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Distribution of Time Interval between the
Modifications of Result Sets Cardinalities in

Random Databases

Letiţia Velcescu

Abstract

In this paper, we propose a method to estimate the probability distribution of
the time interval which ellapses between the modifications of the cardinality in
a random database query’s result set. This type of database is important either
in modeling uncertainty or storing data whose values follow a probability distri-
bution. The result that we introduce is important from the point of view of the
database optimization, providing a useful method for an integrated module. In
previous research on random databases the sizes of some relational operations
results were investigated. This kind of information is rather useful in an analyt-
ical database which provides decision-making support. The result we particu-
larly aim to present in this paper concerns the transactional random databases,
addressing its specific functionality. It will be proven that the interval of time be-
tween the cardinalities changes is exponentially distributed. The proof is based
on the technique of the Markovian Jelinski-Moranda model, which is used in the
reliability of software programs.

1 Introduction

The huge amount of data which is accumulating in each domain of research or ac-
tivity leads to different types of problems, from the storage in the corresponding data
structures to the extraction of information, knowledge discovery and decision mak-
ing. The different solutions that respond to the mentioned problems determined the
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apparition of two main technologies of data management, namely the on-line ana-
lytical processing (OLAP) and the on-line transactional processing (OLTP). On one
hand, the OLAP databases are rather specific to data warehouses, in which informa-
tion usually is not updated, but analysed in order to support decisions. On the other
hand, the OLTP databases are suitable for the management of current data in the
respective field.

Data that is stored in databases might originate from different sources and some-
times it is uncertain or even erronated. Even in this case, database queries have to
support decisions by providing the answers that at least approximate the real infor-
mation. In research, the domain of databases that store this type of uncertain or error
carrying information is related closely to the random database field ([13], [14]). The
importance of this type of databases is relevant in the domains who need to manage
this kind of information. In this context, we can mention the fields that work with
data provided by sensors.

The results introduced in this article extend the author’s research work in the
domain of random databases. In the previous work, the concept of heterogeneous
random database was defined ([20]). In this particular type of database, where the
values of the columns follow different probability distributions, relational operations
were studied. Generally, random databases store data that are likely to be uncertain.
Thus, the relational operations performed on these data have to be redefined in order
to support approximate searches. Attention was focused on the transformation of op-
erations from relational algebra in the context of random databases. The number of
records in the queries’ result sets was estimated, in terms of the probability distribu-
tion of these values ([14]). It was shown that this cardinality is Poisson distributed,
but the approximation to this distribution depends on the radius of the ball in which
values are accepted in the approximate queries. This estimation is important in the
optimization of the queries performed in an analytical database.

Further, the approximate join operation has been approached as a multidimen-
sional Poisson stochastic process ([21]). This result allows the algorithms that simu-
late this type of process to intervene in the simulation of the values which represent
the cardinalities of the sets resulted from the approximate join.

This article brings as novelty the treatment of the transactional aspect of a ran-
dom database, in the same perspective of queries optimization. We study the case
of a database in which insertions are likely to be performed frequently. Estimating
the time interval between two changes in the result set of a query can provide an im-
portant factor that might improve the database optimization process. By the means
of the technique of justification the hypothesis of the Jelinski-Moranda model ([18]),
we prove that this number is exponentially distributed.

In the second section of this paper we introduce the main concepts of random
database theory and present a survey of the research performed so far. The third part
presents our approach to the estimation of the time interval between two changes in
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a query’s result set. The article ends with a conclusions section that emphasizes the
contributions of the presented research.

2 Relational Random Databases

In this section, we introduce the main concepts in random databases and the most
important results obtained so far in this domain, namely the Poisson estimation of the
probability distribution of the approximate join’s cardinalities and the perspective of
the approximate join as a Poisson stochastic process.

In database theory, a database is a set of relations. Each relation of the database
is described by its corresponding relation schema ([1]), which usually contains the
attributes names, their domains and the primary key. The implementation of a relation
is a table.

Consider a relation R in a random database and its relation schema R (U), where
U = {A1, A2, . . . , An} is the set of the attributes in the relation R. The implementation
of the relation R is a table denoted by T (R). The number of attributes n defines the
arity of a tuple in the relation R ([6]); the number of tuples (rows) in the table is
referred as the table’s cardinality (e.g., [17]).

The values of each attribute Ai, for i ∈ {1, 2, . . . , n}, belong to an associated do-
main of values DAi . Consequently, the tuples’ values will belong to the cross product
DU = DA1 × DA2 × . . . × DAn . The projection corresponding to the i-th tuple ti of
T (R) on a subset of attributes A ⊆ U is denoted by prA(ti), for i ∈ {1, 2, . . . , |T (R)|}.
Consider the relations R1 (U1) and R2 (U2) implemented by the corresponding tables
T = {ti|1 ≤ i ≤ m1} and S = {si|1 ≤ i ≤ m2}, respectively ([6]).

