$$
(9)

$$\frac{p_n(\omega)}{q_n(\omega)} = [0; a_1, ..., a_n], \ n \ge 1.$$

One easily shows that

$$q_{-1}(\omega) = 0, \ q_0(\omega) = 1, \ q_n(\omega) = a_n q_{n-1}(\omega) + q_{n-2}(\omega), \ n \ge 1$$

and

$$\frac{1}{2q_n(\omega)q_{n+1}(\omega)} < \left|\omega - \frac{p_n(\omega)}{q_n(\omega)}\right| < \frac{1}{q_n(\omega) \cdot q_{n+1}(\omega)}; \ n \ge 1.$$
(10)

Put

$$(T_m, V_m) = \mathcal{T}^m(\xi, \eta), \text{ for } (\xi, \eta) \in \overline{\Omega}, \ m \ge 1$$

and $(T_0, V_0) = (\xi, \eta)$. Then

$$T_m = [0; a_{m+1}, \dots, a_{m+n}, \dots], \ V_m = [0; a_m, \dots, a_2, a_1 + \eta], \ m \ge 1.$$

Finally, we define for $m \ge 1$ the function $m_n(x, y)$ by

$$m_n(x,y) = \overline{\lambda} \left(\left\{ (\xi,\eta) \in \overline{\Omega}; \ (T_n,V_n) \in \mathcal{T}_{x,y} \right\} \right),$$

where $\overline{\lambda}$ is the Lebesgue measure on $\overline{\Omega}$ and

$$\mathcal{T}_{x,y} = [0,x] \times [0,y].$$

Theorem 1.2. For all $N \ge 2$ and all $(x, y) \in \overline{\Omega}$, one has

$$m_N(x,y) = \frac{1}{\log 2} \cdot \log(1+xy) + \mathcal{O}(g^N)$$

and the constant of the \mathcal{O} symbol is universal.

Proof. The definition of \mathcal{T} yields

$$0 \le V_{n+1} \le y \Leftrightarrow 0 \le \frac{1}{a_{n+1} + V_n} \le y \Leftrightarrow \frac{1}{y} - a_{n+1} \le V_n \le 1.$$

Thus, putting $l_1 = \begin{bmatrix} 1 \\ y \end{bmatrix}$, one has

$$(T_{n+1}, V_{n+1}) \in \mathcal{T}_{x,y} \Leftrightarrow (T_n, V_n) \in \left(\bigcup_{k=l_1+1}^{\infty} \left[\frac{1}{k+x}, \frac{1}{k}\right] \times [0, 1]\right) \cup$$

$$\cup \left(\left[\frac{1}{l_1 + x}, \frac{1}{l_1} \right] \times \left[\frac{1}{y} - l_1, 1 \right] \right).$$
Since $\bar{\lambda} \left(\left\{ (\xi, \eta) \in \overline{\Omega}; (T_n, V_n) \in \left[\frac{1}{l_1 + x}, \frac{1}{l_1} \right] \times \left[\frac{1}{y} - l_1, 1 \right] \right\} \right) =$

$$= m_n \left(\frac{1}{l_1}, 1 \right) - m_n \left(\frac{1}{l_1 + x}, 1 \right) + m_n \left(\frac{1}{l_1 + x}, \frac{1}{y} - l_1 \right) - m_n \left(\frac{1}{l_1}, \frac{1}{y} - l_1 \right),$$
one finds $m_{n+1}(x, y) = \sum_{k=l_1}^{\infty} \left(m_n \left(\frac{1}{k}, 1 \right) - m_n \left(\frac{1}{k+x}, 1 \right) \right) -$

$$- \left(m_n \left(\frac{1}{l_1}, \frac{1}{y}, l_1 \right) - m_n \left(\frac{1}{l_1 + x}, \frac{1}{y} - l_1 \right) \right).$$
(*)

Let $f_0(x, y)$ be a continuous function on $\overline{\Omega}$, and define the sequence of functions $f_n(x, y)$ on $\overline{\Omega}$ recursively by

$$f_{n+1}(x,y) = \sum_{k=l_1}^{\infty} \left(f_n\left(\frac{1}{k},1\right) - f_n\left(\frac{1}{k+x},1\right) \right) - \left(f_n\left(\frac{1}{l_1},\frac{1}{y} - l_1\right) - f_n\left(\frac{1}{l_1+x},\frac{1}{y} - l_1\right) \right),$$

where $l_1 = \left[\frac{1}{y}\right]$. Then one easily shows that $\bar{\mu}$ is an eingenfunction of the above equation.

Lemma 1.3. Let $N \in \mathbb{N}$, $N \geq 2$, and let $y \in (0,1) \cap Q$, with regular continued fraction expansion

$$y = [0; l_1, ..., l_d], \ l_1, ..., l_d \in \mathbb{N}, 2 \le d \le [N/2].$$

Then one has for each $x, x^* \in [0, 1]$ with $x^* < x$,

$$\left| (m_N(x,y) - m_N(x^*,y)) - \frac{1}{\log 2} \cdot \log\left(\frac{1+xy}{1+x^*y}\right) \right| < < 4\bar{\lambda} \left(\mathcal{T}_{x,y} \setminus \mathcal{T}_{x^*,y}\right) b\sigma(N-d),$$

where $q = g^2$ and b, $\sigma(N - d)$ as given in Theorem 1.1.