The most important and frequent relational operation when dealing with databases
is the equi-join. At the same time, this operation is costly, so its analysis constitutes
an important subject in queries optimization ([14]). The equi-join between the tables
T and S based on the attributes sets A and B, respectively, where A ⊆ U1, B ⊆ U2
and |A| = |B|, is denoted by T Z S . This operation’s result is a table whose records
satisfy the equalities between the corresponding values of the join attributes, i.e. the
resulting table contains combined tuples ti, s j from T and S , respectively, such that
prA(ti) = prB(s j), 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2.

Because of the uncertainty of information in random databases, the equi-join op-
eration ([14], [20]) was replaced by the approximate join, denoted by T ZA≈B S . This
operation was defined considering a distance d between the elements in subsets DA

and DB, where DA and DB are the projections of DU1 and DU2 on the attribute sets A
and B, respectively. We also consider that DA and DB are subsets of a metric space
on which the distance d is defined. For instance, if the join attributes are numeric,
then d might be the Euclidean distance.

The values x ∈ DA and y ∈ DB are ε-close ([14]), ε ≥ 0, if d(x, y) ≤ ε.
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The table resulting from the approximate join operation contains the ε-close tu-
ples according to the given distance. From now on, we consider that the join attributes
A and B are fixed and we will omit them in the ε-join’s notation. In the particular case
ε = 0, the equi-join operation is obtained.

Definition 1. The ε-join operation between two random tables T and S is defined
by the following records set:

TZεS = {(x, y) ∈ T × S |d(xA, yB) ≤ ε} (1)

The random variable Nε = |TZεS |, that denotes the cardinality of the result set
of the ε-join defined above, has been studied in the previous research ([14], [13], [5],
[20]) from the perspective of its probability distribution. In the next subsections, we
introduce briefly the main approaches and results concerning this problem.

2.1 Estimation of the probability distribution of the ε-join’s cardinalities

In the first researches regarding the probability distribution of the cardinalities Nε ,
the random tables consisted of records which followed the same multidimensional
probability distribution. In this framework, it was proved that the random variable
Nε is Poisson distributed ([14]). Then, we defined the concept of heterogeneous
random table in which different subsets of columns can follow different probability
distributions. Two methods of estimation have been proposed for this type of random
table in ([20]).

Initially, we generated the histograms for the cardinalities of the approximate
join result between two random tables. The analysis of these histograms indicated
that the values Nε are Poisson distributed. In order to validate this assumption, we
applied the χ2 test of goodness of fit ([8]). Following this approach, the conclusion
that we reached was that the cardinalities are Poisson distributed. Nevertheless, the
existence of a threshold of ε up to which the Poisson distribution was followed by Nε

could be noticed.
Further, we proved in a sounder manner that the number of records in the result

set obtained in an ε-operation on random tables follows a Poisson distribution. The
result actually extended the main result in [14]. The proof was obtained through
a Poisson approximation using the Stein-Chen method ([2]), which approximates a
probability distribution P by a simpler distribution Q, easier to define and to use in
simulations. Also, the proof of the Poisson estimation of the cardinalities distribution
uses concepts as entropy ([10]) and coincidence probabilities ([4]). The difference
between the actual probability and the Poisson one was measured by the total varia-
tion distance ([14], [15]).

Following the previous research for the homogeneous case and the approaches
described above for the heterogeneous one, we can state that the values Nε are Poisson
distributed of parameter λ, where λ = E (Nε) is the mean value of Nε .
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2.2 Simulation of the ε-join in random databases using Poisson stochastic pro-
cesses

In this section, we present an overview of the ε-join problem using the approach of
a homogeneous bidimensional Poisson process, which will be further generalized to
the multidimensional case.

2.2.1 The bidimensional case

In the research introduced in [21], we considered the random tables T , S , with the ε-
join attributes A and B, respectively. The domains of these attributes are DA and DB,
respectively, and they are supposed to be compatible. Since these attributes should
have a similar meaning in the relation schemas, we also supposed that their values
follow the same type of unidimensional probability distribution on the domains DA,
DB and this probability distribution has the same parameters for both attributes.

In our framework, we considered that the sets of join attributes have a single
element and the domains DA and DB are the intervals [0,K] and [0, L], respectively,
where K > 0, L > 0. In this case, the result of the ε-join operation can be represented
by points in the rectangle D = [0,K] × [0, L].

Definition 2. ([11]) A process which consists of random points in the bidimen-
sional plane is a bidimensional Poisson process of intensity λ if the following condi-
tions are satisfied:

1. The number of points in any region of area Γ is distributed Poisson of parameter
λΓ.

2. The numbers of points in disjoint regions correspond to independent random
variables.

From the results we mentioned in section 2.1, the number of points Nε in the
rectangle D is Poisson(λ) distributed, with the parameter λ specified before as the
mean value of Nε . Let ∆ be the area of the rectangle D.

Denote:
λ′ =

λ

∆
. (2)

It was proven ([21]) that the number of records in the ε-join operation’s result
follow a bidimensional Poisson process; we could state the following:

Proposition 1. The cardinality of a ε-join operation between the tables T , respec-
tively S , based on the attributes A and B, with A and B following the same probability
distribution, forms a homogeneous bidimensional Poisson process of parameter λ′

given in Eq. 2.
Taking into consideration the result from proposition 1, the methods of simulation

of the bidimensional Poisson processes can be used ([16]). A consequence of the
proposition 1 is the statement of a relation between |S |, ε and ∆.
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For each value B j of the attribute B, denote Bε

(
B j

)
=

{
x ∈ DB|d(x, B j) ≤ ε

}
and

consider mes
(
Bε

(
B j

))
the measure of Bε

(
B j

)
. Then, the following result could be

obtained:
Proposition 2. Consider the ε-join operation between the attributes A and B of

the random tables T , respectively S , and Bi, 1 ≤ i ≤ |S |, the values of attribute B.
Then:

|S |∑
i=1

mes (Bε (Bi)) =
λ

λ′
(3)

In the relation obtained in proposition 2, the standard Lebesgue measure can be
considered.

In the research concerning the results presented in section 2.1 ([14], [20]) it could
be noticed that the Poisson probability distribution is followed up to a threshold of
ε. The Poisson perspective of the ε-join allows to determine this value, using the
relation stated in proposition 2.

2.2.2 Generalization to the n-dimensional case

The results presented in section 2.2.1 could be extended to the case of a multiple
join. Consider the random tables T1,T2, . . . ,Tn, n ≥ 2, and the corresponding ε-join
attributes A1, A2, . . . , An. Suppose that the domain of each attribute A j, 1 ≤ j ≤ n, is[
0,K j

]
, K j > 0.

We consider the n-dimensional cube C = [0,K1]×[0,K2]×. . .×[0,Kn], K j > 0 for
each j ∈ {1, 2, . . . , n}. Similar to the bidimensional case, Nε is Poisson (λ) distributed,
where λ = E (Nε).

The value of the parameter λ′ of the Poisson process can be found by induction:

λ′ =
λ

vol (C)
. (4)

Further, the proposition 1 in the previous subsection was generalized ([21]) as:
Proposition 3. The cardinality of a ε-join operation between the tables T1,T2, . . . ,Tn,

based on the attributes A1, A2, . . . , An, n > 2, where A j, j ∈ {1, 2, . . . , n} follow the
same probability distribution, forms a homogeneous multidimensional Poisson pro-
cess of parameter λ′ given in Eq. 4.

Also, a result that allows to find the threshold of ε could be extended in this case,
following the reasoning in Proposition 2.

3 Estimation of the time interval between cardinalities changes

In time, the contents of transational databases is submitted to frequent modifications.
We will consider the problem of insertions in the transactional random databases, in
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the context of the estimation of time interval between the modifications of the join
operation’s result set cardinality. The technique that we will use is the one of the
justification of some hypothesis in the Jelinski-Moranda model ([18]). We will trans-
pose these justifications in the random databases model, when the temporal aspect of
database modification and queries launched on them is taken into consideration.

3.1 Preliminaries

The Jelinski-Moranda model ([9]) is a Markovian model for software program’s reli-
ability. This model supposes that the number of errors existing at a given moment is
a Markov process. A software program is considered as a reparable system, in which
the errors occurence leads to the interruption of the execution and program debug,
in order to eliminate the errors. In the program, there is an initial number of errors
that decreases while the program is debugged. The Jelinski-Moranda model starts
from some hypothesis that can be justified based on the particularities of a software
product.

The main hypothesis of the model are (e.g., [7]):

1. The number of initial errors in the system is finite and fixed.

2. The errors are of the same type.

3. The repair of errors is done immediately and perfectly.

4. The detection of error is done independently of each other.

5. The intervals of time between errors is exponentially distributed; the parameter
of the distribution is proportional to the number of remaining errors.

6. The hazard rate remains constant over the interval between error occurrences.

Generally, the Jelinski-Moranda model is characterized in terms of the probability
distribution of the intervals of time between the appearance of errors. We describe
briefly the main points of this characterization ([18], [7]).