Proof. (A). Put $y_i = \tau_y^i = [0; l_{i+1}, ..., l_d]$ i = 0, ..., d. Note that $y_0 = y$ and $y_d = 0$).

From (*) we at once have that $m_N(x, y) - m_N(x^*, y) =$

$$=\sum_{k=l_{1}}^{\infty} \left(m_{N-1} \left(\frac{1}{k}, 1 \right) - m_{N-1} \left(\frac{1}{k+x}, 1 \right) \right)$$
$$-m_{N-1} \left(\frac{1}{l_{1}}, y_{1} \right) + m_{N-1} \left(\frac{1}{l_{1}+x}, y_{1} \right) +$$
$$+\sum_{k=l_{1}}^{\infty} \left(m_{N-1} \left(\frac{1}{k}, 1 \right) - m_{N-1} \left(\frac{1}{k+x^{*}}, 1 \right) \right)$$
$$-m_{N-1} \left(\frac{1}{l_{1}}, y_{1} \right) + m_{N-1} \left(\frac{1}{l_{1}+x^{*}}, y_{1} \right).$$

Now for each $D \in \mathcal{B}$ one has

$$\frac{1}{2\log 2}\bar{\lambda}(D) \le \bar{\mu}(D) \le \frac{1}{\log 2}\bar{\lambda}(D).$$
(11)

For each $n \in N$ and $\bar{a} = (a_1, ..., a_n) \in N^n$, we consider the fundamental intervals

$$\Delta_n(\bar{a}) = \{\omega \in [0,1); p_n(\omega)/q_n(\omega) = [0;a_1,...,a_n]\}.$$

From (11) and the fact that ${\mathcal T}\,$ is measure-preserving with respect to $\bar\mu,$ it follows that

$$\sum_{k=l_1}^{\infty} \left(\frac{1}{k+x^*} - \frac{1}{k+x} \right) = \sum_{k=l_1}^{\infty} \bar{\lambda} \left(\left([0, k+x], [0, k+x^*] \right) \times [0, 1] \right) \le 2 \log 2 \sum_{k=l_1}^{\infty} \bar{\mu} \left((x^*, x) \times \Delta_1(k) \right) \le 2(x-x^*) \lambda \left(0, \frac{1}{l_1} \right) \le 4 \left(x - x^* \right) y.$$

From this and Theorem 1.1, it follows

$$\sum_{k=l_1}^{\infty} \left(m_{N-1} \left(\frac{1}{k+x^*}, 1 \right) - m_{N-1} \left(\frac{1}{k+x}, 1 \right) \right) =$$
$$= \sum_{k=l_1}^{\infty} \left(\mu \left(\left[\frac{1}{k+x}, \frac{1}{k+x^*} \right] \right) + \left(\frac{1}{k+x^*} - \frac{1}{k+x} \right) \mathcal{O} \left(q^{N-1} \right) \right) =$$
$$= \frac{1}{\log 2} \log \left(\frac{l_1+x}{l_1+x^*} \right) + \bar{\lambda} \left(\mathcal{T}_{x,y} \setminus \mathcal{T}_{x^*,y} \right) \mathcal{O} \left(q^{N-1} \right).$$

For each
$$2 \leq i \leq d$$
,

$$\sum_{k=l_1}^{\infty} |[0; k, l_{i-1}, ..., l_1 + x^*] - [0; k, l_{i-1}, ..., l_{1+x}]| \leq 2 \log 2 \sum_{k=l_1}^{\infty} \bar{\mu} \left(\tau^i \left([0; k, l_{i-1}, ..., l_1 + x^*], [0; k, l_{i-1}, ..., l_1 + x] \right) \right) \leq \sum_{k=l_1}^{\infty} \bar{\lambda} \left((x^*, x) \times \Delta_i \left(l_1, ..., l_{i-1}, k \right) \right) \leq 2(x \cdot x^*) \lambda \left(\Delta_{i-1} \left(l_1, ..., l_{i-1} \right) \right) \leq 4 \left(x \cdot x^* \right) \cdot y.$$

Now applying (*) to

$$m_{N-1}\left(\frac{1}{l_1+x}, y_1\right) - m_{N-1}\left(\frac{1}{l_1+x^*}, y_1\right)$$

yields

$$m_{N}(x,y) - m_{N}(x^{*},y) = \frac{1}{\log 2} \cdot \log\left(\frac{l_{1}+x}{l_{1}+x^{*}}\right) + \frac{1}{\log 2}\log\left(\frac{l_{2}+\frac{1}{l_{1}+x}}{l_{2}+\frac{1}{l_{1}+x^{*}}}\right) + \frac{1}{\lambda}\left(\mathcal{T}_{x,y}\backslash\mathcal{T}_{x^{*},y}\right)\mathcal{O}\left(q^{N-1}\right) + \bar{\lambda}\left(\mathcal{T}_{x,y}\backslash\mathcal{T}_{x^{*},y}\right)\mathcal{O}\left(q^{N-2}\right) + \frac{1}{l_{2}+\frac{1}{l_{1}+x}}, y_{2} - m_{N-2}\left(\frac{1}{l_{2}+\frac{1}{l_{1}+x^{*}}}, y_{2}\right).$$