Consider n random variables X1, X2, . . . , Xn independant and identically distributed,
whose distribution is exponential of parameter λ, λ > 0. The density function of the
variable Xi, i ∈ {1, 2, . . . , n} is:

fi (xi) = λe−λxi . (5)

Denote by X(i) the statistic of order i and suppose that X(0) = 0. Then, the joint
distribution of the order statistics is:

f(1,2,...,n) (x1, x2, . . . , xn) = n!λne−λ
∑n

i=1 xi . (6)
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On one hand, the intervals of time between errors are given by Ti = X(i) − X(i−1)

for i ∈ {1, 2, . . . , n}. Consequently, it implies that:

n∑
i=1

Xi =

n∑
i=1

(n − i + 1) Ti. (7)

On the other hand, from Eq. 6 it can be noticed that:

f(1,2,...,n) (x1, x2, . . . , xn) = f (t1, t2, . . . , tn) = n!λn · e−λ
∑n

i=1(n−i+1)ti . (8)

Further, it can be noticed that f (t1, t2, . . . , tn) is the joint density of the variables
T1,T2, . . . ,Tn, and the marginal density function of Ti is:

fi (ti) = (n − i + 1) λ · e−λti(n−i+1). (9)

From Eq. 8, 9, it results immediately that:

f (t1, t2, . . . , tn) =

n∏
i=1

fi (ti) . (10)

Consequently, the time intervals between the errors are independent random vari-
ables, exponentially distributed of parameter (n − i + 1) λ, for i ∈ {1, 2, . . . , n}.

Due to this exponential distribution, the hazard rate after the detection of the i-th
error is constant, for i ∈ {1, 2, . . . , n}:

hi (t) = (n − i + 1) λ. (11)

To conclude, (Tn)n≥0 is a Markovian process with independant increments due to
the fact that the time intervals are independant.

3.2 Applying the Jelinski-Moranda model in transactional random databases

Suppose that we have two random tables T1 and T2 which are frequently submitted
to approximate join operations. We consider that in one of the tables frequent inser-
tions of different data volumes take place, followed by the re-evaluation of the ε-join
operation. In this situation, the following question arises: can we estimate the proba-
bility distribution of time which passes between two subsequent modifications of the
result set? Similar to the justification of the Jelinski-Moranda model ([18]), we can
consider: M the set of records in the cross product, M∗ ⊂ M the set of records in
the result set of the join operation, and τ the length of the time interval between two
subsequent modifications of the result set.

Generally, we can suppose that the commit operations of the insertions in the
database’s tables appear rarely, so we can consider that these operations, interpreted
as events, form a Poisson(ω), where ω is the intensity of the insertion operations.



DISTRIBUTION OF TIME INTERVAL BETWEEN THE MODIFICATIONS OF RESULT SETS
CARDINALITIES IN RANDOM DATABASES 303

The distribution function of the time interval τ between the modifications of the
result set is F (t) = P (τ < t). The probability not to have data that enter in the join
operation’s result in the interval [0, t] is:

F (t) = 1 − F (t) =

∞∑
j=0

(
e−ωt(ωt) j

j!

) (
M − M∗

M

) j

(12)

The preceding formula has the following justification: the first factor of the sum
represents the probability to insert j records in the time interval [0, t) according to
the Poisson(ω) distribution, where ω is the intensity of the insert operations, whereas
the second factor represents the probability that this data do not enter in the join
operation’s result. Performing the sum represents a mediation concerning the random
values of j.

We denote by

λ =
M∗

M
· ω (13)

the intensity of occurence of new records in the join operation. In this case, the
formula 12 becomes:

F (t) = e−ωt
∞∑
j=0

ωt j

j!
·

(
M − M∗

M

) j

= e−ωt
∞∑
j=0

ωt j

j!
·

(
1 −

λ

ω

) j

= (14)

= e−ωt
∞∑
j=0

[
ωt ·

(
1 − λ

ω

)] j

j!

Further, we obtain that:

F (t) = e−ωt · eωt·(1− λ
ω ) = e−λt (15)

As a consequence, we can state that τ is exponentially distributed, of parameter
λ.

The preceding considerations ensure the proof of the following result:
Theorem 1. The probability distribution of the time intervals between the inser-

tions that determine the modification of the random databases operations’ result sets
is exponential of parameter λ, defined in Eq. 13.

4 Conclusions

In this article the attention is paid to the approximate join problem, specific to ran-
dom databases. Starting from the important classification of databases in two main
classes, analytical and transactional, we first presented the results that mainly apply
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in the optimization of the random databases which are rather analytical. Then, the
attention was focused on the transactional case. The most original point of this pa-
per is the approach of the probability distribution of the time interval between two
subsequent modifications of the result set of a query. In this respect, we used the
Jelinski-Moranda model. This contribution provides important information to the
optimization module integrated in a random database, as it can avoid recomputations
of queries result sets.
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