After the step d, we get

$$m_{N}(x,y) - m_{N}(x^{*},y) = \frac{1}{\log 2} \cdot \log\left(\frac{l_{1}+x}{l_{1}+x^{*}} \dots \frac{[l_{d};l_{d-1},\dots,l_{2},l_{1}+x]}{[l_{d};l_{d-1},\dots,l_{2},l_{1}+x^{*}]}\right) + \\ + \bar{\lambda}\left(\mathcal{T}_{x,y} \setminus \mathcal{T}_{x^{*},y}\right) \mathcal{O}\left(q^{N-1}\right) + \dots + \bar{\lambda}\left(\mathcal{T}_{x,y} \setminus \mathcal{T}_{x^{*},y}\right) \mathcal{O}\left(q^{N-d}\right) + \\ + m_{N-d}\left(\left[0;l_{d},\dots,l_{2},l_{1}+x\right],y_{d}\right) - m_{N-d}\left(\left[0;l_{d},\dots,l_{2},l_{1}+x^{*}\right],y_{d}\right).$$
(12)

(B). Now define

$$P_{-1} = 1, P_0 = 0; P_i = \alpha_i P_{i-1} + P_{i-2}, i = 1, ..., d$$
$$Q_{-1} = 0, Q_0 = 1; Q_i = \alpha_i Q_{i-1} + Q_{i-2}, i = 1, ..., d$$
$$l_1 + x, \alpha_2 = l_2, ..., \alpha_d = l_d.$$

where $\alpha_1 = l_1 + x, \ \alpha_2 = l_2, ..., \alpha_d = l_d$

-1

Then one has
$$\frac{1}{l_1 + \cdots + \frac{1}{l_1 + x}} = [0; l_i, ..., l_1 + x] = \frac{Q_{i-1}}{Q_i}, i = 1, ..., d$$
 and

therefore

$$(l_1 + x) \left([l_2; l_1 + x] \right) \left([l_3; l_2, l_1 + x] \right) \dots = \frac{Q_1}{Q_0} \cdot \frac{Q_2}{Q_1} \dots \frac{Q_d}{Q_{d-1}} = Q_d$$

Furthermore $\frac{P_d}{Q_d} = [0; \alpha_1, \alpha_2, ..., \alpha_d] = [0; l_1 + x, l_2, ..., l_d]$. Similarly, one has

$$\frac{P_d^*}{Q_d^*} = [0; l_1 + x^*, l_2, \dots, l_d].$$

Note that $P_d = P_d^*$, so that

$$\frac{(l_1+x)\left([l_2,l_1+x]\right)\dots\left([l_d;l_{d-1},\dots,l_2,l_1+x]\right)}{(l_1+x^*)\left([l_2,l_1+x^*]\right)\dots\left([l_d;l_{d-1},\dots,l_2,l_1+x^*]\right)} = \frac{Q_d}{Q_d^*} =$$

$$= \frac{P_d^*}{Q_d^*} \cdot \frac{Q_d}{P_d} = \frac{1}{x^* + [l_1; l_2, ..., l_d]} \cdot (x + [l_1; l_2, ..., l_d]) = \frac{x + \frac{1}{y}}{x^* + \frac{1}{y}} = \frac{1 + xy}{1 + x^*y}.$$
(C). Since $q^{N-d} + q^{N-d+1} + ... + q^{N-1} = q^{N-d} \left(1 + q + ... + q^{d-1}\right) \le$

$$\le q^{N-d} \cdot \left(\sum_{i=0}^{\infty} q^i\right) = q^{N-d} \cdot \frac{1}{1-q} = g \cdot q^{N-d}.$$

and $y_d = 0$.

$$\left| \left(m_N(x,y) - m_N(x^*,y) \right) - \frac{1}{\log 2} \log \left(\frac{1+xy}{1+x^*y} \right) \right| \le 12gb\bar{\lambda} \left(\mathcal{T}_{x,y} \setminus \mathcal{T}_{x^*,y} \right) q^{N-d}$$

References

- [1] Babenko, K., On a problem of Gauss, Soviet Math. Dokl., 19(1978), 136-140.
- [2] Iosifescu, M., A very simple proof of a generalization of the Gauss-Kuzmin-Lévy theorem on continued fractions, Rev. Roumaine math.pures et appl. 37(1992), 901-914.

[3] Wirsing, E., On the theorem of Gauss-Kuzmin and a Frobenius-type theorem for function space, Acta Auth. 24(1974),507-528.

"Mircea cel Batrân" Naval Academy Department of Mathematics-Informatics Fulgerului 1,Constanta, ROMANIA, 900218